Skip to main content

Applications of Fluorescent Organic Nanoparticles

  • Chapter
  • First Online:
Fluorescent Organic Nanoparticles

Part of the book series: SpringerBriefs in Materials ((BRIEFSMATERIALS))

Abstract

FONs have been highly attractive for cell imaging, chemosensing and drug delivery applications among others. Several polyethylene glycolated (PEGylated) AIE-based, biocompatible polydopamine, cross-linkable chitosan-based AIE dye, AIE dye-based, self-assembled π-conjugated and self-assembled amphiphilic fluorene oligomeric FONs have been studied for cell imaging applications. FONs have also been extensively studied as sensors, drug delivery systems and for other applications like photodynamic therapy and apoptosis inducers of cancer cells. In this chapter, attempts have been made to highlight the advances in the research on the development of FONs as preferred materials of choice for cell imaging, chemosensing (for inorganic cations and anions, and organic molecules and biological pathogens). Besides, efforts have been made to throw light on the applications of FONs as DDSs for different kinds of drugs including anticancer ones. The final section of this chapter is focused on the uses of FONs in photodynamic therapy, apoptosis induction and the study of blood–brain barrier damage.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Zhang, X., Zhang, X., Yang, B., Wang, S., Liu, M., Zhang, Y., Tao, L., Wei, Y.: Aggregation-induced emission material based fluorescent organic nanoparticles: facile PEGylation and cell imaging applications. RSC Adv 3(25), 9633–9636 (2013)

    Article  CAS  Google Scholar 

  2. Zhang, X., Wang, S., Xu, L., Feng, L., Ji, Y., Tao, L., Li, S., Wei, Y.: Biocompatible polydopamine fluorescent organic nanoparticles: facile preparation and cell imaging. Nanoscale 4(18), 5581–5584 (2012)

    Article  CAS  PubMed  Google Scholar 

  3. Zhang, X., Liu, M., Yang, B., Zhang, X., Chi, Z., Liu, S., Xu, J., Wei, Y.: Cross-linkable aggregation induced emission dye based red fluorescent organic nanoparticles and their cell imaging applications. Polym. Chem. 4(19), 5060–5064 (2013)

    Article  CAS  Google Scholar 

  4. Zhang, X., Zhang, X., Yang, B., Liu, M., Liu, W., Chen, Y., Wei, Y.: Facile fabrication and cell imaging applications of aggregation-induced emission dye-based fluorescent organic nanoparticles. Polym. Chem. 4(16), 4317–4321 (2013)

    Article  CAS  Google Scholar 

  5. Lou, X., Leenders, C.M., van Onzen, A.H., Bovee, R.A., van Dongen, J.L., Vekemans, J.A., Meijer, E.: False results caused by solvent impurity in tetrahydrofuran for MALDI TOF MS analysis of amines. J. Am. Soc. Mass Spectrom. 25(2), 297–300 (2014)

    Article  CAS  PubMed  Google Scholar 

  6. Fischer, I., Petkau-Milroy, K., Dorland, Y.L., Schenning, A.P., Brunsveld, L.: Self-assembled fluorescent organic nanoparticles for live-cell imaging. Chem.—A Eur. J. 19(49), 16646–16650 (2013)

    Article  CAS  Google Scholar 

  7. Singh, A., Raj, T., Aree, T., Singh, N.: Fluorescent organic nanoparticles of Biginelli-based molecules: recognition of Hg2+ and Cl in an aqueous medium. Inorg. Chem. 52(24), 13830–13832 (2013)

    Article  CAS  PubMed  Google Scholar 

  8. Li, X., Li, Z., Jing, Y., Bing, B., Li, B.: Fluorescent organic nanoparticles self-assembled from hexa [p-(carbonyl glycin methyl ester) phenoxy] cyclotriphosphazene in solution. J. Colloid Interface Sci. 375(1), 41–49 (2012)

    Article  CAS  PubMed  Google Scholar 

  9. Hsieh, M.-C., Chien, C.-H., Chang, C.-C., Chang, T.-C.: Aggregation induced photodynamic therapy enhancement based on linear and nonlinear excited FRET of fluorescent organic nanoparticles. J. Mater. Chem. B 1(18), 2350–2357 (2013)

    Article  CAS  PubMed  Google Scholar 

  10. Pramanik, M., Chatterjee, N., Das, S., Saha, K.D., Bhaumik, A.: Anthracene-bisphosphonate based novel fluorescent organic nanoparticles explored as apoptosis inducers of cancer cells. Chem. Commun. 49(82), 9461–9463 (2013)

    Article  CAS  Google Scholar 

  11. Feng, X., Liu, L., Wang, S., Zhu, D.: Water-soluble fluorescent conjugated polymers and their interactions with biomacromolecules for sensitive biosensors. Chem. Soc. Rev. 39(7), 2411–2419 (2010)

    Article  CAS  PubMed  Google Scholar 

  12. Betzig, E., Patterson, G.H., Sougrat, R., Lindwasser, O.W., Olenych, S., Bonifacino, J.S., Davidson, M.W., Lippincott-Schwartz, J., Hess, H.F.: Imaging intracellular fluorescent proteins at nanometer resolution. Science 313(5793), 1642–1645 (2006)

    Article  CAS  PubMed  Google Scholar 

  13. Dubertret, B., Skourides, P., Norris, D.J., Noireaux, V., Brivanlou, A.H., Libchaber, A.: In vivo imaging of quantum dots encapsulated in phospholipid micelles. Science 298(5599), 1759–1762 (2002)

    Article  CAS  PubMed  Google Scholar 

  14. Giepmans, B.N., Adams, S.R., Ellisman, M.H., Tsien, R.Y.: The fluorescent toolbox for assessing protein location and function. Science 312(5771), 217–224 (2006)

    Article  CAS  PubMed  Google Scholar 

  15. Jin, R.: Quantum sized, thiolate-protected gold nanoclusters. Nanoscale 2(3), 343–362 (2010)

    Article  CAS  PubMed  Google Scholar 

  16. Hong, Y., Lam, J.W., Tang, B.Z.: Aggregation-induced emission. Chem. Soc. Rev. 40(11), 5361–5388 (2011)

    Article  CAS  PubMed  Google Scholar 

  17. Wang, X., Xu, S., Xu, W.: Synthesis of highly stable fluorescent Ag nanocluster@ polymer nanoparticles in aqueous solution. Nanoscale 3(11), 4670–4675 (2011)

    Article  CAS  PubMed  Google Scholar 

  18. Wu, X., He, X., Wang, K., Xie, C., Zhou, B., Qing, Z.: Ultrasmall near-infrared gold nanoclusters for tumor fluorescence imaging in vivo. Nanoscale 2(10), 2244–2249 (2010)

    Article  CAS  PubMed  Google Scholar 

  19. Hui, J., Zhang, X., Zhang, Z., Wang, S., Tao, L., Wei, Y., Wang, X.: Fluoridated HAp: Ln3+ (Ln = Eu or Tb) nanoparticles for cell-imaging. Nanoscale 4(22), 6967–6970 (2012)

    Article  CAS  PubMed  Google Scholar 

  20. Ma, C., Zhang, X., Yang, L., Wu, Y., Liu, H., Zhang, X., Wei, Y.: Preparation of fluorescent organic nanoparticles from polyethylenimine and sucrose for cell imaging. Mater. Sci. Eng., C 68, 37–42 (2016)

    Article  CAS  Google Scholar 

  21. Zhang, T., Xu, H., Wang, H., Zhu, J., Zhai, Y., Bai, X., Dong, B., Song, H.: Green fluorescent organic nanoparticles based on carbon dots and self-polymerized dopamine for cell imaging. RSC Adv. 7(46), 28987–28993 (2017)

    Article  CAS  Google Scholar 

  22. Wang, X., Liu, L., Zhu, S., Peng, J., Li, L.: Preparation of exciplex-based fluorescent organic nanoparticles and their application in cell imaging. RSC Adv. 7(65), 40842–40848 (2017)

    Article  CAS  Google Scholar 

  23. Shi, Y., Jiang, R., Liu, M., Fu, L., Zeng, G., Wan, Q., Mao, L., Deng, F., Zhang, X., Wei, Y.: Facile synthesis of polymeric fluorescent organic nanoparticles based on the self-polymerization of dopamine for biological imaging. Mater. Sci. Eng., C 77, 972–977 (2017)

    Article  CAS  Google Scholar 

  24. Shi, Y., Xu, D., Liu, M., Fu, L., Wan, Q., Mao, L., Dai, Y., Wen, Y., Zhang, X., Wei, Y.: Room temperature preparation of fluorescent starch nanoparticles from starch-dopamine conjugates and their biological applications. Mater. Sci. Eng., C 82, 204–209 (2018)

    Article  CAS  Google Scholar 

  25. Jiang, R., Liu, M., Chen, T., Huang, H., Huang, Q., Tian, J., Wen, Y., Cao, Q.-Y., Zhang, X., Wei, Y.: Facile construction and biological imaging of cross-linked fluorescent organic nanoparticles with aggregation-induced emission feature through a catalyst-free azide-alkyne click reaction. Dyes Pigm. 148, 52–60 (2018)

