Skip to main content

Enhanced Red Wolf Optimization Algorithm for Reduction of Real Power Loss

  • Conference paper
  • First Online:
Smart Intelligent Computing and Applications

Part of the book series: Smart Innovation, Systems and Technologies ((SIST,volume 104))

Abstract

This paper projects enhanced red wolf optimization (ERWO) algorithm for solving optimal reactive power problem. Projected ERWO algorithm hybridizes the wolf optimization (WO) algorithm with particle swarm optimization (PSO) algorithm. Each red wolf has a flag vector, in the algorithm, and length is equivalent to the whole sum of numbers which features in the dataset of the wolf optimization (WO). Due to the hybridization of both WO with PSO exploration, the ability of the proposed red wolf optimization algorithm has been enhanced. Efficiency of the projected enhanced red wolf optimization (ERWO) algorithm has been evaluated in standard IEEE 118 bus test system. Results indicate that enhanced red wolf optimization (ERWO) algorithm performs well in solving the problem. Actual power losses are reduced, and control variables are well within the limits.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Alsac, O., Scott, B.: Optimal load flow with steady state security. IEEE Trans. PAS, 745–751 (1973)

    Article  Google Scholar 

  2. Lee, K.Y., Paru, Y.M., Oritz, J.L.: A united approach to optimal real and reactive power dispatch. IEEE Trans. Power Apparatus Syst.: PAS-104, 1147–1153 (1985)

    Article  Google Scholar 

  3. Monticelli, A., Pereira, M.V.F., Granville, S.: Security constrained optimal power flow with post contingency corrective rescheduling. IEEE Trans. Power Syst:PWRS-2(1), 175–182 (1987)

    Article  Google Scholar 

  4. Deeb, N., Shahidehpur, S.M.: Linear reactive power optimization in a large power network using the decomposition approach. IEEE Trans Power Syst. 5(2), 428–435 (1990)

    Article  Google Scholar 

  5. Hobson, E.: Network constrained reactive power control using linear programming. IEEE Trans. Power Syst. PAS-99(4), 868–877 (1980)

    Google Scholar 

  6. Lee, K.Y., Park, Y.M., Oritz, J.L.: Fuel-cost optimization for both real and reactive power dispatches. IEE Proc 131C(3), 85–93 (1984)

    Google Scholar 

  7. Mangoli, M.K., Lee, K.Y.: Optimal real and reactive power control using linear programming. Electr. Power Syst. Res. 26, 1–10 (1993)

    Article  Google Scholar 

  8. Canizares, C.A., de Souza, A.C.Z., Quintana, V.H.: Comparison of performance indices for detection of proximity to voltage collapse. 11(3), 1441–1450 (1996)

    Google Scholar 

  9. Anburaja, K.: Optimal power flow using refined genetic algorithm. Electr. Power Compon. Syst 30, 1055–1063 (2002)

    Article  Google Scholar 

  10. Devaraj, D., Yeganarayana, B.: Genetic algorithm based optimal power flow for security enhancement. IEE Proc.-Gen. Transm. Distrib. 152 (2005)

    Article  Google Scholar 

  11. Berizzi, A., Bovo, C., Merlo, M., Delfanti, M.: A ga approach to compare orpf objective functions including secondary voltage regulation. Electr. Power Syst. Res. 84(1), 187–194 (2012)

    Article  Google Scholar 

  12. Yang, C.-F., Lai, G.G., Lee, C.-H., Su, C.-T., Chang, G.W.: Optimal setting of reactive compensation devices with an improved voltage stability index for voltage stability enhancement. Int. J. Electr. Power Energy Syst. 37(1), 50–57 (2012)

    Article  Google Scholar 

  13. Roy, P., Ghoshal, S., Thakur, S.: Optimal var control for improvements in voltage profiles and for real power loss minimization using biogeography based optimization. Int. J. Electr. Power Energy Syst. 43(1), 830–838 (2012)

    Article  Google Scholar 

  14. Venkatesh, B., Sadasivam, G., Khan, M.: A new optimal reactive power scheduling method for loss minimization and voltage stability margin maximization using successive multi-objective fuzzy lp technique. IEEE Trans. Power Syst. 15(2), 844–851 (2000)

    Article  Google Scholar 

  15. Yan, W., Lu, S., Yu, D.: A novel optimal reactive power dispatch method based on an improved hybrid evolutionary programming technique. IEEE Trans. Power Syst. 19(2), 913–918 (2004)

    Article  Google Scholar 

  16. Yan, W., Liu, F., Chung, C., Wong, K.: A hybrid genetic algorithm interior point method for optimal reactive power flow. IEEE Trans. Power Syst. 21(3), 1163–1169 (2006)

    Article  Google Scholar 

  17. Yu, J., Yan, W., Li, W., Chung, C., Wong, K.: An unfixed piecewise optimal reactive power-flow model and its algorithm for ac-dc systems. IEEE Trans. Power Syst. 23(1), 170–176 (2008)

    Article  Google Scholar 

  18. Capitanescu, F.: Assessing reactive power reserves with respect to operating constraints and voltage stability. IEEE Trans. Power Syst. 26(4), 2224–2234 (2011)

    Article  Google Scholar 

  19. Hu, Z., Wang, X., Taylor, G.: Stochastic optimal reactive power dispatch: Formulation and solution method. Int. J. Electr. Power Energy Syst. 32(6), 615–621 (2010)

    Article  Google Scholar 

  20. Kargarian, A., Raoofat, M., Mohammadi, M.: Probabilistic reactive power procurement in hybrid electricity markets with uncertain loads. Electr. Power Syst. Res. 82(1), 68–80 (2012)

    Article  Google Scholar 

  21. Kaveh, A., Shokohi, F.: Application of Grey Wolf Optimizer in design of castellated beams. Asian J. Civil Eng. 17(5), 683–700 (2016)

    Google Scholar 

  22. Kennedy, J., Eberhart, R.C.: Particle swarm optimization. In: Proceeding of IEEE International Conference on Neural Networks, Perth, Australia, pp. 1942–1948 (1995)

    Google Scholar 

  23. IEEE: The IEEE 30-bus test system and the IEEE 118-test system (1993). http://www.ee.washington.edu/trsearch/pstca/

  24. Cao, Jiangtao, Wang, Fuli, Li, Ping: An improved biogeography-based optimization algorithm for optimal reactive power flow. Int. J. Control Autom. 7(3), 161–176 (2014)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. Lenin .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Lenin, K. (2019). Enhanced Red Wolf Optimization Algorithm for Reduction of Real Power Loss. In: Satapathy, S., Bhateja, V., Das, S. (eds) Smart Intelligent Computing and Applications . Smart Innovation, Systems and Technologies, vol 104. Springer, Singapore. https://doi.org/10.1007/978-981-13-1921-1_5

Download citation

  • DOI: https://doi.org/10.1007/978-981-13-1921-1_5

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-13-1920-4

  • Online ISBN: 978-981-13-1921-1

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics