Skip to main content

Histochemistry and Immunochemistry of Normal Muscle

  • Chapter
  • First Online:
Myopathology

Abstract

Histochemistry is an art deployed to identify the nature of chemical components within the tissue by means of visually observable chemical reactions [1]. The chemical reactions produce color and hence can be easily visualized. Skeletal muscle would probably rank first in the utilization of histochemical stains [2, 3]. Histochemical reactions can be arbitrarily categorized into:

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 129.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Dempsey EW, Wislocki GB. Histochemical contributions to physiology. Physiol Rev. 1946;26:1–27.

    Article  CAS  Google Scholar 

  2. Beckett EB. Some applications of histochemistry to the study of skeletal muscle. Rev Can Biol. 1962;21:391–407.

    CAS  PubMed  Google Scholar 

  3. Haggqvist G. A study of the histology and histochemistry of the muscle spindles. Z Biol. 1960;112:11–26.

    CAS  PubMed  Google Scholar 

  4. Wu CF. Double-staining in toto with hematoxylin and eosin. Science. 1940;92:515–6.

    Article  CAS  Google Scholar 

  5. Weller RO. Histopathological techniques in the investigation of muscle disease. Proc R Soc Med. 1972;65:615–7.

    CAS  PubMed  PubMed Central  Google Scholar 

  6. Gullotta F. Enzyme histochemistry in the biopsy diagnosis of skeletal muscle diseases. Acta Histochem Suppl. 1983;28:75–84.

    CAS  PubMed  Google Scholar 

  7. Coons AH, Kaplan MH. Localization of antigen in tissue cells; improvements in a method for the detection of antigen by means of fluorescent antibody. J Exp Med. 1950;91:1–13.

    Article  CAS  Google Scholar 

  8. Coons AH. Fluorescent antibodies as histochemical tools. Fed Proc. 1951;10:558–9.

    CAS  PubMed  Google Scholar 

  9. Crescitelli F. Friedrich Wilhelm Kuhne 1837–1900. Vis Res. 1977;17:1317–23.

    Article  CAS  Google Scholar 

  10. McDonald AG, Tipton KF. Fifty-five years of enzyme classification: advances and difficulties. FEBS J. 2014;281:583–92.

    Article  CAS  Google Scholar 

  11. Engel WK, Cunningham GG. Rapid Examination of Muscle Tissue. An Improved Trichrome Method for Fresh-Frozen Biopsy Sections. Neurology. 1963;13:919–23.

    Article  CAS  Google Scholar 

  12. Charles-Schoeman C, Verity MA. Nicotinamide adenine dinucleotide tetrazolium reductase identifies microvasculature activation in muscle from adult patients with dermatomyositis. J Rheumatol. 2012;39:94–9.

    Article  CAS  Google Scholar 

  13. Ross JM. Visualization of mitochondrial respiratory function using cytochrome c oxidase/succinate dehydrogenase (COX/SDH) double-labeling histochemistry. J Vis Exp. 2011;57:e3266.

    Google Scholar 

  14. Paciello O, Papparella S. Histochemical and immunohistological approach to comparative neuromuscular diseases. Folia Histochem Cytobiol. 2009;47:143–52.

    Article  Google Scholar 

  15. Godfrey R, Quinlivan R. Skeletal muscle disorders of glycogenolysis and glycolysis. Nat Rev Neurol. 2016;12:393–402.

    Article  CAS  Google Scholar 

  16. Barger A, Graca R, Bailey K, et al. Use of alkaline phosphatase staining to differentiate canine osteosarcoma from other vimentin-positive tumors. Vet Pathol. 2005;42:161–5.

    Article  CAS  Google Scholar 

  17. Wang HJ, Zhang CM, Xiong XK, et al. Enzyme histochemical and immunohistological changes of skeletal muscle motor end-plates and muscle fibers and their relation to the time of death. Fa Yi Xue Za Zhi. 1999;15:135–7. 93, 89.

    CAS  PubMed  Google Scholar 

  18. Sharma MC, Goebel HH. Protein aggregate myopathies. Neurol India. 2005;53:273–9.

    Article  CAS  Google Scholar 

  19. Connolly AM, Pestronk A, Planer GJ, et al. Congenital muscular dystrophy syndromes distinguished by alkaline and acid phosphatase, merosin, and dystrophin staining. Neurology. 1996;46:810–4.

    Article  CAS  Google Scholar 

  20. Hotchkiss RD. A microchemical reaction resulting in the staining of polysaccharide structures in fixed tissue preparations. Arch Biochem. 1948;16:131–41.

    CAS  PubMed  Google Scholar 

  21. Vogel H, Zamecnik J. Diagnostic immunohistology of muscle diseases. J Neuropathol Exp Neurol. 2005;64:181–93.

    Article  CAS  Google Scholar 

  22. Pegoraro E, Mancias P, Swerdlow SH, et al. Congenital muscular dystrophy with primary laminin alpha2 (merosin) deficiency presenting as inflammatory myopathy. Ann Neurol. 1996;40:782–91.

