Skip to main content

Validation of Bipartite Network Model of Dengue Hotspot Detection in Sarawak

  • Conference paper
  • First Online:
Computational Science and Technology

Part of the book series: Lecture Notes in Electrical Engineering ((LNEE,volume 481))

Abstract

This paper presents the verification and validation processes in producing a realistic bipartite network model to detect dengue hotspot in Sarawak. Based on the result of previous published work, ranking of location nodes of possible dengue hotspot at Sarawak are used to illustrate the validation by comparing the Spearman rank correlation coefficients (SRCC) between the network models. UCINET 6 is used to generate a benchmark ranking result for model verification. A centrality measure analysis feature available in UCINET is used to determine the node centrality of a network model. The validation results show strong ranking similarity for all three groups of network models with good Spearman rank correlation coefficients values of 1.000, 0.8000 and 0.8824 (ρ>0.80; p<0.001) respectively. The top-ranked locations are seen as dengue hotspots and this study demonstrate a new approach to model dengue transmission at district-level by locating the hotspots and prioritizing the locations according to vector density.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 279.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Hassarangsee, S., Tripathi, N. K., & Souris, M. (2015). Spatial pattern detection of tuberculosis: a case study of Si Sa Ket Province, Thailand. International journal of environmental research and public health, 12(12), 16005-16018.

    Google Scholar 

  2. Rueda, L. M., Patel, K. J., Axtell, R. C., & Stinner, R. E. (1990). Temperature-dependent development and survival rates of Culex quinquefasciatus and Aedes aegypti (Diptera: Culicidae). Journal of medical entomology, 27(5), 892-898.

    Google Scholar 

  3. Kok W.C., Labadin J., Perera D. (2018) Modeling Dengue Hotspot with Bipartite Network Approach. In: Alfred R., Iida H., Ag. Ibrahim A., Lim Y. (eds) Computational Science and Technology. ICCST 2017. Lecture Notes in Electrical Engineering, vol 488. Springer, Singapore.

    Google Scholar 

  4. Carrington, L. B., Armijos, M. V., Lambrechts, L., & Scott, T. W. (2013). Fluctuations at a low mean temperature accelerate dengue virus transmission by Aedes aegypti. PLoS neglected tropical diseases, 7(4), e2190.

    Google Scholar 

  5. Tun‐Lin, W., Burkot, T. R., & Kay, B. H. (2000). Effects of temperature and larval diet on development rates and survival of the dengue vector Aedes aegypti in north Queensland, Australia. Medical and veterinary entomology, 14(1), 31-37.

    Google Scholar 

  6. Focks, D. A., Patz, J. A., Martens, W. J., & Jetten, T. H. (1998). Dengue fever epidemic potential as projected by general circulation models of global climate change. Environmental health perspectives, 106(3), 147.

    Google Scholar 

  7. Phaijoo, G. R., & Gurung, D. B. (2015). Mathematical Study of Biting Rates of Mosquitoes in Transmission of Dengue Disease. Journal of Science. Engineering and Technology, 11, 25-33.

    Google Scholar 

  8. Sylvestre, G., Gandini, M., & Maciel-de-Freitas, R. (2013). Age-dependent effects of oral infection with dengue virus on Aedes aegypti (Diptera: Culicidae) feeding behavior, survival, oviposition success and fecundity. PloS one, 8(3), e59933.

    Google Scholar 

  9. Scott, T. W., Amerasinghe, P. H., Morrison, A. C., Lorenz, L. H., Clark, G. G., Strickman, D., … & Edman, J. D. (2000). Longitudinal studies of Aedes aegypti (Diptera: Culicidae) in Thailand and Puerto Rico: blood feeding frequency. Journal of medical entomology, 37(1), 89-101.

    Google Scholar 

  10. Davis, P. K. (1992). Generalizing concepts and methods of verification, validation, and accreditation (VV&A) for military simulations (No. RAND/R-4249-ACQ). RAND CORP SANTA MONICA CA.

    Google Scholar 

  11. Cook, D. A., & Skinner, J. M. (2005). How to perform credible verification, validation, and accreditation for modeling and simulation. The Journal of Defense Software Engineering.

    Google Scholar 

  12. Liew, C. Y. (2016). Bipartite Network Modeling of Habitat Suitability. (Unpublished doctoral dissertation). Universiti Malaysia Sarawak, (UNIMAS).

    Google Scholar 

  13. Albright, J. J., & Park, H. M. (2009). Confirmatory factor analysis using amos, LISREL, Mplus, SAS/STAT CALIS.

    Google Scholar 

  14. Browne, M. W., & Cudeck, R. (1992). Alternative ways of assessing model fit. Sociological Methods & Research, 21(2), 230-258.

    Google Scholar 

  15. Eze, M. O. (2013). Web Algorithm search engine based network modelling of Malaria Transmission. (Doctoral dissertation) Universiti Malaysia Sarawak (UNIMAS).

    Google Scholar 

  16. Borgatti, S. P., Everett, M. G., & Freeman, L. C. (2002). Ucinet for Windows: Software for social network analysis.

    Google Scholar 

  17. Bouzerdoum, A., Havstad, A., & Beghdadi, A. (2004). Image quality assessment using a neural network approach. In Signal Processing and Information Technology, 2004. Proceedings of the Fourth IEEE International Symposium on (pp. 330-333). IEEE.

    Google Scholar 

  18. Lim, W. K., Wang, K., Lefebvre, C., & Califano, A. (2007). Comparative analysis of microarray normalization procedures: effects on reverse engineering gene networks. Bioinformatics, 23(13), i282-i288.

    Google Scholar 

  19. Tetko, I. V., & Tanchuk, V. Y. (2002). Application of associative neural networks for prediction of lipophilicity in ALOGPS 2.1 program. Journal of chemical information and computer sciences, 42(5), 1136-1145.

    Google Scholar 

  20. Liew, C., & Labadin, J. (2017). Applying Bipartite Network Approach to Scarce Data: Validation of the Habitat Suitability Model of a Marine Mammal Species. Journal of Telecommunication, Electronic and Computer Engineering (JTEC), 9(3-11), 13-16.

    Google Scholar 

Download references

Acknowledgements

The authors thank Universiti Malaysia Sarawak for the support in carrying out this research under the grant numbered F08/SpFRGS/1601/2017. Our heartfelt thanks also go to Sarawak State Health Department and Sarawak Meteorological Department for providing the research data.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Woon Chee Kok .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Kok, W.C., Labadin, J. (2019). Validation of Bipartite Network Model of Dengue Hotspot Detection in Sarawak. In: Alfred, R., Lim, Y., Ibrahim, A., Anthony, P. (eds) Computational Science and Technology. Lecture Notes in Electrical Engineering, vol 481. Springer, Singapore. https://doi.org/10.1007/978-981-13-2622-6_33

Download citation

  • DOI: https://doi.org/10.1007/978-981-13-2622-6_33

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-13-2621-9

  • Online ISBN: 978-981-13-2622-6

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics