Skip to main content

An Optimized High Gain Microstrip Patch Array Antenna for Sensor Networks

  • Conference paper
  • First Online:
Communication, Networks and Computing (CNC 2018)

Part of the book series: Communications in Computer and Information Science ((CCIS,volume 839))

Included in the following conference series:

  • 996 Accesses

Abstract

Wake-up receivers exhibit a wake-up range of few meters while the sensor nodes present a communication range of hundred meters. This gap between wake-up range and communication range limits the use of wake-up receivers with sensor nodes. In this paper, a high gain and compact size microstrip patch array antenna is presented for wake-up receiver in order to increase the wake-up range. The antenna is designed at operating frequency of 2.45 GHz for low loss RT/Duroid 4003C substrate. The fabricated antenna exhibits a gain of 8 dBi while occupies an area of just 64x81 mm\(^{2}\). The measurement results are closely matching with the simulation results.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Antenna efficiency (also known as radiation efficiency or simply efficiency) is a measure of the radiated power (as electromagnetic waves) through antenna to the power fed to antenna terminals.

References

  1. Zurcher, J.-F., Gardiol, F.E.: Broadband Patch Antennas. Artech House, Norwood (1995)

    Google Scholar 

  2. Kumar, G., Gupta, K.C.: Nonradiating edges and four edges gap-coupled multiple resonator broad-band microstrip antennas. IEEE Trans. Antennas Propag. 34, 173–178 (1985)

    Article  Google Scholar 

  3. Song, Q., Zhang, X.X.: A study on wideband gap-coupled microstrip antenna arrays. IEEE Trans. Antennas Propag. 43, 313–317 (1995)

    Article  Google Scholar 

  4. Agrawal, S., Gupta, R.D., Parihar, M.S., Kondekar, P.N.: A wideband high gain dielectric resonator antenna for RF energy harvesting application. AEU-Int. J. Electron. Commun. 78, 24–31 (2017)

    Article  Google Scholar 

  5. Honarbakhsh, B.: High-gain low-cost microstrip antennas and arrays based on FR4 epoxy. AEU-Int. J. Electron. Commun. 75, 1–7 (2017)

    Article  Google Scholar 

  6. Khraisat, Y.S.H.: Design of 4 elements rectangular microstrip patch antenna with high gain for 2.4 GHz applications. Mod. Appl. Sci. 6, 68–74 (2012)

    Google Scholar 

  7. Ninan, C., Shekhar, C., Radhakrishna, M.: Design and optimization of a 2x2 directional microstrip patch antenna. In: Gaur, M.S., Zwolinski, M., Laxmi, V., Boolchandani, D., Sing, V., Sing, A.D. (eds.) VDAT 2013. CCIS, vol. 382, pp. 353–360. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-42024-5_42

    Chapter  Google Scholar 

  8. Philippe, L.H., Sebastien, R.: Low power wake-up radio for wireless sensor networks. Mob. Netw. Appl. J. 15, 226–236 (2010)

    Article  Google Scholar 

  9. Shekhar C., Varma S., Radhakrishna M.: A 2.4 GHz passive wake-up circuit for power minimization in wireless sensor nodes. In: 2015 IEEE Region 10 Conference (TENCON), pp. 1–6 (2015)

    Google Scholar 

  10. Balanis, C.A.: Antenna Theory: Analysis and Design. Wiley, Hoboken (2012)

    Google Scholar 

  11. Guo, Y.X., Mak, C.L., Luk, K.M., Lee, K.F.: Analysis and design of L probe proximity fed patch antennas. IEEE Trans. Antennas Propag. 49, 145–149 (2001)

    Article  Google Scholar 

  12. Roo-Ons, M.J., Shynu, S.V., Seredynski, M., Ammann, M.J., McCormack, S.J., Norton, B.: Influence of solar heating on the performance of integrated solar cell microstrip patch antennas. Sol. Energy 84, 1619–1627 (2010)

    Article  Google Scholar 

  13. Rogers Corporation: Data sheet RT/Duroid 4003 laminates. http://www.rogerscorp.com

  14. IE3D 15. Mentor Graphics Inc., Fremont, CA

    Google Scholar 

  15. Pozar, D.M.: Input impedance and mutual coupling of rectangular microstrip antennas. IEEE Trans. Antennas Propag. 30, 1191–1196 (1982)

    Article  Google Scholar 

  16. Alam, M.M., Sonchoy, M.M.R., Goni, M.O.: Design and performance analysis of microstrip array antenna. In: Progress in Electromagnetic Research Symposium Proceedings, pp. 18–21 (2009)

    Google Scholar 

Download references

Acknowledgment

Author would like to thank Rogers Corporation, US for providing free high frequency Duroid laminates.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chandra Shekhar .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Shekhar, C. (2019). An Optimized High Gain Microstrip Patch Array Antenna for Sensor Networks. In: Verma, S., Tomar, R., Chaurasia, B., Singh, V., Abawajy, J. (eds) Communication, Networks and Computing. CNC 2018. Communications in Computer and Information Science, vol 839. Springer, Singapore. https://doi.org/10.1007/978-981-13-2372-0_16

Download citation

  • DOI: https://doi.org/10.1007/978-981-13-2372-0_16

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-13-2371-3

  • Online ISBN: 978-981-13-2372-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics