Skip to main content

Multiple Localization by Functional Translational Readthrough

  • Chapter
  • First Online:
Proteomics of Peroxisomes

Part of the book series: Subcellular Biochemistry ((SCBI,volume 89))

Abstract

In a compartmentalized cell, correct protein localization is crucial for function of virtually all cellular processes. From the cytoplasm as a starting point, proteins are imported into organelles by specific targeting signals. Many proteins, however, act in more than one cellular compartment. In this chapter, we discuss mechanisms by which proteins can be targeted to multiple organelles with a focus on a novel gene regulatory mechanism, functional translational readthrough, that permits multiple targeting of proteins to the peroxisome and other organelles. In mammals, lactate and malate dehydrogenase are the best-characterized enzymes whose targeting is controlled by functional translational readthrough.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 219.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 279.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 279.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

AQP4:

Aquaporin 4

cAMP:

Cyclic adenosine monophosphate

Drp1:

Dynamin-related protein 1

eRF1:

Eukaryotic release factor 1

EST:

Expressed sequence tag

Fis1:

Mitochondrial fission 1 protein

GAPDH:

Glyceraldehyde-3-phosphate dehydrogenase

Gpd1:

Glycerol-3-phosphate dehydrogenase (in yeast)

KANL:

Lysine—alanine—asparagine—leucine

LDH:

Lactate dehydrogenase

LDHBx:

Readthrough-extended form of the B subunit of LDH

MAS:

Malate-aspartate shuttle

MDH:

Malate dehydrogenase

MDH1x:

Readthrough-extended form of MDH1

Mff:

Mitochondrial fission factor

Mo-MuLV:

Moloney murine leukemia virus

NAD:

Nicotinamide adenine dinucleotide (NAD+ and NADH)

ORF:

Open reading frame

PDE2:

Phosphodiesterase 2

PGK:

3-Phosphoglycerate kinase

PTS1:

Peroxisome targeting signal type 1

SCC:

Stop codon context

SKL:

Serine—lysine—leucine

TMV:

Tobacco mosaic virus

UTR:

Untranslated region

References

  • Al-Saryi NA, Al-Hejjaj MY, van Roermund CWT, Hulmes GE, Ekal L, Payton C et al (2017) Two NAD-linked redox shuttles maintain the peroxisomal redox balance in Saccharomyces cerevisiae. Sci Rep 7:11868

    Article  Google Scholar 

  • Anandatheerthavarada HK, Biswas G, Mullick J, Sepuri NB, Otvos L, Pain D et al (1999) Dual targeting of cytochrome P4502B1 to endoplasmic reticulum and mitochondria involves a novel signal activation by cyclic AMP-dependent phosphorylation at ser128. EMBO J 18:5494–5504

    Article  CAS  Google Scholar 

  • Antonenkov VD, Sormunen RT, Hiltunen JK (2004) The rat liver peroxisomal membrane forms a permeability barrier for cofactors but not for small metabolites in vitro. J Cell Sci 117:5633–5642

    Article  CAS  Google Scholar 

  • Apanasets O, Grou CP, Van Veldhoven PP, Brees C, Wang B, Nordgren M et al (2014) PEX5, the shuttling import receptor for peroxisomal matrix proteins, is a redox-sensitive protein. Traffic 15:94–103

    Article  CAS  Google Scholar 

  • Arand M, Knehr M, Thomas H, Zeller HD, Oesch F (1991) An impaired peroxisomal targeting sequence leading to an unusual bicompartmental distribution of cytosolic epoxide hydrolase. FEBS Lett 294:19–22

    Article  CAS  Google Scholar 

  • Ast J, Stiebler AC, Freitag J, Bölker M (2013) Dual targeting of peroxisomal proteins. Front Physiol 4:297

    Article  Google Scholar 

  • Bandlow W, Strobel G, Schricker R (1998) Influence of N-terminal sequence variation on the sorting of major adenylate kinase to the mitochondrial intermembrane space in yeast. Biochem J 329(Pt 2):359–367

    Article  CAS  Google Scholar 

  • Beznosková P, Gunišová S, Valášek LS (2016) Rules of UGA-N decoding by near-cognate tRNAs and analysis of readthrough on short uORFs in yeast. RNA 22:456–466

    Article  Google Scholar 

  • Blanchet S, Cornu D, Argentini M, Namy O (2014) New insights into the incorporation of natural suppressor tRNAs at stop codons in Saccharomyces cerevisiae. Nucleic Acids Res 42:10061–10072

    Article  CAS  Google Scholar 

  • Bodén M, Hawkins J (2005) Prediction of subcellular localization using sequence-biased recurrent networks. Bioinforma 21:2279–2286

    Article  Google Scholar 

  • Brocard C, Hartig A (2006) Peroxisome targeting signal 1: is it really a simple tripeptide? Biochim Biophys Acta 1763:1565–1573

    Article  CAS  Google Scholar 

  • Brown CM, Dinesh-Kumar SP, Miller WA (1996) Local and distant sequences are required for efficient readthrough of the barley yellow dwarf virus PAV coat protein gene stop codon. J Virol 70:5884–5892

    CAS  PubMed  PubMed Central  Google Scholar 

  • Cassan M, Berteaux V, Angrand PO, Rousset JP (1990) Expression vectors for quantitating in vivo translational ambiguity: their potential use to analyse frameshifting at the HIV gag-pol junction. Res Virol 141:597–610

    Article  CAS  Google Scholar 

  • Cho EJ, Youn HD, Kim JH, Lee SM (2009) A nucleocytoplasmic malate dehydrogenase regulates p53 transcriptional activity in response to metabolic stress. Cell Death Differ 16:738

    Article  Google Scholar 

  • De Bellis M, Pisani F, Mola MG, Rosito S, Simone L, Buccoliero C et al (2017) Translational readthrough generates new astrocyte AQP4 isoforms that modulate supramolecular clustering, glial endfeet localization, and water transport. Glia 65:790–803

    Article  Google Scholar 

  • Dunn JG, Foo CK, Belletier NG, Gavis ER, Weissman JS (2013) Ribosome profiling reveals pervasive and regulated stop codon readthrough in Drosophila melanogaster. eLife 2:e01179

    Google Scholar 

  • Emanuelsson O, Elofsson A, von Heijne G, Cristóbal S (2003) In silico prediction of the peroxisomal proteome in fungi, plants and animals. J Mol Biol 330:443–456

    Article  CAS  Google Scholar 

  • Eswarappa SM, Potdar AA, Koch WJ, Fan Y, Vasu K, Lindner D et al (2014) Programmed translational readthrough generates antiangiogenic VEGF-Ax. Cell 157:1605–1618

    Article  CAS  Google Scholar 

  • Felsenstein KM, Goff SP (1988) Expression of the gag-pol fusion protein of Moloney murine leukemia virus without gag protein does not induce virion formation or proteolytic processing. J Virol 62:2179–2182

    CAS  PubMed  PubMed Central  Google Scholar 

  • Freitag J, Ast J, Bölker M (2012) Cryptic peroxisomal targeting via alternative splicing and stop codon read-through in fungi. Nature 485:522–525

    Article  CAS  Google Scholar 

  • Fukao Y, Hayashi M, Nishimura M (2002) Proteomic analysis of leaf peroxisomal proteins in greening cotyledons of arabidopsis thaliana. Plant Cell Physiol 43:689–696

    Article  CAS  Google Scholar 

  • Harrell L, Melcher U, Atkins JF (2002) Predominance of six different hexanucleotide recoding signals 3’ of read-through stop codons. Nucleic Acids Res 30:2011–2017

    Article  CAS  Google Scholar 

  • Hofhuis J, Schueren F, Nötzel C, Lingner T, Gärtner J, Jahn O et al (2016) The functional readthrough extension of malate dehydrogenase reveals a modification of the genetic code. Open Biol 6:160246

    Article  Google Scholar 

  • Hofhuis J, Dieterle S, George R, Schueren F, Thoms S (2017) Dual reporter systems for the analysis of translational readthrough in mammals. Methods Mol Biol 1595:81–92

    Article  CAS  Google Scholar 

  • Ingerman E, Perkins EM, Marino M, Mears JA, McCaffery JM, Hinshaw JE et al (2005) Dnm1 forms spirals that are structurally tailored to fit mitochondria. J Cell Biol 170:1021–1027

    Article  CAS  Google Scholar 

  • Ingolia NT, Ghaemmaghami S, Newman JRS, Weissman JS (2009) Genome-wide analysis in vivo of translation with nucleotide resolution using ribosome profiling. Science 324:218–223

    Article  CAS  Google Scholar 

  • Ingolia NT, Lareau LF, Weissman JS (2011) Ribosome profiling of mouse embryonic stem cells reveals the complexity and dynamics of mammalian proteomes. Cell 147:789–802

    Article  CAS  Google Scholar 

  • Jackson RJ, Hellen CUT, Pestova TV (2012) Termination and post-termination events in eukaryotic translation. Adv Protein Chem Struct Biol 86:45–93

    Article  CAS  Google Scholar 

  • Jungreis I, Lin MF, Spokony R, Chan CS, Negre N, Victorsen A et al (2011) Evidence of abundant stop codon readthrough in Drosophila and other metazoa. Genome Res 21:2096–2113

    Article  CAS  Google Scholar 

  • Kabran P, Rossignol T, Gaillardin C, Nicaud J-M, Neuvéglise C (2012) Alternative splicing regulates targeting of malate dehydrogenase in Yarrowia lipolytica. DNA Res 19:231–244

    Article  CAS  Google Scholar 

  • Karniely S, Pines O (2005) Single translation—dual destination: mechanisms of dual protein targeting in eukaryotes. EMBO Rep 6:420–425

    Article  CAS  Google Scholar 

  • Koch A, Yoon Y, Bonekamp NA, McNiven MA, Schrader M (2005) A role for Fis1 in both mitochondrial and peroxisomal fission in mammalian cells. Mol Biol Cell 16:5077–5086

    Article  CAS  Google Scholar 

  • Lametschwandtner G, Brocard C, Fransen M, Van Veldhoven P, Berger J, Hartig A (1998) The difference in recognition of terminal tripeptides as peroxisomal targeting signal 1 between yeast and human is due to different affinities of their receptor Pex5p to the cognate signal and to residues adjacent to it. J Biol Chem 273:33635–33643

    Article  CAS  Google Scholar 

  • Legakis JE, Koepke JI, Jedeszko C, Barlaskar F, Terlecky LJ, Edwards HJ et al (2002) Peroxisome senescence in human fibroblasts. Mol Biol Cell 13:4243–4255

    Article  CAS  Google Scholar 

  • Lin MF, Carlson JW, Crosby MA, Matthews BB, Yu C, Park S et al (2007) Revisiting the protein-coding gene catalog of Drosophila melanogaster using 12 fly genomes. Genome Res 17:1823–1836

    Article  CAS  Google Scholar 

  • Lin MF, Jungreis I, Kellis M (2011) PhyloCSF: a comparative genomics method to distinguish protein coding and non-coding regions. Bioinformatics 27:i275–i282

    Article  CAS  Google Scholar 

  • Lingner T, Kataya AR, Antonicelli GE, Benichou A, Nilssen K, Chen X-Y et al (2011) Identification of novel plant peroxisomal targeting signals by a combination of machine learning methods and in vivo subcellular targeting analyses. Plant Cell 23:1556–1572

    Article  CAS  Google Scholar 

  • Loughran G, Chou M-Y, Ivanov IP, Jungreis I, Kellis M, Kiran AM et al (2014) Evidence of efficient stop codon readthrough in four mammalian genes. Nucleic Acids Res 42:8928–8938

    Article  CAS  Google Scholar 

  • Luo B, Norris C, Bolstad ESD, Knecht DA, Grant DF (2008) Protein quaternary structure and expression levels contribute to peroxisomal-targeting-sequence-1-mediated peroxisomal import of human soluble epoxide hydrolase. J Mol Biol 380:31–41

    Article  CAS  Google Scholar 

  • McAlister-Henn L, Thompson LM (1987) Isolation and expression of the gene encoding yeast mitochondrial malate dehydrogenase. J Bacteriol 169:5157–5166

    Article  CAS  Google Scholar 

  • McCaughan KK, Brown CM, Dalphin ME, Berry MJ, Tate WP (1995a) Translational termination efficiency in mammals is influenced by the base following the stop codon. Proc Natl Acad Sci U S A 92:5431–5435

    Article  CAS  Google Scholar 

  • McCaughan KK, Brown CM, Dalphin ME, Berry MJ, Tate WP (1995b) Translational termination efficiency in mammals is influenced by the base following the stop codon. Proc Natl Acad Sci U S A 92:5431–5435

    Article  CAS  Google Scholar 

  • Minard KI, McAlister-Henn L (1991) Isolation, nucleotide sequence analysis, and disruption of the MDH2 gene from Saccharomyces cerevisiae: evidence for three isozymes of yeast malate dehydrogenase. Mol Cell Biol 11:370–380

    Article  CAS  Google Scholar 

  • Motley AM, Ward GP, Hettema EH (2008) Dnm1p-dependent peroxisome fission requires Caf4p, Mdv1p and Fis1p. J Cell Sci 121:1633–1640

    Article  CAS  Google Scholar 

  • Namy O, Hatin I, Rousset J-P (2001) Impact of the six nucleotides downstream of the stop codon on translation termination. EMBO Rep 2:787–793

    Article  CAS  Google Scholar 

  • Namy O, Duchateau-Nguyen G, Rousset J-P (2002) Translational readthrough of the PDE2 stop codon modulates cAMP levels in Saccharomyces cerevisiae. Mol Microbiol 43:641–652

    Article  CAS  Google Scholar 

  • Nelson JW, Das AJ, Barnes AP, Alkayed NJ (2016) Disrupting dimerization translocates soluble epoxide hydrolase to peroxisomes. PLoS ONE 11:e0152742

    Article  Google Scholar 

  • Neuberger G, Maurer-Stroh S, Eisenhaber B, Hartig A, Eisenhaber F (2003) Prediction of peroxisomal targeting signal 1 containing proteins from amino acid sequence. J Mol Biol 328:581–592

    Article  CAS  Google Scholar 

  • Neuberger G, Kunze M, Eisenhaber F, Berger J, Hartig A, Brocard C (2004) Hidden localization motifs: naturally occurring peroxisomal targeting signals in non-peroxisomal proteins. Genome Biol 5:R97

    Article  Google Scholar 

  • Nötzel C, Lingner T, Klingenberg H, Thoms S (2016) Identification of new fungal peroxisomal matrix proteins and revision of the PTS1 consensus. Traffic 17:1110–1124

    Article  Google Scholar 

  • Peeters N, Small I (2001) Dual targeting to mitochondria and chloroplasts. Biochim Biophys Acta 1541:54–63

    Article  CAS  Google Scholar 

  • Petrova VY, Drescher D, Kujumdzieva AV, Schmitt MJ (2004) Dual targeting of yeast catalase A to peroxisomes and mitochondria. Biochem J 380:393–400

    Article  CAS  Google Scholar 

  • Pracharoenwattana I, Cornah JE, Smith SM (2007) Arabidopsis peroxisomal malate dehydrogenase functions in β-oxidation but not in the glyoxylate cycle. Plant J 50:381–390

    Article  CAS  Google Scholar 

  • Reil H, Hauser H (1990) Test system for determination of HIV-1 frameshifting efficiency in animal cells. Biochim Biophys Acta 1050:288–292

    Article  CAS  Google Scholar 

  • Robin M-A, Anandatheerthavarada HK, Biswas G, Sepuri NBV, Gordon DM, Pain D et al (2002) Bimodal targeting of microsomal CYP2E1 to mitochondria through activation of an N-terminal chimeric signal by cAMP-mediated phosphorylation. J Biol Chem 277:40583–40593

    Article  CAS  Google Scholar 

  • Roy B, Leszyk JD, Mangus DA, Jacobson A (2015) Nonsense suppression by near-cognate tRNAs employs alternative base pairing at codon positions 1 and 3. Proc Natl Acad Sci U S A 112:3038–3043

    Article  CAS  Google Scholar 

  • Schueren F, Thoms S (2016) Functional translational readthrough: a systems biology perspective. PLoS Genet 12:e1006196

    Article  Google Scholar 

  • Schueren F, Lingner T, George R, Hofhuis J, Dickel C, Gärtner J, et al (2014) Peroxisomal lactate dehydrogenase is generated by translational readthrough in mammals. eLife 3:e03640

    Google Scholar 

  • Silva-Filho MC (2003) One ticket for multiple destinations: dual targeting of proteins to distinct subcellular locations. Curr Opin Plant Biol 6:589–595

    Article  CAS  Google Scholar 

  • Smirnova E, Griparic L, Shurland DL, van der Bliek AM (2001) Dynamin-related protein Drp1 is required for mitochondrial division in mammalian cells. Mol Biol Cell 12:2245–2256

    Article  CAS  Google Scholar 

  • Steffan JS, McAlister-Henn L (1992) Isolation and characterization of the yeast gene encoding the MDH3 isozyme of malate dehydrogenase. J Biol Chem 267:24708–24715

    CAS  PubMed  Google Scholar 

  • Stiebler AC, Freitag J, Schink KO, Stehlik T, Tillmann BAM, Ast J et al (2014a) Ribosomal readthrough at a short UGA stop codon context triggers dual localization of metabolic enzymes in fungi and animals. PLoS Genet 10:e1004685

    Article  Google Scholar 

  • Stiebler AC, Freitag J, Schink KO, Stehlik T, Tillmann BAM, Ast J et al (2014b) Ribosomal readthrough at a short UGA stop codon context triggers dual localization of metabolic enzymes in Fungi and animals. PLoS Genet 10:e1004685

    Article  Google Scholar 

  • Strijbis K, van den Burg J, Visser WF, van den Berg M, Distel B (2012) Alternative splicing directs dual localization of Candida albicans 6-phosphogluconate dehydrogenase to cytosol and peroxisomes. FEMS Yeast Res 12:61–68

    Article  CAS  Google Scholar 

  • Strobel G, Zollner A, Angermayr M, Bandlow W (2002) Competition of spontaneous protein folding and mitochondrial import causes dual subcellular location of major adenylate kinase. Mol Biol Cell 13:1439–1448

    Article  CAS  Google Scholar 

  • Thoms S (2015) Import of proteins into peroxisomes: piggybacking to a new home away from home. Open Biol 5:150148

    Article  Google Scholar 

  • Thoms S, Hofhuis J, Thöing C, Gärtner J, Niemann HH (2011a) The unusual extended C-terminal helix of the peroxisomal α/β-hydrolase Lpx1 is involved in dimer contacts but dispensable for dimerization. J Struct Biol 175:362–371

    Article  CAS  Google Scholar 

  • Thoms S, Debelyy MO, Connerth M, Daum G, Erdmann R (2011b) The putative Saccharomyces cerevisiae hydrolase Ldh1p is localized to lipid droplets. Eukaryot Cell 10:770–775

    Article  CAS  Google Scholar 

  • van Roermund CW, Elgersma Y, Singh N, Wanders RJ, Tabak HF (1995) The membrane of peroxisomes in Saccharomyces cerevisiae is impermeable to NAD(H) and acetyl-CoA under in vivo conditions. EMBO J 14:3480–3486

    Article  Google Scholar 

  • Visser WF, van Roermund CWT, Ijlst L, Waterham HR, Wanders RJA (2007) Metabolite transport across the peroxisomal membrane. Biochem J 401:365–375

    Article  CAS  Google Scholar 

  • Walton PA, Brees C, Lismont C, Apanasets O, Fransen M (2017) The peroxisomal import receptor PEX5 functions as a stress sensor, retaining catalase in the cytosol in times of oxidative stress. Biochim Biophys Acta 1864:1833–1843

    Article  CAS  Google Scholar 

  • Wickner RB (2016) Yeast and fungal prions. Cold Spring Harb Perspect Biol 8

    Google Scholar 

  • Williams C, Bener Aksam E, Gunkel K, Veenhuis M, van der Klei IJ (2012) The relevance of the non-canonical PTS1 of peroxisomal catalase. Biochim Biophys Acta 1823:1133–1141

    Article  CAS  Google Scholar 

  • Williams CC, Jan CH, Weissman JS (2014) Targeting and plasticity of mitochondrial proteins revealed by proximity-specific ribosome profiling. Science 346:748–751

    Article  CAS  Google Scholar 

  • Wolinski H, Petrovic U, Mattiazzi M, Petschnigg J, Heise B, Natter K et al (2009) Imaging-based live cell yeast screen identifies novel factors involved in peroxisome assembly. J Proteome Res 8:20–27

    Article  CAS  Google Scholar 

  • Yamaguchi Y, Hayashi A, Campagnoni CW, Kimura A, Inuzuka T, Baba H (2012) L-MPZ, a novel isoform of myelin P0, is produced by stop codon readthrough. J Biol Chem 287:17765–17776

    Article  CAS  Google Scholar 

  • Yang F, Zaiyue S, Mingmin G (2016) The functional mechanisms and clinical application of read-through drugs. Yi Chuan 38:623–633

    Google Scholar 

  • Yofe I, Weill U, Meurer M, Chuartzman S, Zalckvar E, Goldman O et al (2016) One library to make them all: streamlining the creation of yeast libraries via a SWAp-Tag strategy. Nat Methods 13:371–378

    Article  Google Scholar 

  • Yoshinaka Y, Katoh I, Copeland TD, Oroszlan S (1985) Murine leukemia virus protease is encoded by the gag-pol gene and is synthesized through suppression of an amber termination codon. Proc Natl Acad Sci 82:1618–1622

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank Annika Wolf and Noa Lipstein for comments on the manuscript. Work on the functional implications of multiple localization by functional translational readthrough is funded by SFB 1002/TP A10 (S.T.).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sven Thoms .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Bersch, K., Lobos Matthei, I., Thoms, S. (2018). Multiple Localization by Functional Translational Readthrough. In: del Río, L., Schrader, M. (eds) Proteomics of Peroxisomes. Subcellular Biochemistry, vol 89. Springer, Singapore. https://doi.org/10.1007/978-981-13-2233-4_8

Download citation

Publish with us

Policies and ethics