    Article  CAS  Google Scholar 

  23. Cohn RD, Herrmann R, Sorokin L, et al. Laminin alpha2 chain-deficient congenital muscular dystrophy: variable epitope expression in severe and mild cases. Neurology. 1998;51:94–100.

    Article  CAS  Google Scholar 

  24. Cohn RD, Herrmann R, Wewer UM, et al. Changes of laminin beta 2 chain expression in congenital muscular dystrophy. Neuromuscul Disord. 1997;7:373–8.

    Article  CAS  Google Scholar 

  25. Hodges BL, Hayashi YK, Nonaka I, et al. Altered expression of the alpha7beta1 integrin in human and murine muscular dystrophies. J Cell Sci. 1997;110(Pt 22):2873–81.

    CAS  PubMed  Google Scholar 

  26. Brockington M, Blake DJ, Prandini P, et al. Mutations in the fukutin-related protein gene (FKRP) cause a form of congenital muscular dystrophy with secondary laminin alpha2 deficiency and abnormal glycosylation of alpha-dystroglycan. Am J Hum Genet. 2001;69:1198–209.

    Article  CAS  Google Scholar 

  27. Jimenez-Mallebrera C, Torelli S, Brown SC, et al. Profound skeletal muscle depletion of alpha-dystroglycan in Walker-Warburg syndrome. Eur J Paediatr Neurol. 2003;7:129–37.

    Article  Google Scholar 

  28. Poppe M, Cree L, Bourke J, et al. The phenotype of limb-girdle muscular dystrophy type 2I. Neurology. 2003;60:1246–51.

    Article  CAS  Google Scholar 

  29. Ishikawa H, Sugie K, Murayama K, et al. Ullrich disease due to deficiency of collagen VI in the sarcolemma. Neurology. 2004;62:620–3.

    Article  CAS  Google Scholar 

  30. Arahata K, Beggs AH, Honda H, et al. Preservation of the C-terminus of dystrophin molecule in the skeletal muscle from Becker muscular dystrophy. J Neurol Sci. 1991;101:148–56.

    Article  CAS  Google Scholar 

  31. Fanin M, Freda MP, Vitiello L, et al. Duchenne phenotype with in-frame deletion removing major portion of dystrophin rod: threshold effect for deletion size? Muscle Nerve. 1996;19:1154–60.

    Article  CAS  Google Scholar 

  32. Tasdemir HA, Kotiloglu E, Topaloglu H, et al. Functional significance of dystrophin-positive fibers in Duchenne and Becker muscular dystrophy. Pediatr Pathol Lab Med. 1996;16:583–90.

    Article  CAS  Google Scholar 

  33. Nguyen TM, Morris GE. Use of epitope libraries to identify exon-specific monoclonal antibodies for characterization of altered dystrophins in muscular dystrophy. Am J Hum Genet. 1993;52:1057–66.

    CAS  PubMed  PubMed Central  Google Scholar 

  34. Nicholson LV, Johnson MA, Bushby KM, et al. Integrated study of 100 patients with Xp21 linked muscular dystrophy using clinical, genetic, immunochemical, and histopathological data. Part 3. Differential diagnosis and prognosis. J Med Genet. 1993;30:745–51.

    Article  CAS  Google Scholar 

  35. Matsumura K, Nonaka I, Tome FM, et al. Mild deficiency of dystrophin-associated proteins in Becker muscular dystrophy patients having in-frame deletions in the rod domain of dystrophin. Am J Hum Genet. 1993;53:409–16.

    CAS  PubMed  PubMed Central  Google Scholar 

  36. Draviam R, Billington L, Senchak A, et al. Confocal analysis of the dystrophin protein complex in muscular dystrophy. Muscle Nerve. 2001;24:262–72.

    Article  CAS  Google Scholar 

  37. Fanin M, Angelini C. Regeneration in sarcoglycanopathies: expression studies of sarcoglycans and other muscle proteins. J Neurol Sci. 1999;165:170–7.

    Article  CAS  Google Scholar 

  38. Zatz M, Vainzof M, Passos-Bueno MR. Limb-girdle muscular dystrophy: one gene with different phenotypes, one phenotype with different genes. Curr Opin Neurol. 2000;13:511–7.

    Article  CAS  Google Scholar 

  39. Moore SA, Shilling CJ, Westra S, et al. Limb-girdle muscular dystrophy in the United States. J Neuropathol Exp Neurol. 2006;65:995–1003.

    Article  Google Scholar 

  40. Bansal D, Campbell KP. Dysferlin and the plasma membrane repair in muscular dystrophy. Trends Cell Biol. 2004;14:206–13.

    Article  CAS  Google Scholar 

  41. Liu J, Aoki M, Illa I, et al. Dysferlin, a novel skeletal muscle gene, is mutated in Miyoshi myopathy and limb girdle muscular dystrophy. Nat Genet. 1998;20:31–6.

    Article  CAS  Google Scholar 

  42. Anderson LV, Davison K, Moss JA, et al. Dysferlin is a plasma membrane protein and is expressed early in human development. Hum Mol Genet. 1999;8:855–61.

    Article  CAS  Google Scholar 

  43. Woodman SE, Sotgia F, Galbiati F, et al. Caveolinopathies: mutations in caveolin-3 cause four distinct autosomal dominant muscle diseases. Neurology. 2004;62:538–43.

    Article  CAS  Google Scholar 

  44. Hoffman EP, Rao D, Pachman LM. Clarifying the boundaries between the inflammatory and dystrophic myopathies: insights from molecular diagnostics and microarrays. Rheum Dis Clin N Am. 2002;28:743–57.

    Article  Google Scholar 

  45. Sparrow JC, Nowak KJ, Durling HJ, et al. Muscle disease caused by mutations in the skeletal muscle alpha-actin gene (ACTA1). Neuromuscul Disord. 2003;13:519–31.

    Article  Google Scholar 

  46. Larsson L, Li X, Edstrom L, et al. Acute quadriplegia and loss of muscle myosin in patients treated with nondepolarizing neuromuscular blocking agents and corticosteroids: mechanisms at the cellular and molecular levels. Crit Care Med. 2000;28:34–45.

    Article  CAS  Google Scholar 

  47. Richard I, Broux O, Allamand V, et al. Mutations in the proteolytic enzyme calpain 3 cause limb-girdle muscular dystrophy type 2A. Cell. 1995;81:27–40.

    Article  CAS  Google Scholar 

  48. Anderson LV, Davison K, Moss JA, et al. Characterization of monoclonal antibodies to calpain 3 and protein expression in muscle from patients with limb-girdle muscular dystrophy type 2A. Am J Pathol. 1998;153:1169–79.

    Article  CAS  Google Scholar 

  49. Manilal S, Sewry CA, Man N, et al. Diagnosis of X-linked Emery-Dreifuss muscular dystrophy by protein analysis of leucocytes and skin with monoclonal antibodies. Neuromuscul Disord. 1997;7:63–6.

    Article  CAS  Google Scholar 

  50. Sewry CA, Brown SC, Mercuri E, et al. Skeletal muscle pathology in autosomal dominant Emery-Dreifuss muscular dystrophy with lamin A/C mutations. Neuropathol Appl Neurobiol. 2001;27:281–90.

    Article  CAS  Google Scholar 

  51. Bornemann A, Anderson LV. Diagnostic protein expression in human muscle biopsies. Brain Pathol. 2000;10:193–214.

    Article  CAS  Google Scholar 

  52. Spuler S, Engel AG. Unexpected sarcolemmal complement membrane attack complex deposits on nonnecrotic muscle fibers in muscular dystrophies. Neurology. 1998;50:41–6.

    Article  CAS  Google Scholar 

  53. Dalakas MC. Muscle biopsy findings in inflammatory myopathies. Rheum Dis Clin N Am. 2002;28:779–98, vi.

    Article  Google Scholar 

  54. Nyberg P, Wikman AL, Nennesmo I, et al. Increased expression of interleukin 1alpha and MHC class I in muscle tissue of patients with chronic, inactive polymyositis and dermatomyositis. J Rheumatol. 2000;27:940–8.

    CAS  PubMed  Google Scholar 

  55. Askanas V, Engel WK, Mirabella M. Idiopathic inflammatory myopathies: inclusion-body myositis, polymyositis, and dermatomyositis. Curr Opin Neurol. 1994;7:448–56.

    Article  CAS  Google Scholar 

  56. Rocha MC, Grady JP, Grunewald A, et al. A novel immunofluorescent assay to investigate oxidative phosphorylation deficiency in mitochondrial myopathy: understanding mechanisms and improving diagnosis. Sci Rep. 2015;5:15037.

    Article  CAS  Google Scholar 

  57. Ahmed ST, Alston CL, Hopton S, et al. Using a quantitative quadruple immunofluorescent assay to diagnose isolated mitochondrial complex I deficiency. Sci Rep. 2017;7:15676.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Gaspar, B.L., Vasishta, R.K., Radotra, B.D. (2019). Histochemistry and Immunochemistry of Normal Muscle. In: Myopathology. Springer, Singapore. https://doi.org/10.1007/978-981-13-1462-9_3

Download citation

  • DOI: https://doi.org/10.1007/978-981-13-1462-9_3

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-13-1461-2

  • Online ISBN: 978-981-13-1462-9

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics