Skip to main content

Application of Computer Simulation in Exploring Influence of Alcohol on Aqueous Milieu of a Gut-Brain Octapeptide, Cholecystokinin-8

  • Conference paper
  • First Online:
Soft Computing for Problem Solving

Abstract

Computer Simulations have been employed by applying techniques of classical molecular dynamics simulations to explore the hydrogen bonding structure and dynamics in aqueous environment of cholecystokinin-8, in the presence of two different concentrations of ethanol (EtOH) and 2,2,2-trifluoroethanol (TFE). Different site–site and centre-of-mass radial distribution functions have been presented here to give an idea of the various microscopic interactions between different species in solution. It is observed that EtOH solution facilitates hydrogen bonding of CCK8 with its aqueous milieu, whereas TFE prefers to envelope the peptide and protects it from water due to its tendency of clustering and encouraging segregation of water. Significant decrease of methionine CH3-groups hydrophobic solvation is noted with increasing alcohol concentration. The structural relaxation lifetimes of peptide–water hydrogen bonds are observed to be lengthened with EtOH concentration in the solution while highest lifetimes are seen for CCK8–TFE hydrogen bonds. Stronger water–ethanol hydrogen bonds may cause slower translational motion of water molecules in concentrated ethanol than in TFE solution. Conformational clustering analysis shows higher number of similar compact structures of CCK8 in TFE solution relative to aqueous/EtOH solution.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Sansom, C.E., Smith, C.A.: Computer applications in the biomolecular sciences. Part 1: Molecular modelling. Biochem. Mol. Biol. Educ. 26(2), 103–110 (1998)

    Google Scholar 

  2. Mitra, S., Hayashi, Y.: Bioinformatics with soft computing. IEEE Trans. Syst. Man Cybern. Part C Appl. Rev. 36(5), 616–635 (2006)

    Article  Google Scholar 

  3. Belda, I., Llorà, X., Giralt, E.: Evolutionary algorithms and de novo peptide design. Soft Comput. Fusion Found. Methodol. Appl. 10(4), 295–304 (2006)

    Article  Google Scholar 

  4. Fersht, A.R.: From the first protein structures to our current knowledge of protein folding: delights and scepticisms. Nat. Rev. Mol. Cell Biol. 9(8), 650 (2008)

    Article  Google Scholar 

  5. Feher, M., Schmidt, J.M.: Fuzzy clustering as a means of selecting representative conformers and molecular alignments. J. Chem. Inf. Comput. Sci. 43(3), 810–818 (2003)

    Article  Google Scholar 

  6. Gordon, H.L., Somorjai, R.L.: Fuzzy cluster analysis of molecular dynamics trajectories. Proteins Struct. Funct. Bioinf. 14(2), 249–264 (1992)

    Article  Google Scholar 

  7. Ghosh, R., Roy, S., Bagchi, B.: Solvent sensitivity of protein unfolding: dynamical study of chicken villin headpiece subdomain in water ethanol binary mixture. J. Phys. Chem. B 117(49), 15625–15638 (2013)

    Article  Google Scholar 

  8. Buck, M.: Trifluoroethanol and colleagues: cosolvents come of age. Recent studies with peptides and proteins. Q. Rev. Biophys. 31(3), 297–355 (1998)

    Article  Google Scholar 

  9. Fioroni, M., Diaz, M., Burger, K., Berger, S.: Solvation phenomena of a tetrapeptide in water/trifluoroethanol and water/ethanol mixtures: a diffusion NMR, intermolecular NOE, and molecular dynamics study. J. Am. Chem. Soc. 124(26), 7737–7744 (2002)

    Article  Google Scholar 

  10. Kulkosky, P.J.: Effect of cholecystokinin octapeptide on ethanol intake in the rat. Alcohol. 1(2), 125–128 (1984)

    Article  Google Scholar 

  11. Kulkosky, P.J., Sanchez, M.R., Glazner, G.W.: Cholecystokinin octapeptide: effect on the ethogram of ethanol consumption and blood ethanol levels in the rat. Physiol. Psychol. 14(2), 23–30 (1986)

    Google Scholar 

  12. Toth, P., Shaw, C., Perlanski, E., Grupp, L.: Cholecystokinin octapeptide reduces ethanol intake in food-and water-sated rats. Pharmacol. Biochem. Behav. 35(2), 493–495 (1990)

    Article  Google Scholar 

  13. Evangelista, S., Maggi, C.: Protection induced by cholecystokinin-8 (CCK-8) in ethanol-induced gastric lesions is mediated via vagal capsaicin-sensitive fibres and CCKA receptors. Br. J. Pharmacol. 102(1), 119–122 (1991)

    Article  Google Scholar 

  14. Rapaport, D.C., Blumberg, R.L., McKay, S.R., Christian, W.: The art of molecular dynamics simulation. Comput. Phys. 10(5), 456–456 (1996)

    Article  Google Scholar 

  15. Frenkel, D., Smith, B.: Understanding Molecular Simulation: From Algorithms to Applications. Academic Press, New York (1996)

    MATH  Google Scholar 

  16. Nucleic Acids Flexibility (n.d.). http://mmb.irbbarcelona.org/NAFlex/help.php?id=md. Accessed 22 Nov 2017

  17. Pronk, S., Páll, S., Schulz, R., Larsson, P., Bjelkmar, P., Apostolov, R., Shirts, M.R., Smith, J.C., Kasson, P.M., van der Spoel, D.: GROMACS 4.5: a high-throughput and highly parallel open source molecular simulation toolkit. Bioinformatics 29(7), 845–854 (2013)

    Article  Google Scholar 

  18. Oostenbrink, C., Villa, A., Mark, A.E., Van Gunsteren, W.F.: A biomolecular force field based on the free enthalpy of hydration and solvation: the GROMOS force-field parameter sets 53A5 and 53A6. J. Comput. Chem. 25(13), 1656–1676 (2004)

    Article  Google Scholar 

  19. Pellegrini, M., Mierke, D.F.: Molecular complex of cholecystokinin-8 and N-terminus of the cholecystokinin A receptor by NMR spectroscopy. Biochemistry (Mosc.) 38(45), 14775–14783 (1999)

    Article  Google Scholar 

  20. Jorgensen, W.L., Maxwell, D.S., Tirado-Rives, J.: Development and testing of the OPLS all-atom force field on conformational energetics and properties of organic liquids. J. Am. Chem. Soc. 118(45), 11225–11236 (1996)

    Article  Google Scholar 

  21. Berendsen, H.J.C., Grigera, J.R., Straatsma, T.P.: The missing term in effective pair potentials. J. Phys. Chem. 91(24), 6269–6271 (1987)

    Article  Google Scholar 

  22. Khattab, I.S., Bandarkar, F., Fakhree, M.A.A., Jouyban, A.: Density, viscosity, and surface tension of water + ethanol mixtures from 293 to 323 K. Korean J. Chem. Eng. 29(6), 812–817 (2012)

    Article  Google Scholar 

  23. Harris, K.R., Newitt, P.J.: Self-diffusion of water at low temperatures and high pressure. J. Chem. Eng. Data 42(2), 346–348 (1997)

    Article  Google Scholar 

  24. Hess, B., Bekker, H., Berendsen, H.J., Fraaije, V.: LINCS: a linear constraint solver for molecular simulations. J. Comput. Chem. 18(12), 1463–1472 (1997)

    Article  Google Scholar 

  25. Miyamoto, S., Kollman, P.A.: SETTLE: an analytical version of the SHAKE and RATTLE algorithm for rigid water models. J. Comput. Chem. 13(8), 952–962 (1992)

    Article  Google Scholar 

  26. Bussi, G., Donadio, D., Parrinello, M.: Canonical sampling through velocity rescaling. J. Chem. Phys. 126(1), 014101 (2007)

    Article  Google Scholar 

  27. Berendsen, H.J., van Postma, J., van Gunsteren, W.F., DiNola, A., Haak, J.R.: Molecular dynamics with coupling to an external bath. J. Chem. Phys. 81(8), 3684–3690 (1984)

    Article  Google Scholar 

  28. Cuendet, M.A., van Gunsteren, W.F.: On the calculation of velocity-dependent properties in molecular dynamics simulations using the leapfrog integration algorithm. J. Chem. Phys. 127(18), 184102 (2007)

    Article  Google Scholar 

  29. Darden, T., York, D., Pedersen, L.: Particle mesh Ewald: an N · log(N) method for Ewald sums in large systems. J. Chem. Phys. 98(12), 10089–10092 (1993)

    Article  Google Scholar 

  30. Matsugami, M., Yamamoto, R., Kumai, T., Tanaka, M., Umecky, T., Takamuku, T.: Hydrogen bonding in ethanol–water and trifluoroethanol–water mixtures studied by NMR and molecular dynamics simulation. J. Mol. Liq. 217, 3–11 (2016)

    Article  Google Scholar 

  31. Rajan, R., Balaram, P.: A model for the interaction of trifluoroethanol with peptides and proteins. Chem. Biol. Drug Des. 48(4), 328–336 (1996)

    Google Scholar 

  32. Pikkarainen, L.: Excess enthalpies of (2,2,2-trifluoroethanol+2-butanone or N-methylacetamide or N,N-dimethylacetamide). J. Chem. Thermodyn. 20(4), 481–484 (1988)

    Article  Google Scholar 

  33. Pikkarainen, L.: Excess enthalpies of binary solvent mixtures of N-methylacetamide with aliphatic alcohols. J. Solut. Chem. 16(2), 125–132 (1987)

    Article  Google Scholar 

  34. Chand, A., Chowdhuri, S.: Behaviour of aqueous N-methylacetamide solution in presence of ethanol and 2,2,2 tri-fluoroethanol: hydrogen bonding structure and dynamics. J. Mol. Liq. 224, 1370–1379 (2016)

    Article  Google Scholar 

  35. Murto, J.: Hydroxide and alkoxide ions in alkanol-water mixtures. Acta Chem. Scand. 18(5), 1029–1042 (1964)

    Article  Google Scholar 

  36. Rao, C., Goldman, G., Balasubramanian, A.: Structural and solvent effects on the n → π*(′ U ← ′ A) transitions in aliphatic carbonyl derivatives: evidence for hyperconjugation in the electronically excited states of molecules. Can. J. Chem. 38(12), 2508–2513 (1960)

    Article  Google Scholar 

  37. Loomis, R.E., Lee, P.C., Tseng, C.C.: Conformational analysis of the cholecystokinin C-terminal octapeptide: a nuclear magnetic resonance and computer-simulation approach. Biochim. Biophys. Acta BBA-Protein Struct. Mol. Enzymol. 911(2), 168–179 (1987)

    Article  Google Scholar 

  38. Pattanayak, S.K., Chowdhuri, S.: Effect of water on solvation structure and dynamics of ions in the peptide bond environment: importance of hydrogen bonding and dynamics of the solvents. J. Phys. Chem. B. 115(45), 13241–13252 (2011)

    Article  Google Scholar 

  39. Pattanayak, S.K., Chettiyankandy, P., Chowdhuri, S.: Effects of co-solutes on the hydrogen bonding structure and dynamics in aqueous N-methylacetamide solution: a molecular dynamics simulations study. Mol. Phys. 112(22), 2906–2919 (2014)

    Article  Google Scholar 

  40. Chowdhuri, S., Chandra, A.: Dynamics of halide ion-water hydrogen bonds in aqueous solutions: dependence on ion size and temperature. J. Phys. Chem. B. 110(19), 9674–9680 (2006)

    Article  Google Scholar 

  41. Rapaport, D.: Hydrogen bonds in water: network organization and lifetimes. Mol Phys. 50(5)s, 1151–1162 (1983)

    Article  Google Scholar 

  42. Luzar, A., Chandler, D.: Hydrogen bond kinetics in liquid water. Nat. Lond. 379(6560), 55–57 (1996)

    Article  Google Scholar 

  43. Luzar, A.: Resolving the hydrogen bond dynamics conundrum. J. Chem. Phys. 113(23), 10663–10675 (2000)

    Article  Google Scholar 

  44. van der Spoel, D., van Maaren, P.J., Larsson, P., Tîmneanu, N.: Thermodynamics of hydrogen bonding in hydrophilic and hydrophobic media. J. Phys. Chem. B. 110(9), 4393–4398 (2006)

    Article  Google Scholar 

  45. Keller, B., Daura, X., van Gunsteren, W.F.: Comparing geometric and kinetic cluster algorithms for molecular simulation data. J. Chem. Phys. 132(7), 02B610 (2010)

    Article  Google Scholar 

Download references

Acknowledgements

Authors are grateful to the Indian Institute of Technology, Bhubaneswar, for infrastructural support and Council of Scientific and Industrial Research (CSIR), Government of India, for research fellowship.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Apramita Chand .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Chand, A., Chettiyankandy, P., Chowdhuri, S. (2019). Application of Computer Simulation in Exploring Influence of Alcohol on Aqueous Milieu of a Gut-Brain Octapeptide, Cholecystokinin-8. In: Bansal, J., Das, K., Nagar, A., Deep, K., Ojha, A. (eds) Soft Computing for Problem Solving. Advances in Intelligent Systems and Computing, vol 817. Springer, Singapore. https://doi.org/10.1007/978-981-13-1595-4_3

Download citation

Publish with us

Policies and ethics