Skip to main content

Detection and Application of RNA Editing in Cancer

  • Chapter
  • First Online:
Single Cell Biomedicine

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 1068))

Abstract

RNA editing is the process which happened in the post-transcriptional stage that the genetic information contained in an RNA molecule will be changed. RNA editing has been found to be related with many cancers, so through identifying RNA editing sites, we can find useful information on the process of carcinogenesis. In this review, we will discuss the main types of RNA editing and their role in cancers, as well as the current detection methods of RNA editing and the challenges we should overcome.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Han L, Diao L, Yu S, Xu X, Li J, Zhang R et al (2015) The genomic landscape and clinical relevance of A-to-I RNA editing in human cancers. Cancer Cell 28:515–528. [PMID:26439496]

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Licht K, Jantsch MF (2016) Rapid and dynamic transcriptome regulation by RNA editing and RNA modifications. J Cell Biol 213:15–22. [PMID:27044895]

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Tajaddod M, Jantsch MF, Licht K (2016) The dynamic epitranscriptome: A to I editing modulates genetic information. Chromosoma 125:51–63. [PMID:26148686]

    Article  CAS  PubMed  Google Scholar 

  4. Yang Y, Zhou X, Jin Y (2013) ADAR-mediated RNA editing in non-coding RNA sequences. Sci China Life Sci 56:944–952. [PMID:24008387]

    Article  CAS  PubMed  Google Scholar 

  5. Mannion N, Arieti F, Gallo A, Keegan LP, O’Connell MA (2015) New insights into the biological role of mammalian ADARs; the RNA editing proteins. Biomolecules 5:2338–2362. [PMID:26437436]

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Bazak L, Levanon EY, Eisenberg E (2014) Genome-wide analysis of Alu editability. Nucleic Acids Res 42:6876–6884. [PMID:24829451]

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Bahn JH, Ahn J, Lin X, Zhang Q, Lee JH, Civelek M et al (2015) Genomic analysis of ADAR1 binding and its involvement in multiple RNA processing pathways. Nat Commun 6:6355. [PMID:25751603]

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Fang H, Wang W (2016) Could CRISPR be the solution for gene editing’s Gordian knot? Cell Biol Toxicol 32(6):465–467. [PMID: 27614448]

    Article  PubMed  Google Scholar 

  9. Peng Z, Cheng Y, Tan BC, Kang L, Tian Z, Zhu Y et al (2012) Comprehensive analysis of RNA-Seq data reveals extensive RNA editing in a human transcriptome. Nat Biotechnol 30:253–260. [PMID:22327324]

    Article  CAS  PubMed  Google Scholar 

  10. Smith HC, Bennett RP, Kizilyer A, McDougall WM, Prohaska KM (2012) Functions and regulation of the APOBEC family of proteins. Semin Cell Dev Biol 23:258–268. [PMID:22001110]

    Article  CAS  PubMed  Google Scholar 

  11. Meier JC, Kankowski S, Krestel H, Hetsch F (2016) RNA Editing-Systemic Relevance and Clue to Disease Mechanisms? Front Mol Neurosci 9:124. [PMID:27932948]

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Blanc V, Park E, Schaefer S, Miller M, Lin Y, Kennedy S et al (2014) Genome-wide identification and functional analysis of Apobec-1-mediated C-to-U RNA editing in mouse small intestine and liver. Genome Biol 15:R79. [PMID:24946870]

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Sharma S, Patnaik SK, Taggart RT, Kannisto ED, Enriquez SM, Gollnick P et al (2015) APOBEC3A cytidine deaminase induces RNA editing in monocytes and macrophages. Nat Commun 6:6881. [PMID:25898173]

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Swanton C, McGranahan N, Starrett GJ, Harris RSAPOBEC (2015) Enzymes: mutagenic fuel for cancer evolution and heterogeneity. Cancer Discov 5:704–712. [PMID:26091828]

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Sharma S, Patnaik SK, Kemer Z, Baysal BE (2017) Transient overexpression of exogenous APOBEC3A causes C-to-U RNA editing of thousands of genes. RNA Biol 14:603–610. [PMID:27149507]

    Article  PubMed  Google Scholar 

  16. Okuyama S, Marusawa H, Matsumoto T, Ueda Y, Matsumoto Y, Endo Y et al (2012) Excessive activity of apolipoprotein B mRNA editing enzyme catalytic polypeptide 2 (APOBEC2) contributes to liver and lung tumorigenesis. Int J Cancer 130:1294–1301. [PMID:21469143]

    Article  CAS  PubMed  Google Scholar 

  17. Burns MB, Lackey L, Carpenter MA, Rathore A, Land AM, Leonard B et al (2013) APOBEC3B is an enzymatic source of mutation in breast cancer. Nature 494:366–370. [PMID:23389445]

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Srivastava PK, Bagnati M, Delahaye-Duriez A, Ko JH, Rotival M, Langley SR et al (2017) Genome-wide analysis of differential RNA editing in epilepsy. Genome Res 27:440–450. [PMID:28250018]

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Lee SY, Joung JG, Park CH, Park JH, Kim JH (2015) RCARE: RNA sequence comparison and annotation for RNA editing. BMC Med Genet 8(Suppl 2):S8. [PMID:26043858]

    Google Scholar 

  20. Wang W, Gao D, Wang X (2017) Can single-cell RNA sequencing crack the mystery of cells? Cell Biol Toxicol 34(1):1–6. https://doi.org/10.1007/s10565-017-9404-y. [PMID: 28733864

    Article  PubMed  CAS  Google Scholar 

  21. Wang W, Zhu B, Wang X (2017) Dynamic phenotypes: illustrating a single-cell odyssey. Cell Biol Toxicol 33(5):423–427. [PMID: 28638956]

    Article  PubMed  Google Scholar 

  22. Wang W, Wang X (2017) Single-cell CRISPR screening in drug resistance. Cell Biol Toxicol 33(3):207–210. https://doi.org/10.1007/s10565-017-9396-7. [PMID: 28474250]

    Article  PubMed  CAS  Google Scholar 

  23. Blanc V, Davidson NO (2010) APOBEC-1-mediated RNA editing. Wiley Interdiscip Rev Syst Biol Med 2:594–602. [PMID:20836050]

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Nigita G, Veneziano D, Ferro A, A-to-I RNA Editing (2015) Current knowledge sources and computational approaches with special emphasis on non-coding rna molecules. Front Bioeng Biotechnol 3:37. [PMID:25859542]

    PubMed  PubMed Central  Google Scholar 

  25. Li S, Mason CE (2014) The pivotal regulatory landscape of RNA modifications. Annu Rev Genomics Hum Genet 15:127–150. [PMID:24898039]

    Article  CAS  PubMed  Google Scholar 

  26. Nishikura K (2016) A-to-I editing of coding and non-coding RNAs by ADARs. Nat Rev Mol Cell Biol 17:83–96. [PMID:26648264]

    Article  CAS  PubMed  Google Scholar 

  27. Borchert GM, Gilmore BL, Spengler RM, Xing Y, Lanier W, Bhattacharya D et al (2009) Adenosine deamination in human transcripts generates novel microRNA binding sites. Hum Mol Genet 18:4801–4807. [PMID:19776031]

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Liu H, Ma CP, Chen YT, Schuyler SC, Chang KP, Tan BC (2014) Functional Impact of RNA editing and ADARs on regulation of gene expression: perspectives from deep sequencing studies. Cell Bioscience 4:44. [PMID:25949793]

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Nachmani D, Zimmermann A, Oiknine Djian E, Weisblum Y, Livneh Y, Khanh Le VT et al (2014) MicroRNA editing facilitates immune elimination of HCMV infected cells. PLoS Pathog 10:e1003963. [PMID:24586166]

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Kawahara Y, Megraw M, Kreider E, Iizasa H, Valente L, Hatzigeorgiou AG et al (2008) Frequency and fate of microRNA editing in human brain. Nucleic Acids Res 36:5270–5280. [PMID:18684997]

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Vitsios DM, Enright AJ (2015) Chimira: analysis of small RNA sequencing data and microRNA modifications. Bioinformatics 31:3365–3367. [PMID:26093149]

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Torres AG, Pineyro D, Filonava L, Stracker TH, Batlle E, Ribas de Pouplana L (2014) A-to-I editing on tRNAs: biochemical, biological and evolutionary implications. FEBS Lett 588:4279–4286. [PMID:25263703]

    Article  CAS  PubMed  Google Scholar 

  33. Penzo M, Galbiati A, Trere D, Montanaro L (2016) The importance of being (slightly) modified: the role of rRNA editing on gene expression control and its connections with cancer. Biochim Biophys Acta 1866:330–338. [PMID:27815156]

    PubMed  CAS  Google Scholar 

  34. Picardi E, Manzari C, Mastropasqua F, Aiello I, D’Erchia AM, Pesole G (2015) Profiling RNA editing in human tissues: towards the inosinome Atlas. Sci Rep 5:14941. [PMID:26449202]

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Ramaswami G (2016) Li JB. Identification of human RNA editing sites: A historical perspective. Methods 107:42–47. [PMID:27208508]

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Bao L, Zhang Y, Wang J, Wang H, Dong N, Su X, Xu M, Wang X (2016) Variations of chromosome 2 gene expressions among patients with lung cancer or non-cancer. Cell Biol Toxicol 32(5):419–435. [PMID: 27301951]

    Article  CAS  PubMed  Google Scholar 

  37. O’Brien TD, Jia P, Xia J, Saxena U, Jin H, Vuong H et al (2015) Inconsistency and features of single nucleotide variants detected in whole exome sequencing versus transcriptome sequencing: a case study in lung cancer. Methods 83:118–127. [PMID:25913717]

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Sakurai M, Ueda H, Yano T, Okada S, Terajima H, Mitsuyama T et al (2014) A biochemical landscape of A-to-I RNA editing in the human brain transcriptome. Genome Res 24:522–534. [PMID:24407955]

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Wang XD (2015) In: Wang XD (ed) Single cell sequencing and systems immunology, Translational bioinformatics, vol 5. Springer Netherlands, Dordrecht. https://doi.org/10.1007/978-94-017-9753-5

    Chapter  Google Scholar 

  40. Piechotta M, Wyler E, Ohler U, Landthaler M, Dieterich C (2017) JACUSA: site-specific identification of RNA editing events from replicate sequencing data. BMC Bioinf 18:7. [PMID:28049429]

    Article  CAS  Google Scholar 

  41. Giromini C, Rebucci R, Fusi E, Rossi L, Saccone F, Baldi A (2016) Cytotoxicity, apoptosis, DNA damage and methylation in mammary and kidney epithelial cell lines exposed to ochratoxin A. Cell Biol Toxicol 32(3):249–258. [PMID: 27154019]

    Article  CAS  PubMed  Google Scholar 

  42. Li JB, Church GM (2013) Deciphering the functions and regulation of brain-enriched A-to-I RNA editing. Nat Neurosci 16:1518–1522. [PMID:24165678]

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Ramaswami G, Lin W, Piskol R, Tan MH, Davis C, Li JB (2012) Accurate identification of human Alu and non-Alu RNA editing sites. Nat Methods 9:579–581. [PMID:22484847]

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Wang Z, Lian J, Li Q, Zhang P, Zhou Y, Zhan X et al (2016) RES-Scanner: a software package for genome-wide identification of RNA-editing sites. GigaScience 5:37. [PMID:27538485]

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Picardi E, D’Erchia AM, Gallo A, Montalvo A, Pesole G (2014) Uncovering RNA editing sites in long non-coding RNAs. Front Bioeng Biotechnol 2:64. [PMID:25538940]

    Article  PubMed  PubMed Central  Google Scholar 

  46. Toung JM, Lahens N, Hogenesch JB, Grant G (2014) Detection theory in identification of RNA-DNA sequence differences using RNA-sequencing. PLoS One 9:e112040. [PMID:25396741]

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Wang XD, Baumgartner C, Shields DS, Deng HW, Beckmann JS (2016) In: Wang XD (ed) Application of clinical bioinformatics, Translational bioinformatics, vol 11. Springer Netherlands, Dordrecht. https://doi.org/10.1007/978-94-017-7543-4

    Chapter  Google Scholar 

  48. Kiran AM, O’Mahony JJ, Sanjeev K, Baranov PV (2013) Darned in 2013: inclusion of model organisms and linking with Wikipedia. Nucleic Acids Res 41:D258–D261. [PMID:23074185]

    Article  CAS  PubMed  Google Scholar 

  49. Ramaswami G, Li JB (2014) RADAR: a rigorously annotated database of A-to-I RNA editing. Nucleic Acids Res 42:D109–D113. [PMID:24163250]

    Article  CAS  PubMed  Google Scholar 

  50. Picardi E, D’Erchia AM, Lo Giudice C, Pesole G (2017) REDIportal: a comprehensive database of A-to-I RNA editing events in humans. Nucleic Acids Res 45:D750–D7D7. [PMID:27587585]

    Article  CAS  PubMed  Google Scholar 

  51. Zheng Y, Ji B, Song R, Wang S, Li T, Zhang X et al (2016) Accurate detection for a wide range of mutation and editing sites of microRNAs from small RNA high-throughput sequencing profiles. Nucleic Acids Res 44:e123. [PMID:27229138]

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. St Laurent G, Tackett MR, Nechkin S, Shtokalo D, Antonets D, Savva YA et al (2013) Genome-wide analysis of A-to-I RNA editing by single-molecule sequencing in Drosophila. Nat Struct Mol Biol 20:1333–1339. [PMID:24077224]

    Article  CAS  PubMed  Google Scholar 

  53. Xiong H, Liu D, Li Q, Lei M, Xu L, Wu L et al (2017) RED-ML: a novel, effective RNA editing detection method based on machine learning. GigaScience. 6:1–8. [PMID:28328004]

    Article  PubMed  PubMed Central  Google Scholar 

  54. Paz-Yaacov N, Bazak L, Buchumenski I, Porath HT, Danan-Gotthold M, Knisbacher BA et al (2015) Elevated RNA editing activity Is a major contributor to transcriptomic diversity in tumors. Cell Rep 13:267–276. [PMID:26440895]

    Article  CAS  PubMed  Google Scholar 

  55. Chen L, Li Y, Lin CH, Chan TH, Chow RK, Song Y et al (2013) Recoding RNA editing of AZIN1 predisposes to hepatocellular carcinoma. Nat Med 19:209–216. [PMID:23291631]

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Wang DC, Wang X (2017 Apr) Systems heterogeneity: an integrative way to understand cancer heterogeneity. Semin Cell Dev Biol 64:1–4

    Article  CAS  PubMed  Google Scholar 

  57. Han SW, Kim HP, Shin JY, Jeong EG, Lee WC, Kim KY et al (2014) RNA editing in RHOQ promotes invasion potential in colorectal cancer. J Exp Med 211:613–621. [PMID:24663214]

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Fumagalli D, Gacquer D, Rothe F, Lefort A, Libert F, Brown D et al (2015) Principles governing A-to-I RNA editing in the breast cancer transcriptome. Cell Rep 13:277–289. [PMID:26440892]

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Qin YR, Qiao JJ, Chan TH, Zhu YH, Li FF, Liu H et al (2014) Adenosine-to-inosine RNA editing mediated by ADARs in esophageal squamous cell carcinoma. Cancer Res 74:840–851. [PMID:24302582]

    Article  CAS  PubMed  Google Scholar 

  60. Watanabe K, Takai D (2013) Disruption of the expression and function of microRNAs in lung cancer as a result of epigenetic changes. Front Genet 4:275–[PMID:24348521]

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Peng L, Lee LJ, Xiong H, Su H, Rao J, Xiao D et al (2017) Characterization of RNA editome in primary and metastatic lung adenocarcinomas. Oncotarget 8:11517–11529. [PMID:28009993]

    PubMed  Google Scholar 

  62. Anadon C, Guil S, Simo-Riudalbas L, Moutinho C, Setien F, Martinez-Cardus A et al (2016) Gene amplification-associated overexpression of the RNA editing enzyme ADAR1 enhances human lung tumorigenesis. Oncogene 35:4407–4413. [PMID:26640150]

    Article  CAS  PubMed  Google Scholar 

  63. Valdmanis PN, Roy-Chaudhuri B, Kim HK, Sayles LC, Zheng Y, Chuang CH et al (2015) Upregulation of the microRNA cluster at the Dlk1-Dio3 locus in lung adenocarcinoma. Oncogene 34:94–103. [PMID:24317514]

    Article  CAS  PubMed  Google Scholar 

  64. Chan TH, Lin CH, Qi L, Fei J, Li Y, Yong KJ et al (2014) A disrupted RNA editing balance mediated by ADARs (Adenosine DeAminases that act on RNA) in human hepatocellular carcinoma. Gut 63:832–843. [PMID:23766440]

    Article  CAS  PubMed  Google Scholar 

  65. Nakano M, Nakajima M (2017) Significance of A-to-I RNA editing of transcripts modulating pharmacokinetics and pharmacodynamics. Pharmacol Ther 181:13–21. [PMID:28716651]

    Article  CAS  PubMed  Google Scholar 

  66. Yamanaka S, Balestra ME, Ferrell LD, Fan J, Arnold KS, Taylor S et al (1995) Apolipoprotein B mRNA-editing protein induces hepatocellular carcinoma and dysplasia in transgenic animals. Proc Natl Acad Sci U S A 92:8483–8487. [PMID:7667315]

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Shoshan E, Mobley AK, Braeuer RR, Kamiya T, Huang L, Vasquez ME et al (2015) Reduced adenosine-to-inosine miR-455-5p editing promotes melanoma growth and metastasis. Nat Cell Biol 17:311–321. [PMID:25686251]

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Salameh A, Lee AK, Cardo-Vila M, Nunes DN, Efstathiou E, Staquicini FI et al (2015) PRUNE2 is a human prostate cancer suppressor regulated by the intronic long noncoding RNA PCA3. Proc Natl Acad Sci U S A 112:8403–8408. [PMID:26080435]

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Nik-Zainal S, Alexandrov LB, Wedge DC, Van Loo P, Greenman CD, Raine K et al (2012) Mutational processes molding the genomes of 21 breast cancers. Cell 149:979–993. [PMID:22608084]

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Roberts SA, Lawrence MS, Klimczak LJ, Grimm SA, Fargo D, Stojanov P et al (2013) An APOBEC cytidine deaminase mutagenesis pattern is widespread in human cancers. Nat Genet 45:970–976. [PMID:23852170]

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Gumireddy K, Li A, Kossenkov AV, Sakurai M, Yan J, Li Y et al (2016) The mRNA-edited form of GABRA3 suppresses GABRA3-mediated Akt activation and breast cancer metastasis. Nat Commun 7:10715. [PMID:26869349]

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Choudhury Y, Tay FC, Lam DH, Sandanaraj E, Tang C, Ang BT et al (2012) Attenuated adenosine-to-inosine editing of microRNA-376a* promotes invasiveness of glioblastoma cells. J Clin Invest 122:4059–4076. [PMID:23093778]

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Tomaselli S, Galeano F, Alon S, Raho S, Galardi S, Polito VA et al (2015) Modulation of microRNA editing, expression and processing by ADAR2 deaminase in glioblastoma. Genome Biol 16:5. [PMID:25582055]

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Ishiuchi S, Yoshida Y, Sugawara K, Aihara M, Ohtani T, Watancabe T et al (2007) Ca2+-permeable AMPA receptors regulate growth of human glioblastoma via Akt activation. J Neurosci Off J Soc Neurosci 27:7987–8001. [PMID:17652589]

    Article  CAS  Google Scholar 

  75. Shi L, Zhu B, Xu M, Wang X (2017) Selection of AECOPD-specific immunomodulatory biomarkers by integrating genomics and proteomics with clinical informatics. Cell Biol Toxicol 34(2):109–123. https://doi.org/10.1007/s10565-017-9405-x. [PMID: 28779230]

    Article  PubMed  CAS  Google Scholar 

  76. Wang X (2016) New biomarkers and therapeutics can be discovered during COPD-lung cancer transition. Cell Biol Toxicol 32(5):359–361. [PMID: 27405768]

    Article  PubMed  Google Scholar 

  77. Chen C, Shi L, Li Y, Wang X, Yang S (2016) Disease-specific dynamic biomarkers selected by integrating inflammatory mediators with clinical informatics in ARDS patients with severe pneumonia. Cell Biol Toxicol 32(3):169–184. [PMID: 27095254]

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Wang L, Zhu B, Zhang M, Wang X (2017) Roles of immune microenvironment heterogeneity in therapy-associated biomarkers in lung cancer. Semin Cell Dev Biol 64:90–97

    Article  CAS  PubMed  Google Scholar 

  79. Bao L, Diao H, Dong N, Su X, Wang B, Mo Q, Yu H, Wang X, Chen C (2016) Histone deacetylase inhibitor induces cell apoptosis and cycle arrest in lung cancer cells via mitochondrial injury and p53 up-acetylation. Cell Biol Toxicol 32(6):469–482. [PMID: 27423454]

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The work was supported by Zhongshan Distinguished Professor Grant (XDW), The National Nature Science Foundation of China (91230204, 81270099, 81320108001, 81270131, 81300010), The Shanghai Committee of Science and Technology (12JC1402200, 12431900207, 11410708600, 14431905100), Operation funding of Shanghai Institute of Clinical Bioinformatics, Ministry of Education for Academic Special Science and Research Foundation for PhD Education (20130071110043), and National Key Research and Development Program (2016YFC0902400, 2017YFSF090207).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiangdong Wang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Qian, M., Spada, C., Wang, X. (2018). Detection and Application of RNA Editing in Cancer. In: Gu, J., Wang, X. (eds) Single Cell Biomedicine. Advances in Experimental Medicine and Biology, vol 1068. Springer, Singapore. https://doi.org/10.1007/978-981-13-0502-3_13

Download citation

Publish with us

Policies and ethics