    Article  CAS  Google Scholar 

  26. Guo, L., Xu, D., Huang, L., Liu, M., Huang, H., Tian, J., Jiang, R., Wen, Y., Zhang, X., Wei, Y.: Facile construction of luminescent supramolecular assemblies with aggregation-induced emission feature through supramolecular polymerization and their biological imaging. Mater. Sci. Eng., C 85, 233–238 (2018)

    Article  CAS  Google Scholar 

  27. Luo, W., Jiang, R., Liu, M., Wan, Q., Tian, J., Wen, Y., Cao, Q.-Y., Hui, J., Zhang, X., Wei, Y.: Synthesis of fluorescent dendrimers with aggregation-induced emission features through a one-pot multi-component reaction and their utilization for biological imaging. J. Colloid Interface Sci. 509, 327–333 (2018)

    Article  CAS  PubMed  Google Scholar 

  28. Sokolova, V., Epple, M.: Synthetic pathways to make nanoparticles fluorescent. Nanoscale 3(5), 1957–1962 (2011)

    Article  CAS  PubMed  Google Scholar 

  29. Qin, A., Lam, J.W., Tang, B.Z.: Luminogenic polymers with aggregation-induced emission characteristics. Prog. Polym. Sci. 37(1), 182–209 (2012)

    Article  CAS  Google Scholar 

  30. Cai, Z., Ye, Z., Yang, X., Chang, Y., Wang, H., Liu, Y., Cao, A.: Encapsulated enhanced green fluorescence protein in silica nanoparticle for cellular imaging. Nanoscale 3(5), 1974–1976 (2011)

    Article  CAS  PubMed  Google Scholar 

  31. Díez, I., Ras, R.H.: Fluorescent silver nanoclusters. Nanoscale 3(5), 1963–1970 (2011)

    Article  PubMed  Google Scholar 

  32. Boisselier, E., Astruc, D.: Gold nanoparticles in nanomedicine: preparations, imaging, diagnostics, therapies and toxicity. Chem. Soc. Rev. 38(6), 1759–1782 (2009)

    Article  CAS  PubMed  Google Scholar 

  33. Michalet, X., Pinaud, F., Bentolila, L., Tsay, J., Doose, S., Li, J., Sundaresan, G., Wu, A., Gambhir, S., Weiss, S.: Quantum dots for live cells, in vivo imaging, and diagnostics. Science 307(5709), 538–544 (2005)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Choi, H.S., Liu, W., Misra, P., Tanaka, E., Zimmer, J.P., Ipe, B.I., Bawendi, M.G., Frangioni, J.V.: Renal clearance of quantum dots. Nat. Biotechnol. 25(10), 1165–1170 (2007)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Liu, W., Choi, H.S., Zimmer, J.P., Tanaka, E., Frangioni, J.V., Bawendi, M.: Compact cysteine-coated CdSe (ZnCdS) quantum dots for in vivo applications. J. Am. Chem. Soc. 129(47), 14530–14531 (2007)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Zhou, C., Long, M., Qin, Y., Sun, X., Zheng, J.: Luminescent gold nanoparticles with efficient renal clearance. Angew. Chem. 123(14), 3226–3230 (2011)

    Article  Google Scholar 

  37. Zhou, C., Hao, G., Thomas, P., Liu, J., Yu, M., Sun, S., Öz, O.K., Sun, X., Zheng, J.: Near-infrared emitting radioactive gold nanoparticles with molecular pharmacokinetics. Angew. Chem. 124(40), 10265–10269 (2012)

    Article  Google Scholar 

  38. Faucon, A., Benhelli-Mokrani, H., Córdova, L.A., Brulin, B., Heymann, D., Hulin, P., Nedellec, S., Ishow, E.: Are fluorescent organic nanoparticles relevant tools for tracking cancer cells or macrophages? Adv. Healthc. Mater. 4(17), 2727–2734 (2015)

    Article  CAS  PubMed  Google Scholar 

  39. Ye, F., Wu, C., Jin, Y., Chan, Y.-H., Zhang, X., Chiu, D.T.: Ratiometric temperature sensing with semiconducting polymer dots. J. Am. Chem. Soc. 133(21), 8146–8149 (2011)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Wu, C., Schneider, T., Zeigler, M., Yu, J., Schiro, P.G., Burnham, D.R., McNeill, J.D., Chiu, D.T.: Bioconjugation of ultrabright semiconducting polymer dots for specific cellular targeting. J. Am. Chem. Soc. 132(43), 15410–15417 (2010)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Chan, Y.-H., Jin, Y., Wu, C., Chiu, D.T.: Copper (II) and iron (II) ion sensing with semiconducting polymer dots. Chem. Commun. 47(10), 2820–2822 (2011)

    Article  CAS  Google Scholar 

  42. Xie, R., Xiao, D., Fu, H., Ji, X., Yang, W., Yao, J.: Effect of PVA on the growth and the optical properties of perylene nanocrystals. New J. Chem. 25(11), 1362–1364 (2001)

    Article  CAS  Google Scholar 

  43. Wang, M., Zhang, G., Zhang, D., Zhu, D., Tang, B.Z.: Fluorescent bio/chemosensors based on silole and tetraphenylethene luminogens with aggregation-induced emission feature. J. Mater. Chem. 20(10), 1858–1867 (2010)

    Article  CAS  Google Scholar 

  44. Zhao, Z., Chen, S., Shen, X., Mahtab, F., Yu, Y., Lu, P., Lam, J.W., Kwok, H.S., Tang, B.Z.: Aggregation-induced emission, self-assembly, and electroluminescence of 4, 4′-bis (1, 2, 2-triphenylvinyl) biphenyl. Chem. Commun. 46(5), 686–688 (2010)

    Article  CAS  Google Scholar 

  45. Zhang, X., Zhang, X., Yang, B., Yang, Y., Chen, Q., Wei, Y.: Biocompatible fluorescent organic nanoparticles derived from glucose and polyethylenimine. Colloids Surf., B 123, 747–752 (2014)

    Article  CAS  Google Scholar 

  46. Long, Z., Liu, M., Jiang, R., Wan, Q., Mao, L., Wan, Y., Deng, F., Zhang, X., Wei, Y.: Preparation of water soluble and biocompatible AIE-active fluorescent organic nanoparticles via multicomponent reaction and their biological imaging capability. Chem. Eng. J. 308, 527–534 (2017)

    Article  CAS  Google Scholar 

  47. Parthasarathy, V., Fery-Forgues, S., Campioli, E., Recher, G., Terenziani, F., Blanchard-Desce, M.: Dipolar versus octupolar triphenylamine-based fluorescent organic nanoparticles as brilliant one-and two-photon emitters for (bio) imaging. Small 7(22), 3219–3229 (2011)

    Article  CAS  PubMed  Google Scholar 

  48. Ishow, E., Brosseau, A., Clavier, G., Nakatani, K., Tauc, P., Fiorini-Debuisschert, C., Neveu, S., Sandre, O., Léaustic, A.: Multicolor emission of small molecule-based amorphous thin films and nanoparticles with a single excitation wavelength. Chem. Mater. 20(21), 6597–6599 (2008)

    Article  CAS  Google Scholar 

  49. Amro, K., Daniel, J., Clermont, G., Bsaibess, T., Pucheault, M., Genin, E., Vaultier, M., Blanchard-Desce, M.: A new route towards fluorescent organic nanoparticles with red-shifted emission and increased colloidal stability. Tetrahedron 70(10), 1903–1909 (2014)

    Article  CAS  Google Scholar 

  50. Luo, J., Xie, Z., Lam, J.W., Cheng, L., Chen, H., Qiu, C., Kwok, H.S., Zhan, X., Liu, Y., Zhu, D.: Aggregation-induced emission of 1-methyl-1, 2, 3, 4, 5-pentaphenylsilole. Chem. Commun. 18, 1740–1741 (2001)

    Article  Google Scholar 

  51. Zhang, X., Chi, Z., Li, H., Xu, B., Li, X., Zhou, W., Liu, S., Zhang, Y., Xu, J.: Piezofluorochromism of an aggregation‐induced emission compound derived from tetraphenylethylene. Chem. Asian J. 6(3), 808–811 (2011)

    Article  CAS  PubMed  Google Scholar 

  52. Zhang, X., Chi, Z., Li, H., Xu, B., Li, X., Liu, S., Zhang, Y., Xu, J.: Synthesis and properties of novel aggregation-induced emission compounds with combined tetraphenylethylene and dicarbazolyl triphenylethylene moieties. J. Mater. Chem. 21(6), 1788–1796 (2011)

    Article  CAS  Google Scholar 

  53. Zhang, X., Chi, Z., Zhang, Y., Liu, S., Xu, J.: Recent advances in mechanochromic luminescent metal complexes. J. Mater. Chem. C 1(21), 3376–3390 (2013)

    Article  CAS  Google Scholar 

  54. Yu, Y., Feng, C., Hong, Y., Liu, J., Chen, S., Ng, K.M., Luo, K.Q., Tang, B.Z.: Cytophilic fluorescent bioprobes for long-term cell tracking. Adv. Mater. 23(29), 3298–3302 (2011)

    Article  CAS  PubMed  Google Scholar 

  55. Li, Z., Dong, Y.Q., Lam, J.W., Sun, J., Qin, A., Häußler, M., Dong, Y.P., Sung, H.H., Williams, I.D., Kwok, H.S.: Functionalized siloles: versatile synthesis, aggregation-induced emission, and sensory and device applications. Adv. Funct. Mater. 19(6), 905–917 (2009)

    Article  CAS  Google Scholar 

  56. An, B.-K., Kwon, S.-K., Jung, S.-D., Park, S.Y.: Enhanced emission and its switching in fluorescent organic nanoparticles. J. Am. Chem. Soc. 124(48), 14410–14415 (2002)

    Article  CAS  PubMed  Google Scholar 

  57. Zhang, X., Yang, Z., Chi, Z., Chen, M., Xu, B., Wang, C., Liu, S., Zhang, Y., Xu, J.: A multi-sensing fluorescent compound derived from cyanoacrylic acid. J. Mater. Chem. 20(2), 292–298 (2010)

    Article  CAS  Google Scholar 

  58. Chen, C., Liao, J.-Y., Chi, Z., Xu, B., Zhang, X., Kuang, D.-B., Zhang, Y., Liu, S., Xu, J.: Effect of polyphenyl-substituted ethylene end-capped groups in metal-free organic dyes on performance of dye-sensitized solar cells. RSC Adv. 2(20), 7788–7797 (2012)

    Article  CAS  Google Scholar 

  59. Zhang, X., Chi, Z., Zhou, X., Liu, S., Zhang, Y., Xu, J.: Influence of carbazolyl groups on properties of piezofluorochromic aggregation-enhanced emission compounds containing distyrylanthracene. J. Phys. Chem. C 116(44), 23629–23638 (2012)

    Article  CAS  Google Scholar 

  60. Zhang, X., Chi, Z., Xu, B., Jiang, L., Zhou, X., Zhang, Y., Liu, S., Xu, J.: Multifunctional organic fluorescent materials derived from 9, 10-distyrylanthracene with alkoxyl endgroups of various lengths. Chem. Commun. 48(88), 10895–10897 (2012)

    Article  CAS  Google Scholar 

  61. Bhirde, A., Xie, J., Swierczewska, M., Chen, X.: Nanoparticles for cell labeling. Nanoscale 3(1), 142–153 (2011)

    Article  CAS  PubMed  Google Scholar 

  62. Chi, Z., Zhang, X., Xu, B., Zhou, X., Ma, C., Zhang, Y., Liu, S., Xu, J.: Recent advances in organic mechanofluorochromic materials. Chem. Soc. Rev. 41(10), 3878–3896 (2012)

    Article  CAS  PubMed  Google Scholar 

  63. Zhang, X., Chi, Z., Xu, B., Chen, C., Zhou, X., Zhang, Y., Liu, S., Xu, J.: End-group effects of piezofluorochromic aggregation-induced enhanced emission compounds containing distyrylanthracene. J. Mater. Chem. 22(35), 18505–18513 (2012)

    Article  CAS  Google Scholar 

  64. Chen, C., Liao, J.-Y., Chi, Z., Xu, B., Zhang, X., Kuang, D.-B., Zhang, Y., Liu, S., Xu, J.: Metal-free organic dyes derived from triphenylethylene for dye-sensitized solar cells: tuning of the performance by phenothiazine and carbazole. J. Mater. Chem. 22(18), 8994–9005 (2012)

    Article  CAS  Google Scholar 

  65. Zhou, X., Li, H., Chi, Z., Zhang, X., Zhang, J., Xu, B., Zhang, Y., Liu, S., Xu, J.: Piezofluorochromism and morphology of a new aggregation-induced emission compound derived from tetraphenylethylene and carbazole. New J. Chem. 36(3), 685–693 (2012)

    Article  CAS  Google Scholar 

  66. Zhang, X., Liu, M., Yang, B., Zhang, X., Wei, Y.: Tetraphenylethene-based aggregation-induced emission fluorescent organic nanoparticles: facile preparation and cell imaging application. Colloids Surf., B 112, 81–86 (2013)

    Article  CAS  Google Scholar 

  67. Zhang, X., Zhang, X., Yang, B., Zhang, Y., Liu, M., Liu, W., Chen, Y., Wei, Y.: Fabrication of water-dispersible and biocompatible red fluorescent organic nanoparticles via PEGylation of aggregate induced emission enhancement dye and their cell imaging applications. Colloids Surf., B 113, 435–441 (2014)

    Article  CAS  Google Scholar 

  68. Zhang, X.-Y., Yang, B.: Facile fabrication of aggregation-induced emission based red fluorescent organic nanoparticles for cell imaging. Chin. J. Polym. Sci. 32(7), 871–879 (2014)

    Article  CAS  Google Scholar 

  69. Zhang, X., Zhang, X., Yang, B., Hui, J., Liu, M., Wei, Y.: Facile fabrication of AIE-based stable cross-linked fluorescent organic nanoparticles for cell imaging. Colloids Surf., B 116, 739–744 (2014)

    Article  CAS  Google Scholar 

  70. Zhang, X., Zhang, X., Yang, B., Liu, L., Deng, F., Hui, J., Liu, M., Chen, Y., Wei, Y.: Glycosylated aggregation induced emission dye based fluorescent organic nanoparticles: preparation and bioimaging applications. RSC Adv. 4(46), 24189–24193 (2014)

    Article  CAS  Google Scholar 

  71. Zhang, X., Zhang, X., Yang, B., Hui, J., Liu, M., Liu, W., Chen, Y., Wei, Y.: PEGylation and cell imaging applications of AIE based fluorescent organic nanoparticles via ring-opening reaction. Polym. Chem. 5(3), 689–693 (2014)

    Article  Google Scholar 

  72. Liu, M., Zhang, X., Yang, B., Liu, L., Deng, F., Zhang, X., Wei, Y.: Polylysine crosslinked AIE dye based fluorescent organic nanoparticles for biological imaging applications. Macromol. Biosci. 14(9), 1260–1267 (2014)

    Article  CAS  PubMed  Google Scholar 

  73. Liu, M., Zhang, X., Yang, B., Deng, F., Yang, Y., Li, Z., Zhang, X., Wei, Y.: Preparation and bioimaging applications of AIE dye cross-linked luminescent polymeric nanoparticles. Macromol. Biosci. 14(12), 1712–1718 (2014)

    Article  CAS  PubMed  Google Scholar 

  74. Xu, D., Zou, H., Liu, M., Tian, J., Huang, H., Wan, Q., Dai, Y., Wen, Y., Zhang, X., Wei, Y.: Synthesis and bioimaging of biodegradable red fluorescent organic nanoparticles with aggregation-induced emission characteristics. J. Colloid Interface Sci. 508, 248–253 (2017)

    Article  CAS  PubMed  Google Scholar 

  75. Zhang, W., Ren, Y.-Y., Zhang, L.-N., Fan, X., Fan, H., Wu, Y., Zhang, Y., Kuang, G.-C.: Borondifluoride β-diketonate complex as fluorescent organic nanoparticles: aggregation-induced emission for cellular imaging. RSC Adv. 6(104), 101937–101940 (2016)

    Article  CAS  Google Scholar 

  76. Zi, L., Meiying, L., Qing, W., Liucheng, M., Hongye, H., Guangjian, Z., Yiqun, W., Fengjie, D., Xiaoyong, Z., Yen, W.: Facile fabrication of PEGylated fluorescent organic nanoparticles with aggregation-induced emission feature via formation of dynamic bonds and their biological imaging applications. Macromol. Rapid Commun. 37(20), 1657–1661 (2016)

    Article  CAS  Google Scholar 

  77. Wei, D., Xue, Y., Huang, H., Liu, M., Zeng, G., Wan, Q., Liu, L., Yu, J., Zhang, X., Wei, Y.: Fabrication, self-assembly and biomedical applications of luminescent sodium hyaluronate with aggregation-induced emission feature. Mater. Sci. Eng., C 81, 120–126 (2017)

    Article  CAS  Google Scholar 

  78. Xu, D., Liu, M., Zou, H., Huang, Q., Huang, H., Tian, J., Jiang, R., Wen, Y., Zhang, X., Wei, Y.: Fabrication of AIE-active fluorescent organic nanoparticles through one-pot supramolecular polymerization and their biological imaging. J. Taiwan Inst. Chem. Eng. 78, 455–461 (2017)

    Article  CAS  Google Scholar 

  79. Xu, D., Liu, M., Zou, H., Tian, J., Huang, H., Wan, Q., Dai, Y., Wen, Y., Zhang, X., Wei, Y.: A new strategy for fabrication of water dispersible and biodegradable fluorescent organic nanoparticles with AIE and ESIPT characteristics and their utilization for bioimaging. Talanta 174, 803–808 (2017)

    Article  CAS  PubMed  Google Scholar 

  80. Jiang, R., Liu, M., Huang, H., Huang, L., Huang, Q., Wen, Y., Cao, Q.-Y., Tian, J., Zhang, X., Wei, Y.: Microwave-assisted multicomponent tandem polymerization for rapid preparation of biodegradable fluorescent organic nanoparticles with aggregation-induced emission feature and their biological imaging applications. Dyes Pigm. 149, 581–587 (2018)

    Article  CAS  Google Scholar 

  81. Tang, F., Wang, C., Wang, J., Wang, X., Li, L.: Fluorescent organic nanoparticles with enhanced fluorescence by self-aggregation and their application to cellular imaging. ACS Appl. Mater. Interfaces 6(20), 18337–18343 (2014)

    Article  CAS  PubMed  Google Scholar 

  82. Wang, Z., Yong, T.-Y., Wan, J., Li, Z.-H., Zhao, H., Zhao, Y., Gan, L., Yang, X.-L., Xu, H.-B., Zhang, C.: Temperature-sensitive fluorescent organic nanoparticles with aggregation-induced emission for long-term cellular tracing. ACS Appl. Mater. Interfaces 7(5), 3420–3425 (2015)

    Article  CAS  PubMed  Google Scholar 

  83. Zhang, X., Zhang, X., Yang, B., Zhang, Y., Wei, Y.: A new class of red fluorescent organic nanoparticles: noncovalent fabrication and cell imaging applications. ACS Appl. Mater. Interfaces 6(5), 3600–3606 (2014)

    Article  CAS  PubMed  Google Scholar 

  84. Zhang, X., Zhang, X., Yang, B., Zhang, Y., Wei, Y.: Facile preparation of water dispersible red fluorescent organic nanoparticles and their cell imaging applications. Tetrahedron 70(22), 3553–3559 (2014)

    Article  CAS  Google Scholar 

  85. Liu, M., Zhang, X., Yang, B., Deng, F., Ji, J., Yang, Y., Huang, Z., Zhang, X., Wei, Y.: Luminescence tunable fluorescent organic nanoparticles from polyethyleneimine and maltose: facile preparation and bioimaging applications. RSC Adv. 4(43), 22294–22298 (2014)

    Article  CAS  Google Scholar 

  86. Liu, M., Zhang, X., Yang, B., Li, Z., Deng, F., Yang, Y., Zhang, X., Wei, Y.: Fluorescent nanoparticles from starch: facile preparation, tunable luminescence and bioimaging. Carbohydr. Polym. 121, 49–55 (2015)

    Article  CAS  PubMed  Google Scholar 

  87. Trofymchuk, K., Reisch, A., Shulov, I., Mély, Y., Klymchenko, A.S.: Tuning the color and photostability of perylene diimides inside polymer nanoparticles: towards biodegradable substitutes of quantum dots. Nanoscale 6(21), 12934–12942 (2014)

    Article  CAS  PubMed  Google Scholar 

  88. Gao, Y., Feng, G., Jiang, T., Goh, C., Ng, L., Liu, B., Li, B., Yang, L., Hua, J., Tian, H.: Biocompatible nanoparticles based on diketo-pyrrolo-pyrrole (DPP) with aggregation-induced red/NIR emission for in vivo two-photon fluorescence imaging. Adv. Funct. Mater. 25(19), 2857–2866 (2015)

    Article  CAS  Google Scholar 

  89. Yang, Z., Lee, J.H., Jeon, H.M., Han, J.H., Park, N., He, Y., Lee, H., Hong, K.S., Kang, C., Kim, J.S.: Folate-based near-infrared fluorescent theranostic gemcitabine delivery. J. Am. Chem. Soc. 135(31), 11657–11662 (2013)

    Article  CAS  PubMed  Google Scholar 

  90. Wang, R., Zhang, F.: NIR luminescent nanomaterials for biomedical imaging. J. Mater. Chem. B 2(17), 2422–2443 (2014)

    Article  CAS  PubMed  Google Scholar 

  91. Guo, Z., Park, S., Yoon, J., Shin, I.: Recent progress in the development of near-infrared fluorescent probes for bioimaging applications. Chem. Soc. Rev. 43(1), 16–29 (2014)

    Article  PubMed  Google Scholar 

  92. Zhang, J., Chen, R., Zhu, Z., Adachi, C., Zhang, X., Lee, C.-S.: Highly stable near-infrared fluorescent organic nanoparticles with a large stokes shift for noninvasive long-term cellular imaging. ACS Appl. Mater. Interfaces 7(47), 26266–26274 (2015)

    Article  CAS  PubMed  Google Scholar 

  93. Iqbal, P.F., Malik, M.A., Wani, W.A.: Serendipity of Cisplatin, and the Emergence of Metallodrugs in Cancer Chemotherapy (2018)

    Google Scholar 

  94. Ali, I., Wani, W.A., Saleem, K.: Cancer scenario in India with future perspectives. Cancer Therapy 8 (2011)

    Google Scholar 

  95. Ali, I., Wani, W.A., Haque, A., Saleem, K.: Glutamic acid and its derivatives: candidates for rational design of anticancer drugs. Future Med. Chem. 5(8), 961–978 (2013)

    Article  CAS  PubMed  Google Scholar 

  96. Faucon, A., Benhelli-Mokrani, H., Fleury, F., Dutertre, S., Tramier, M., Boucard, J., Lartigue, L., Nedellec, S., Hulin, P., Ishow, E.: Bioconjugated fluorescent organic nanoparticles targeting EGFR-overexpressing cancer cells. Nanoscale 9(45), 18094–18106 (2017)

    Article  CAS  PubMed  Google Scholar 

  97. Xia, Q., Chen, Z., Yu, Z., Wang, L., Qu, J., Liu, R.: Aggregation-induced emission-active near-infrared fluorescent organic nanoparticles for noninvasive long-term monitoring of tumor growth. ACS Appl. Mater. Interfaces 10(20), 17081–17088 (2018)

    Article  CAS  PubMed  Google Scholar 

  98. Prodi, L.: Luminescent chemosensors: from molecules to nanoparticles. New J. Chem. 29(1), 20–31 (2005)

    Article  CAS  Google Scholar 

  99. McDonagh, C., Burke, C.S., MacCraith, B.D.: Optical chemical sensors. Chem. Rev. 108(2), 400–422 (2008)

    Article  CAS  PubMed  Google Scholar 

  100. Wang, H., He, F., Yan, R., Wang, X., Zhu, X., Li, L.: Citrate-induced aggregation of conjugated polyelectrolytes for Al3+-ion-sensing assays. ACS Appl. Mater. Interfaces 5(16), 8254–8259 (2013)

    Article  CAS  PubMed  Google Scholar 

  101. Xu, X., Liu, R., Li, L.: Nanoparticles made of π-conjugated compounds targeted for chemical and biological applications. Chem. Commun. 51(94), 16733–16749 (2015)

    Article  CAS  Google Scholar 

  102. Ren, C., Zhang, J., Chen, M., Yang, Z.: Self-assembling small molecules for the detection of important analytes. Chem. Soc. Rev. 43(21), 7257–7266 (2014)

    Article  CAS  PubMed  Google Scholar 

  103. Wang, F., Wang, L., Chen, X., Yoon, J.: Recent progress in the development of fluorometric and colorimetric chemosensors for detection of cyanide ions. Chem. Soc. Rev. 43(13), 4312–4324 (2014)

    Article  CAS  PubMed  Google Scholar 

  104. Zhu, C., Liu, L., Yang, Q., Lv, F., Wang, S.: Water-soluble conjugated polymers for imaging, diagnosis, and therapy. Chem. Rev. 112(8), 4687–4735 (2012)

    Article  CAS  PubMed  Google Scholar 

  105. Feng, L., Zhu, C., Yuan, H., Liu, L., Lv, F., Wang, S.: Conjugated polymer nanoparticles: preparation, properties, functionalization and biological applications. Chem. Soc. Rev. 42(16), 6620–6633 (2013)

    Article  CAS  PubMed  Google Scholar 

  106. Wu, M., Xu, X., Wang, J., Li, L.: Fluorescence resonance energy transfer in a binary organic nanoparticle system and its application. ACS Appl. Mater. Interfaces 7(15), 8243–8250 (2015)

    Article  CAS  PubMed  Google Scholar 

  107. Xu, X., Chen, S., Li, L., Yu, G., Liu, Y.: Photophysical properties of polyphenylphenyl compounds in aqueous solutions and application of their nanoparticles for nucleobase sensing. J. Mater. Chem. 18(22), 2555–2561 (2008)

    Article  CAS  Google Scholar 

  108. Zhou, J., Yang, Y., Zhang, C.-Y.: Toward biocompatible semiconductor quantum dots: from biosynthesis and bioconjugation to biomedical application. Chem. Rev. 115(21), 11669–11717 (2015)

    Article  CAS  PubMed  Google Scholar 

  109. Venkatesh, V., Shukla, A., Sivakumar, S., Verma, S.: Purine-stabilized green fluorescent gold nanoclusters for cell nuclei imaging applications. ACS Appl. Mater. Interfaces 6(3), 2185–2191 (2014)

    Article  CAS  PubMed  Google Scholar 

  110. Tsang, M.-K., Bai, G., Hao, J.: Stimuli responsive upconversion luminescence nanomaterials and films for various applications. Chem. Soc. Rev. 44(6), 1585–1607 (2015)

    Article  CAS  PubMed  Google Scholar 

  111. Treatment, L.W.: Water Treatment Published by Lenntech. Rotterdamseweg, Netherlands (2004)

    Google Scholar 

  112. