Skip to main content

Part of the book series: Springer Theses ((Springer Theses))

  • 425 Accesses

Abstract

The interactions of water with solid surfaces have been extensively investigated, since they play a key role in a variety of scientific and technological fields, such as photocatalytic water splitting, heterogeneous and homogeneous catalysis, electrochemistry, corrosion and lubrication. One of the most fundamental issues in all of these applied fields is the characterization of hydrogen-bonded (H-bonded) networks formed on surfaces and H-bonding dynamics in the H-boned network, which are responsible for many extraordinary physical and chemical properties of water/solid interfaces. In this chapter, I first review the previous STM studies of structure and dynamics of water on metal and metal oxides surfaces. Then, I introduce the physical picture of NQEs and the impact of NQEs on water and other H-bonded systems. At last, the structure of this thesis in presented.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Thiel PA, Madey TE (1987) The interaction of water with solid surfaces: fundamental aspects. Surf Sci Rep 7:211–385

    Article  ADS  Google Scholar 

  2. Henderson MA (2002) The interaction of water with solid surfaces: fundamental aspects revisited. Surf Sci Rep 46:1–308

    Article  ADS  Google Scholar 

  3. Verdaguer A, Sacha GM, Bluhm H, Salmeron M (2006) Molecular structure of water at interfaces: wetting at the nanometer scale. Chem Rev 106:1478–1510

    Article  Google Scholar 

  4. Hodgson A, Haq S (2009) Water adsorption and the wetting of metal surfaces. Surf Sci Rep 64:381–451

    Article  ADS  Google Scholar 

  5. Zou Z, Ye J, Sayama K, Arakawa H (2001) Direct splitting of water under visible light irradiation with an oxide semiconductor photocatalyst. Nature 414:625–627

    Article  ADS  Google Scholar 

  6. Akiya N, Savage PE (2002) Roles of water for chemical reactions in high-temperature water. Chem Rev 102:2725–2750

    Article  Google Scholar 

  7. Kudo A, Miseki Y (2009) Heterogeneous photocatalyst materials for water splitting. Chem Soc Rev 38:253–278

    Article  Google Scholar 

  8. Eisenberg DS, Kauzmann W (1969) The structure and properties of water. Clarendon P., Oxford

    Google Scholar 

  9. Feibelman PJ (2010) The first wetting layer on a solid. Phys Today 63:34–39

    Article  Google Scholar 

  10. Kumagai T, Okuyama H, Hatta S, Aruga T, Hamada I (2011) Water clusters on Cu(110): chain versus cyclic structures. J Chem Phys 134:024703

    Article  ADS  Google Scholar 

  11. Carrasco J, Hodgson A, Michaelides A (2012) A molecular perspective of water at metal interfaces. Nat Mater 11:667–674

    Article  ADS  Google Scholar 

  12. Maier S, Salmeron M (2015) How does water wet a surface? Acc Chem Res 48:2783–2790

    Article  Google Scholar 

  13. Mu RT, Zhao ZJ, Dohnalek Z, Gong JL (2017) Structural motifs of water on metal oxide surfaces. Chem Soc Rev 46:1785–1806

    Article  Google Scholar 

  14. Maier S, Lechner BAJ, Somorjai GA, Salmeron M (2016) Growth and structure of the first layers of ice on Ru(0001) and Pt(111). J Am Chem Soc 138:3145–3151

    Article  Google Scholar 

  15. Benoit M, Marx D, Parrinello M (1998) Tunnelling and zero-point motion in high-pressure ice. Nature 392:258–261

    Article  ADS  Google Scholar 

  16. Soper AK, Benmore CJ (2008) Quantum differences between heavy and light water. Phys Rev Lett 101:065502

    Article  ADS  Google Scholar 

  17. Paesani F, Voth GA (2009) The properties of water: insights from quantum simulations. J Phys Chem B 113:5702–5719

    Article  Google Scholar 

  18. Pamuk B et al (2012) Anomalous nuclear quantum effects in ice. Phys Rev Lett 108:193003

    Article  ADS  Google Scholar 

  19. Errea I et al (2016) Quantum hydrogen-bond symmetrization in the superconducting hydrogen sulfide system. Nature 532:81–84

    Article  ADS  Google Scholar 

  20. Marx D (2006) Proton transfer 200 years after von Grotthuss: insights from ab initio simulations. ChemPhysChem 7:1848–1870

    Article  Google Scholar 

  21. Marx D, Chandra A, Tuckerman ME (2010) Aqueous basic solutions: hydroxide solvation, structural diffusion, and comparison to the hydrated proton. Chem Rev 110:2174–2216

    Article  Google Scholar 

  22. Ceriotti M et al (2016) Nuclear quantum effects in water and aqueous systems: experiment, theory, and current challenges. Chem Rev 116:7529–7550

    Article  Google Scholar 

  23. Shen YR, Ostroverkhov V (2006) Sum-frequency vibrational spectroscopy on water interfaces: polar orientation of water molecules at interfaces. Chem Rev 106:1140–1154

    Article  Google Scholar 

  24. Nilsson A et al (2010) X-ray absorption spectroscopy and X-ray Raman scattering of water and ice; an experimental view. J Electron Spectrosc Relat Phenom 177:99–129

    Article  Google Scholar 

  25. Andreani C, Colognesi D, Mayers J, Reiter GF, Senesi R (2005) Measurement of momentum distribution of light atoms and molecules in condensed matter systems using inelastic neutron scattering. Adv Phys 54:377–469

    Article  ADS  Google Scholar 

  26. Repp J, Meyer G, Stojkovic SM, Gourdon A, Joachim C (2005) Molecules on insulating films: scanning-tunneling microscopy imaging of individual molecular orbitals. Phys Rev Lett 94:026803

    Article  ADS  Google Scholar 

  27. Giessibl FJ (2003) Advances in atomic force microscopy. Rev Mod Phys 75:949–983

    Article  ADS  Google Scholar 

  28. Gross L, Mohn F, Moll N, Liljeroth P, Meyer G (2009) The chemical structure of a molecule resolved by atomic force microscopy. Science 325:1110–1114

    Article  ADS  Google Scholar 

  29. Stipe BC, Rezaei MA, Ho W (1998) Single-molecule vibrational spectroscopy and microscopy. Science 280:1732–1735

    Article  ADS  Google Scholar 

  30. Stipe BC, Rezaei HA, Ho W (1999) Localization of inelastic tunneling and the determination of atomic-scale structure with chemical specificity. Phys Rev Lett 82:1724–1727

    Article  ADS  Google Scholar 

  31. Chiang CL, Xu C, Han ZM, Ho W (2014) Real-space imaging of molecular structure and chemical bonding by single-molecule inelastic tunneling probe. Science 344:885–888

    Article  ADS  Google Scholar 

  32. Sugimoto Y et al (2007) Chemical identification of individual surface atoms by atomic force microscopy. Nature 446:64–67

    Article  ADS  Google Scholar 

  33. Eigler DM, Schweizer EK (1990) Positioning single atoms with as a scanning tunneling microscope. Nature 344:524–526

    Article  ADS  Google Scholar 

  34. Stroscio JA, Eigler DM (1991) Atomic and molecular manipulation with the scanning tunneling microscope. Science 254:1319–1326

    Article  ADS  Google Scholar 

  35. Motobayashi K, Matsumoto C, Kim Y, Kawai M (2008) Vibrational study of water dimers on Pt(111) using a scanning tunneling microscope. Surf Sci 602:3136–3139

    Article  ADS  Google Scholar 

  36. Kumagai T et al (2009) Tunneling dynamics of a hydroxyl group adsorbed on Cu(110). Phys Rev B 79:035423

    Article  ADS  Google Scholar 

  37. Okuyama H, Hamada I (2011) Hydrogen-bond imaging and engineering with a scanning tunnelling microscope. J Phys D Appl Phys 44:464004

    Article  ADS  Google Scholar 

  38. Shimizu TK et al (2008) Surface species formed by the adsorption and dissociation of water molecules on a Ru(0001) surface containing a small coverage of carbon atoms studied by scanning tunneling microscopy. J Phys Chem C 112:7445–7454

    Article  Google Scholar 

  39. Michaelides A, Ranea VA, de Andres PL, King DA (2003) General model for water monomer adsorption on close-packed transition and noble metal surfaces. Phys Rev Lett 90:216102

    Article  ADS  Google Scholar 

  40. Meng S, Wang EG, Gao SW (2004) Water adsorption on metal surfaces: a general picture from density functional theory studies. Phys Rev B 69:195404

    Article  ADS  Google Scholar 

  41. Kumagai T et al (2008) Direct observation of hydrogen-bond exchange within a single water dimer. Phys Rev Lett 100:166101

    Article  ADS  Google Scholar 

  42. Ranea VA et al (2004) Water dimer diffusion on Pd(111) assisted by an H-bond donor-acceptor tunneling exchange. Phys Rev Lett 92:136104

    Article  ADS  Google Scholar 

  43. Michaelides A, Morgenstern K (2007) Ice nanoclusters at hydrophobic metal surfaces. Nat Mater 6:597–601

    Article  Google Scholar 

  44. Morgenstern K (2002) Scanning tunnelling microscopy investigation of water in submonolayer coverage on Ag(111). Surf Sci 504:293–300

    Article  ADS  Google Scholar 

  45. Gawronski H, Carrasco J, Michaelides A, Morgenstern K (2008) Manipulation and control of hydrogen bond dynamics in absorbed ice nanoclusters. Phys Rev Lett 101:136102

    Article  ADS  Google Scholar 

  46. Mehlhorn M, Carrasco J, Michaelides A, Morgenstern K (2009) Local investigation of femtosecond laser induced dynamics of water nanoclusters on Cu(111). Phys Rev Lett 103:026101

    Article  ADS  Google Scholar 

  47. Mitsui T, Rose MK, Fomin E, Ogletree DF, Salmeron M (2002) Water diffusion and clustering on Pd(111). Science 297:1850–1852

    Article  ADS  Google Scholar 

  48. Chen JW, Tu XY, Tian K, Dai SS (2006) Density functional theory study of water diffusion and clustering on Pd(111). Chin J Struct Chem 25:909–914

    Google Scholar 

  49. Haq S, Clay C, Darling GR, Zimbitas G, Hodgson A (2006) Growth of intact water ice on Ru(0001) between 140 and 160 K: Experiment and density-functional theory calculations. Phys Rev B 73:115414

    Article  ADS  Google Scholar 

  50. Tatarkhanov M et al (2009) Metal- and hydrogen-bonding competition during water adsorption on Pd(111) and Ru(0001). J Am Chem Soc 131:18425–18434

    Article  Google Scholar 

  51. Maier S, Stass I, Cerda JI, Salmeron M (2014) Unveiling the Mechanism of Water Partial Dissociation on Ru(0001). Phys Rev Lett 112:126101

    Article  ADS  Google Scholar 

  52. Yamada T, Tamamori S, Okuyama H, Aruga T (2006) Anisotropic water chain growth on Cu(110) observed with scanning tunneling microscopy. Phys Rev Lett 96:036105

    Article  ADS  Google Scholar 

  53. Carrasco J et al (2009) A one-dimensional ice structure built from pentagons. Nat Mater 8:427–431

    Article  ADS  Google Scholar 

  54. Nie S, Feibelman PJ, Bartelt NC, Thuermer K (2010) Pentagons and heptagons in the first water layer on Pt(111). Phys Rev Lett 105:026102

    Article  ADS  Google Scholar 

  55. Forster M, Raval R, Hodgson A, Carrasco J, Michaelides A (2011) c(2 x 2) Water-hydroxyl layer on Cu(110): a wetting layer stabilized by Bjerrum defects. Phys Rev Lett 106:046103

    Article  ADS  Google Scholar 

  56. Thurmer K, Nie S, Feibelman PJ, Bartelt NC (2014) Clusters, molecular layers, and 3D crystals of water on Ni(111). J Chem Phys 141:18C520

    Article  Google Scholar 

  57. Shiotari A, Sugimoto Y (2017) Ultrahigh-resolution imaging of water networks by atomic force microscopy. Nat Commun 8:14313

    Article  ADS  Google Scholar 

  58. Thurmer K, Nie S (2013) Formation of hexagonal and cubic ice during low-temperature growth. Proc Natl Acad Sci USA 110:11757–11762

    Article  ADS  Google Scholar 

  59. He Y, Tilocca A, Dulub O, Selloni A, Diebold U (2009) Local ordering and electronic signatures of submonolayer water on anatase TiO2(101). Nat Mater 8:585–589

    Article  ADS  Google Scholar 

  60. Mu R et al (2014) Dimerization induced deprotonation of water on RuO2(110). J Phys Chem Lett 5:3445–3450

    Article  Google Scholar 

  61. Shin H-J et al (2010) State-selective dissociation of a single water molecule on an ultrathin MgO film. Nat Mater 9:442–447

    Article  ADS  Google Scholar 

  62. Merte LR et al (2014) Water clustering on nanostructured iron oxide films. Nat Commun 5:4193

    Article  Google Scholar 

  63. Merte LR et al (2012) Water-mediated proton hopping on an iron oxide surface. Science 336:889–893

    Article  ADS  Google Scholar 

  64. Rim KT et al (2012) Scanning tunneling microscopy and theoretical study of water adsorption on Fe3O4: implications for catalysis. J Am Chem Soc 134:18979–18985

    Article  Google Scholar 

  65. Kronawitter CX et al (2014) Hydrogen-bonded cyclic water clusters nucleated on an oxide surface. J Am Chem Soc 136:13283–13288

    Article  Google Scholar 

  66. Kilner JA, Burriel M (2014) Materials for intermediate-temperature solid-oxide fuel cells. Annu Rev Mater Res 44:365–393

    Article  ADS  Google Scholar 

  67. Liu M, Winnick J (1997) Electrode kinetics of porous mixed-conducting oxygen electrodes. J Electrochem Soc 144:1881–1884

    Article  Google Scholar 

  68. Vojvodic A, Norskov JK (2011) Optimizing perovskites for the water-splitting reaction. Science 334:1355–1356

    Article  ADS  Google Scholar 

  69. Suntivich J, May KJ, Gasteiger HA, Goodenough JB, Shao-Horn Y (2011) A perovskite oxide optimized for oxygen evolution catalysis from molecular orbital principles. Science 334:1383–1385

    Article  ADS  Google Scholar 

  70. Halwidl D et al (2016) Adsorption of water at the SrO surface of ruthenates. Nat Mater 15:450–455

    Article  ADS  Google Scholar 

  71. Halwidl D et al (2017) Ordered hydroxyls on Ca3Ru2O7(001). Nat Commun 8:23

    Article  ADS  Google Scholar 

  72. Kumagai T et al (2010) Symmetric hydrogen bond in a water-hydroxyl complex on Cu(110). Phys Rev B 81:045402

    Article  ADS  Google Scholar 

  73. Kumagai T et al (2012) H-atom relay reactions in real space. Nat Mater 11:167–172

    Article  ADS  Google Scholar 

  74. Komeda T, Kim Y, Kawai M, Persson BNJ, Ueba H (2002) Lateral hopping of molecules induced by excitation of internal vibration mode. Science 295:2055–2058

    Article  ADS  Google Scholar 

  75. Pascual JI, Lorente N, Song Z, Conrad H, Rust HP (2003) Selectivity in vibrationally mediated single-molecule chemistry. Nature 423:525–528

    Article  ADS  Google Scholar 

  76. Kim Y, Komeda T, Kawai M (2002) Single-molecule reaction and characterization by vibrational excitation. Phys Rev Lett 89:126104

    Article  ADS  Google Scholar 

  77. Morgenstern K, Rieder KH (2002) Formation of the cyclic ice hexamer via excitation of vibrational molecular modes by the scanning tunneling microscope. J Chem Phys 116:5746–5752

    Article  ADS  Google Scholar 

  78. Mugarza A, Shimizu TK, Ogletree DF, Salmeron M (2009) Chemical reactions of water molecules on Ru(0001) induced by selective excitation of vibrational modes. Surf Sci 603:2030–2036

    Article  ADS  Google Scholar 

  79. Morgenstern K, Rieder KH (2002) Dissociation of water molecules with the scanning tunnelling microscope. Chem Phys Lett 358:250–256

    Article  ADS  Google Scholar 

  80. Mehlhorn M, Gawronski H, Morgenstern K (2008) Electron damage to supported ice investigated by scanning tunneling microscopy and spectroscopy. Phys Rev Lett 101:196101

    Article  ADS  Google Scholar 

  81. Brougham DF, Caciuffo R, Horsewill AJ (1999) Coordinated proton tunnelling in a cyclic network of four hydrogen bonds in the solid state. Nature 397:241–243

    Article  ADS  Google Scholar 

  82. Tomchuk PM, Krasnoholovets VV (1997) Macroscopic quantum tunneling of polarization in the hydrogen-bonded chain. J Mol Struct 416:161–165

    Article  ADS  Google Scholar 

  83. Lauhon LJ, Ho W (2000) Direct observation of the quantum tunneling of single hydrogen atoms with a scanning tunneling microscope. Phys Rev Lett 85:4566–4569

    Article  ADS  Google Scholar 

  84. Kumagai T (2015) Direct observation and control of hydrogen-bond dynamics using low-temperature scanning tunneling microscopy. Prog Surf Sci 90:239–291

    Article  ADS  Google Scholar 

  85. Richardson JO et al (2016) Concerted hydrogen-bond breaking by quantum tunneling in the water hexamer prism. Science 351:1310–1313

    Article  ADS  Google Scholar 

  86. Bove LE, Klotz S, Paciaroni A, Sacchetti F (2009) Anomalous proton dynamics in ice at low temperatures. Phys Rev Lett 103:165901

    Article  ADS  Google Scholar 

  87. Guo J, Li XZ, Peng JB, Wang EG, Jiang Y (2017) Atomic-scale investigation of nuclear quantum effects of surface water: experiments and theory. Prog Surf Sci 92:203–239

    Article  ADS  Google Scholar 

  88. Anonymous (NIST Chemistry WebBook); NIST Standard Reference Database 69; National Institute of Standards and Technology (NIST): Gaithersburg, MD, 2005. Available at http://Webbook.Nist.gov. Accessed 19 Dec 2014

    Article  ADS  Google Scholar 

  89. IAPWS Releases. Supplementary releases, guidelines, and advisory notes. International Association for the properties of water and steam (IAPWS). Available at http://www.iapws.org/release.html. Accessed 21 Dec 2014

    Article  ADS  Google Scholar 

  90. Kudish AI, Steckel F, Wolf D (1972) Physical properties of heavy-oxygen water. Absolute viscosity of H218O between 15 and 35 °C. J Chem Soc Furuduy Trans 1 Phys Chem Condens Phases 68:2041–2046

    Google Scholar 

  91. Hill PG, Macmillan RDC, Lee V (1982) A fundamental equation of state for heavy-water. J Phys Chem Ref Data 11:1–14

    Article  ADS  Google Scholar 

  92. Holz M, Heil SR, Sacco A (2000) Temperature-dependent self-diffusion coefficients of water and six selected molecular liquids for calibration in accurate 1H NMR PFG measurements. Phys Chem Chem Phys 2:4740–4742

    Article  Google Scholar 

  93. Price WS, Ide H, Arata Y, Soderman O (2000) Temperature dependence of the self-diffusion of supercooled heavy water to 244 K. J Phys Chem B 104:5874–5876

    Article  Google Scholar 

  94. Root JH, Egelstaff PA, Hime A (1986) Quantum effects in the structure of water measured by gamma ray diffraction. Chem Phys 109:437–453

    Article  ADS  Google Scholar 

  95. Tomberli B, Benmore CJ, Egelstaff PA, Neuefeind J, Honkimaki V (2000) Isotopic quantum effects in water structure measured with high energy photon diffraction. J Phys Condens Matter 12:2597–2612

    Article  ADS  Google Scholar 

  96. Bergmann U et al (2007) Isotope effects in liquid water probed by X-ray Raman spectroscopy. Phys Rev B 76:024202

    Article  ADS  Google Scholar 

  97. Harada Y et al (2013) Selective probing of the OH or OD stretch vibration in liquid water using resonant inelastic soft-X-ray scattering. Phys Rev Lett 111:193001

    Article  ADS  Google Scholar 

  98. Goncharov AF, Struzhkin VV, Mao HK, Hemley RJ (1999) Raman spectroscopy of dense H2O and the transition to symmetric hydrogen bonds. Phys Rev Lett 83:1998–2001

    Article  ADS  Google Scholar 

  99. Chen B, Ivanov I, Klein ML, Parrinello M (2003) Hydrogen bonding in water. Phys Rev Lett 91:215503

    Article  ADS  Google Scholar 

  100. Maksyutenko P, Rizzo TR, Boyarkin OV (2006) A direct measurement of the dissociation energy of water. J Chem Phys 125:181101

    Article  ADS  Google Scholar 

  101. Dyke TR, Muenter JS (1973) Electric dipole-moments of low J states of H2O and D2O. J Chem Phys 59:3125–3127

    Article  ADS  Google Scholar 

  102. Tennyson J et al (2014) IUPAC critical evaluation of the rotational-vibrational spectra of water vapor. Part IV. Energy levels and transition wavenumbers for D 162 O, D 172 O, and D 182 O. J Quant Spectro Radiat Transfer 142:93–108

    Article  ADS  Google Scholar 

  103. Rocher-Casterline BE, Ch’ng LC, Mollner AK, Reisler H (2011) Communication: determination of the bond dissociation energy (D0) of the water dimer, (H2O)2, by velocity map imaging. J Chem Phys 134:211101

    Article  ADS  Google Scholar 

  104. Rocher-Casterline BE, Mollner AK, Ch’ng LC, Reisler H (2011) Imaging H2O photofragments in the predissociation of the HCl-H2O hydrogen-bonded dimer. J Phys Chem A 115:6903–6909

    Article  Google Scholar 

  105. Ch’ng LC, Samanta AK, Czako G, Bowman JM, Reisler H (2012) Experimental and theoretical investigations of energy transfer and hydrogen-bond breaking in the water dimer. J Am Chem Soc 134:15430–15435

    Article  Google Scholar 

  106. Nakamura M, Tamura K, Murakami S (1995) Isotope effects on thermodynamic properties-mixtures of x(D2O or H2O)+(1−x)CH3CN at 298.15 K. Thermochim Acta 253:127–136

    Article  Google Scholar 

  107. Kell GS (1977) Effects of isotopic composition, temperature, pressure, and dissolved-gases on density of liquid water. J Phys Chem Ref Data 6:1109–1131

    Article  ADS  Google Scholar 

  108. Hardy EH, Zygar A, Zeidler MD, Holz M, Sacher FD (2001) Isotope effect on the translational and rotational motion in liquid water and ammonia. J Chem Phys 114:3174–3181

    Article  ADS  Google Scholar 

  109. Lide DR (ed) (1999) CRC handbook of chemistry and physics, 80th edn. CRC Press, Boca Raton

    Google Scholar 

  110. Tuckerman ME, Marx D, Klein ML, Parrinello M (1997) On the quantum nature of the shared proton in hydrogen bonds. Science 275:817–820

    Article  Google Scholar 

  111. Marx D, Tuckerman ME, Hutter J, Parrinello M (1999) The nature of the hydrated excess proton in water. Nature 397:601–604

    Article  ADS  Google Scholar 

  112. Hirsch KR, Holzapfel WB (1984) Symmetric hydrogen bonds in ice X. Phys Lett A 101:142–144

    Article  ADS  Google Scholar 

  113. Hirsch K, Holzapfel W (1986) Effect of high pressure on the Raman spectra of ice VIII and evidence for ice X. J Chem Phys 84:2771–2775

    Article  ADS  Google Scholar 

  114. Loubeyre P, LeToullec R, Wolanin E, Hanfland M, Husermann D (1999) Modulated phases and proton centring in ice observed by X-ray diffraction up to 170 GPa. Nature 397:503–506

    Article  ADS  Google Scholar 

  115. Israelachvili J, Wennerstrom H (1996) Role of hydration and water structure in biological and colloidal interactions. Nature 379:219–225

    Article  ADS  Google Scholar 

  116. Li X-Z, Probert MIJ, Alavi A, Michaelides A (2010) Quantum nature of the proton in water-hydroxyl overlayers on metal surfaces. Phys Rev Lett 104:066102

    Article  ADS  Google Scholar 

  117. Roux B, Karplus M (1991) Ion-Transport in a Gramicidin-like channel—dynamics and mobility. J Phys Chem 95:4856–4868

    Article  Google Scholar 

  118. Pomes R, Roux B (1996) Structure and dynamics of a proton wire: a theoretical study of H+ translocation along the single-file water chain in the gramicidin A channel. Biophys J 71:19–39

    Article  Google Scholar 

  119. Koga K, Gao GT, Tanaka H, Zeng XC (2001) Formation of ordered ice nanotubes inside carbon nanotubes. Nature 412:802–805

    Article  ADS  Google Scholar 

  120. Dellago C, Naor MM, Hummer G (2003) Proton transport through water-filled carbon nanotubes. Phys Rev Lett 90:105902

    Article  ADS  Google Scholar 

  121. Kolesnikov AI et al (2004) Anomalously soft dynamics of water in a nanotube: a revelation of nanoscale confinement. Phys Rev Lett 93:035503

    Article  ADS  Google Scholar 

  122. Maniwa Y et al (2005) Ordered water inside carbon nanotubes: formation of pentagonal to octagonal ice-nanotubes. Chem Phys Lett 401:534–538

    Article  ADS  Google Scholar 

  123. Reiter G et al (2006) Anomalous behavior of proton zero point motion in water confined in carbon nanotubes. Phys Rev Lett 97:247801

    Article  ADS  Google Scholar 

  124. Garbuio V et al (2007) Proton quantum coherence observed in water confined in silica nanopores. J Chem Phys 127:154501

    Article  ADS  Google Scholar 

  125. Reiter GF et al (2013) Anomalous ground state of the electrons in nanoconfined water. Phys Rev Lett 111:036803

    Article  ADS  Google Scholar 

  126. Algara-Siller G et al (2015) Square ice in graphene nanocapillaries. Nature 519:443–445

    Article  ADS  Google Scholar 

  127. Kolesnikov AI et al (2016) Quantum tunneling of water in beryl: a new state of the water molecule. Phys Rev Lett 116:167802

    Article  ADS  Google Scholar 

  128. Agrawal KV, Shimizu S, Drahushuk LW, Kilcoyne D, Strano MS (2017) Observation of extreme phase transition temperatures of water confined inside isolated carbon nanotubes. Nat Nanotech 12:267–273

    Article  ADS  Google Scholar 

  129. Drozdov AP, Eremets MI, Troyan IA, Ksenofontov V, Shylin SI (2015) Conventional superconductivity at 203 kelvin at high pressures in the sulfur hydride system. Nature 525:73–76

    Article  ADS  Google Scholar 

  130. Raugei S, Klein ML (2003) Nuclear quantum effects and hydrogen bonding in liquids. J Am Chem Soc 125:8992–8993

    Article  Google Scholar 

  131. Swalina C, Wang Q, Chakraborty A, Hammes-Schiffer S (2007) Analysis of nuclear quantum effects on hydrogen bonding. J Phys Chem A 111:2206–2212

    Article  Google Scholar 

  132. Douhal A, Kim SK, Zewail AH (1995) Femtosecond molecular dynamics of tautomerization in model base pairs. Nature 378:260–263

    Article  ADS  Google Scholar 

  133. Kwon OH, Zewail AH (2007) Double proton transfer dynamics of model DNA base pairs in the condensed phase. Proc Natl Acad Sci USA 104:8703–8708

    Article  ADS  Google Scholar 

  134. Perez A, Tuckerman ME, Hjalmarson HP, von Lilienfeld OA (2010) Enol tautomers of watson-crick base pair models are metastable because of nuclear quantum effects. J Am Chem Soc 132:11510–11515

    Article  Google Scholar 

  135. Hwang JK, Warshel A (1996) How important are quantum mechanical nuclear motions in enzyme catalysis? J Am Chem Soc 118:11745–11751

    Article  Google Scholar 

  136. Billeter SR, Webb SP, Agarwal PK, Iordanov T, Hammes-Schiffer S (2001) Hydride transfer in liver alcohol dehydrogenase: quantum dynamics, kinetic isotope effects, and role of enzyme motion. J Am Chem Soc 123:11262–11272

    Article  Google Scholar 

  137. Pu JZ, Gao JL, Truhlar DG (2006) Multidimensional tunneling, recrossing, and the transmission coefficient for enzymatic reactions. Chem Rev 106:3140–3169

    Article  Google Scholar 

  138. Glowacki DR, Harvey JN, Mulholland AJ (2012) Taking Ockham’s razor to enzyme dynamics and catalysis. Nat Chem 4:169–176

    Article  Google Scholar 

  139. Wang L, Fried SD, Boxer SG, Markland TE (2014) Quantum delocalization of protons in the hydrogen-bond network of an enzyme active site. Proc Natl Acad Sci USA 111:18454–18459

    Article  ADS  Google Scholar 

  140. Truhlar DG (2010) Tunneling in enzymatic and nonenzymatic hydrogen transfer reactions. J Phys Org Chem 23:660–676

    Article  Google Scholar 

  141. Masgrau L et al (2006) Atomic description of an enzyme reaction dominated by proton tunneling. Science 312:237–241

    Article  ADS  Google Scholar 

  142. Sutcliffe MJ, Scrutton NS (2002) A new conceptual framework for enzyme catalysis—hydrogen tunneling coupled to enzyme dynamics in flavoprotein and quinoprotein enzymes. Eur J Biochem 269:3096–3102

    Article  Google Scholar 

  143. Klinman JP, Kohen A (2013) Hydrogen tunneling Links protein dynamics to enzyme catalysis. Annu Rev Biochem 82(82):471–496

    Article  Google Scholar 

  144. Efimova YM, Haemers S, Wierczinski B, Norde W, van Well AA (2007) Stability of globular proteins in H2O and D2O. Biopolymers 85:264–273

    Article  Google Scholar 

  145. Cho Y et al (2009) Hydrogen bonding of beta-Turn structure is stabilized in D2O. J Am Chem Soc 131:15188–15193

    Article  Google Scholar 

  146. Mosin OV, Shvets VI, Skladnev DA, Ignatov I (2014) Studying of microbic synthesis of deuterium labelled L-Phenylalanine by facultative methylotrophic bacterium brevibacterium methylicum on media with different content of heavy water. Biomeditsinskaya Khimiya 60:448–461

    Article  Google Scholar 

  147. Pietropaolo A et al (2008) Excess of proton mean kinetic energy in supercooled water. Phys Rev Lett 100:127802

    Article  ADS  Google Scholar 

  148. Senesi R et al (2013) The quantum nature of the OH stretching mode in ice and water probed by neutron scattering experiments. J Chem Phys 139:074504

    Article  ADS  Google Scholar 

  149. Senesi R, Romanelli G, Adams MA, Andreani C (2013) Temperature dependence of the zero point kinetic energy in ice and water above room temperature. Chem Phys 427:111–116

    Article  ADS  Google Scholar 

  150. Zeidler A et al (2011) Oxygen as a site specific probe of the structure of water and oxide materials. Phys Rev Lett 107:145501

    Article  ADS  Google Scholar 

  151. Romanelli G et al (2013) Direct measurement of competing quantum effects on the kinetic energy of heavy water upon melting. J Phys Chem Lett 4:3251–3256

    Article  Google Scholar 

  152. Burnham CJ et al (2006) On the origin of the redshift of the OH stretch in Ice Ih: evidence from the momentum distribution of the protons and the infrared spectral density. Phys Chem Chem Phys 8:3966–3977

    Article  Google Scholar 

  153. Burnham CJ, Anick DJ, Mankoo PK, Reiter GF (2008) The vibrational proton potential in bulk liquid water and ice. J Chem Phys 128:154519

    Article  ADS  Google Scholar 

  154. Pantalei C et al (2008) Proton momentum distribution of liquid water from room temperature to the supercritical phase. Phys Rev Lett 100:177801

    Article  ADS  Google Scholar 

  155. Reiter GF et al (2012) Evidence for an anomalous quantum state of protons in nanoconfined water. Phys Rev B 85:045403

    Article  ADS  Google Scholar 

  156. Ubbelohde AR, Gallagher KJ (1955) Acid-base effects in hydrogen bonds in crystals. Acta Crystallogr 8:71–83

    Article  Google Scholar 

  157. Major DT et al (2009) Differential quantum tunneling contributions in nitroalkane oxidase catalyzed and the uncatalyzed proton transfer reaction. Proc Natl Acad Sci USA 106:20734–20739

    Article  ADS  Google Scholar 

  158. Nishijima M, Okuyama H, Takagi N, Aruga T, Brenig W (2005) Quantum delocalization of hydrogen on metal surfaces. Surf Sci Rep 57:113–156

    Article  ADS  Google Scholar 

  159. Aoki K, Yamawaki H, Sakashita M, Fujihisa H (1996) Infrared absorption study of the hydrogen-bond symmetrization in ice to 110 GPa. Phys Rev B 54:15673–15677

    Article  ADS  Google Scholar 

  160. Goncharov AF, Struzhkin VV, Somayazulu MS, Hemley RJ, Mao HK (1996) Compression of ice to 210 gigapascals: infrared evidence for a symmetric hydrogen-bonded phase. Science 273:218–220

    Article  ADS  Google Scholar 

  161. Koitaya T, Yoshinobu J (2014) The quantum nature of C-H···Metal interaction: vibrational spectra and kinetic and geometric isotope effects of adsorbed cyclohexane. Chem Rec 14:848–856

    Article  Google Scholar 

  162. Polian A, Grimsditch M (1984) New high-pressure phase of H2O: ice X. Phys Rev Lett 52:1312–1314

    Article  ADS  Google Scholar 

  163. Nagata Y, Pool RE, Backus EHG, Bonn M (2012) Nuclear quantum effects affect bond orientation of water at the water-vapor interface. Phys Rev Lett 109:226101

    Article  ADS  Google Scholar 

  164. Yen F, Gao T (2015) Dielectric anomaly in ice near 20 K: evidence of macroscopic quantum phenomena. J Phys Chem Lett 6:2822–2825

    Article  Google Scholar 

  165. Heinrich AJ, Lutz CP, Gupta JA, Eigler DM (2002) Molecule cascades. Science 298:1381–1387

    Article  ADS  Google Scholar 

  166. Repp J, Meyer G, Rieder KH, Hyldgaard P (2003) Site determination and thermally assisted tunneling in homogenous nucleation. Phys Rev Lett 91:206102

    Article  ADS  Google Scholar 

  167. Stroscio JA, Celotta RJ (2004) Controlling the dynamics of a single atom in lateral atom manipulation. Science 306:242–247

    Article  ADS  Google Scholar 

  168. Meng X et al (2015) Direct visualization of concerted proton tunnelling in a water nanocluster. Nat Phys 11:235–239

    Article  Google Scholar 

  169. Guo J et al (2016) Nuclear quantum effects of hydrogen bonds probed by tip-enhanced inelastic electron tunneling. Science 352:321–325

    Article  ADS  Google Scholar 

  170. Koch M et al (2017) Direct observation of double hydrogen transfer via quantum tunneling in a single porphycene molecule on a Ag(110) surface. J Am Chem Soc 139:12681–12687

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jing Guo .

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Guo, J. (2018). Introduction. In: High Resolution Imaging, Spectroscopy and Nuclear Quantum Effects of Interfacial Water. Springer Theses. Springer, Singapore. https://doi.org/10.1007/978-981-13-1663-0_1

Download citation

Publish with us

Policies and ethics