Skip to main content

Abstract

There has been a growing interest in SAR image interpretation for a variety of civilian and military applications, such as terrain classification, land or sea monitoring, target detection and recognition, etc. Presently, one of major strategies of SAR image processing is to use the classical methods of statistical pattern recognition, where it is crucial to develop precise models for the statistics of the pixel amplitudes or intensities (Oliver and Quegan in Understanding Synthetic Aperture Radar Images. Artech House, Norwood 1998, [1]).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 129.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Throughout this chapter, the estimates of parameters of the \( {\mathcal{G}}^{0} \) distribution adopt the MoLC, the detailed description is given by Tison et al. [18].

References

  1. C.J. Oliver, S. Quegan, Understanding Synthetic Aperture Radar Images (Artech House, Norwood, MA, 1998)

    Google Scholar 

  2. Y. Delignon, W. Pieczynski, Modelling non-Rayleigh speckle distribution in SAR images. IEEE Trans. Geosci. Remote Sens. 40(6), 1430–1435 (2002)

    Article  Google Scholar 

  3. A. Achim, E.E. Kuruoglu, J. Zerubia, SAR image filtering based on the heavy-tailed Rayleigh model. IEEE Trans. Image Process. 15(9), 2686–2693 (2006)

    Article  Google Scholar 

  4. E.E. Kuruoglu, J. Zerubia, Modeling SAR images with a generalization of the Rayleigh distribution. IEEE Trans. Image Process. 13(4), 527–533 (2004)

    Article  Google Scholar 

  5. M.S. Greco, G. Gini, Statistical analysis of high-resolution SAR ground clutter data. IEEE Trans. Geosci. Remote Sens. 45(3), 566–575 (2007)

    Article  Google Scholar 

  6. G. Moser, J. Zerubia, S.B. Serpico, SAR amplitude probability density function estimation based on a generalized Gaussian model. IEEE Trans. Image Process. 15(6), 1429–1442 (2006)

    Article  Google Scholar 

  7. A.C. Frery, H.J. Muller, C.C. Freitas Yanasse, S.J. Siqueira Sant’Anna, A model for extremely heterogeneous clutter. IEEE Trans. Geosci. Remote Sens. 35(3), 648–659 (1997, May)

    Article  Google Scholar 

  8. A.C. Frery, J. Jacobo-Berlles, J. Gambini, M. Mejail, Polarimetric SAR image segmentation with B-Splines and a new statistical model. Multidimension. Syst. Signal Process. 21, 319–342 (2010)

    Article  Google Scholar 

  9. A.C. Frery, A.H. Correia, C.C. Freitas, Classifying multifrequency fully polarimetric imagery with multiple sources of statistical evidence and contextual information. IEEE Trans. Geosci. Remote Sens. 45(10), 3098–3109 (2007)

    Article  Google Scholar 

  10. C.C. Freitas, A.C. Frery, A.H. Correia, The polarimetric G distribution for SAR data analysis. Environmetrics 16(1) 13–11 (2005)

    Article  MathSciNet  Google Scholar 

  11. H. Allende, A.C. Frery, J. Galbiati, L. Pizarro, M-estimators with asymmetric influence functions: The GA0 distribution case. J. Stat. Comput. Simul. 76(11), 941–956 (2006)

    Article  MathSciNet  Google Scholar 

  12. K.L.P. Vasconcellos, A.C. Frery, L.B. Silva, Improving estimation in speckled imagery. Comput. Stat. 20(3), 503–519 (2005)

    Article  MathSciNet  Google Scholar 

  13. E. Parzen, On estimation of a probability density function and mode. Ann. Math. Stat. 33(3), 1065–1076 (1962)

    Article  MathSciNet  Google Scholar 

  14. G. Gao, A parzen-window-kernel-based CFAR algorithm for ship detection in SAR Images. IEEE Geosci. Remote Sens. Lett. 8(3), 557–561 (2011)

    Article  Google Scholar 

  15. Q. Jiang, E. Aitnouri, S. Wang, D. Ziou, Automatic detection for ship target in SAR imagery using PNN-model. Can. J. Remote. Sens. 26(4), 297–305 (2000)

    Article  Google Scholar 

  16. J.M. Nicolas, F. Tupin, Gamma mixture modeled with second kind statistics: Application to SAR image processing. Paper presented at the IGARSS conference (Toronto, ON, Canada, 2002,) pp. 2489–2491

    Google Scholar 

  17. G. Moser, J. Zerubia, S.B. Serpico, Dictionary-based stochastic expectation-maximization for SAR amplitude probability density function estimation. IEEE Trans. Geosci. Remote Sens. 44(1), 118–200 (2006)

    Article  Google Scholar 

  18. G.J. McLachlan, D. Peel, Finite Mixture Models (Wiely, New York, 2000)

    Book  Google Scholar 

  19. V.A. Krylov, G. Moser, S.B. Serpico, J. Zerubia, Enhanced dictionary-based SAR amplitude distribution estimation and its validation with very high-resolution data. IEEE Geosci. Remote Sens. Lett. 8(1), 148–152 (2011)

    Article  Google Scholar 

  20. V.A. Krylov, G. Moser, S.B. Serpico, J. Zerubia, Supervised highresolution dual-polarization SAR image classification by finite mixtures and copulas. IEEE J. Sel. Top. Signal Process. 5(3), 554–566 (2011)

    Article  Google Scholar 

  21. G. Gao, Statistical modeling of SAR images: A survey. Sensors 10, 775–795 (2010)

    Article  Google Scholar 

  22. V. Anastassopoulos, G.A. Lampropoulos, A. Drosopoulos, M. Rey, High resolution radar clutter statistics. IEEE Trans. Aerosp. Electron. Syst. 35(1), 43–60 (1999)

    Article  Google Scholar 

  23. H.C. Li, W. Hong, Y.R. Wu, P.Z. Fan, On the empirical-statistical modeling of SAR images with generalized gamma distribution. IEEE J. Sel. Top. Signal Process. 5(3), 386–397 (2011)

    Article  Google Scholar 

  24. E.W. Stacy, A generalization of the gamma distribution. Ann. Math. Stat. 33(3), 1187–1192 (1962)

    Article  MathSciNet  Google Scholar 

  25. J.M. Nicolas, Introduction to second kind statistic: Application of log-moments and log-cumulants to SAR image law analysis. Trait. Signal 19(3), 139–167 (2002)

    MATH  Google Scholar 

  26. S.N. Anfinsen, T. Eltoft, Application of the matrix-variate Mellin transform to analysis of polarimetric radar images. IEEE Trans. Geosci. Remote Sens. 49(6), 2281–2295 (2011)

    Article  Google Scholar 

  27. C. Tison, J.M. Nicolas, F. Tupin, H. Maitre, A new statistical model for Markovian classification of urban areas in high-resolution SAR images. IEEE Trans. Geosci. Remote Sens. 42(10), 2046–2057 (2004)

    Article  Google Scholar 

  28. T. Esch, M. Thiel, A. Schenk, A. Roth, A. Müller, S. Dech, Delineation of urban footprints from TerraSAR-X data by analyzing speckle characteristics and intensity information. IEEE Trans. Geosci. Remote Sens. 48(2), 905–916 (2010)

    Article  Google Scholar 

  29. S.I. Gradshteyn, I.M. Ryzhik, Table of Integrals, Series, and Products, 7th edn. ( Academic Press, San Diego, CA, 2007)

    Google Scholar 

  30. R. Ravid, N. Levanon, Maximum-likehood CFAR for Weibull background. in IEE Proceedeeings-F, vol. 139, no. 3 (1992, June), pp. 256–264

    Google Scholar 

  31. X. Qin, S. Zhou, H. Zou, G. Gao, Statistical modeling of sea clutter in high-resolution SAR images using generalized gamma distribution. in Proceeding of IEEE Computer Vision in Remote Sensor (CVRS) (Xiamen, China, 2012, December), pp. 306–310

    Google Scholar 

  32. J. Martín-de-Nicolás, M.P. Jarabo-Amores, D. Mata-Moya, N. del-Rey-Maestre, J.L. Bárcena-Humanes, Statistical analysis of SAR sea clutter for classification purposes. Remote Sens. 6(10) 9379–9411 (2014)

    Article  Google Scholar 

  33. G. Gao, K. Ouyang, Y. Luo, S. Liang, S. Zhou, Scheme of parameter estimation for generalized gamma distribution and its application to ship detection in SAR images. IEEE Trans. Geosci. Remote Sens. 55(3), 1812–1832 (2017)

    Article  Google Scholar 

  34. V.A. Krylov, G. Moser, S.B. Serpico, J. Zerubia, On the method of logarithmic cumulants for parametric probability density function estimation. IEEE Trans. Image Process. 22(10), 3791–3806 (2013)

    Article  MathSciNet  Google Scholar 

  35. G. Gao, S. Gao, K. Ouyang, J. He, G. Li, Scheme for characterizing clutter statistics in SAR amplitude images by combining two parametric models. IEEE Trans. Geosci. Remote Sens. 56(10), 5636–5646 (2018)

    Article  Google Scholar 

  36. D.J. Crisp, The state-of-the-art in ship detection in synthetic aperture radar imagery. DSTO, Dept. Defence, Australian Government, Canberra, Australia, Public Release Document DSTO-RR-0272 (2004)

    Google Scholar 

  37. M. Stasolla, J.J. Mallorqui, G. Margarit, C. Santamaria, N. Walker, A comparative study of operational vessel detectors for maritime surveillance using satellite-borne synthetic aperture radar IEEE J. Sel. Topics Appl. Earth Observ. Remote Sens. 9(6) 2687–2701 (2016, June)

    Article  Google Scholar 

  38. M. Abramowitz, I.A. Stegun, Handbook of Mathematical Functions, 10th edn. (Dover, New York, 1972)

    MATH  Google Scholar 

  39. S. Kullback, R.A. Leibler, On information and sufficiency. Ann. Math. Stat. 22(1), 79–86 (1951)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gui Gao .

Rights and permissions

Reprints and permissions

Copyright information

© 2019 National Defense Industry Press, Beijing and Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Gao, G. (2019). Statistical Modeling of Single-Channel SAR Images. In: Characterization of SAR Clutter and Its Applications to Land and Ocean Observations. Springer, Singapore. https://doi.org/10.1007/978-981-13-1020-1_2

Download citation

  • DOI: https://doi.org/10.1007/978-981-13-1020-1_2

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-13-1019-5

  • Online ISBN: 978-981-13-1020-1

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics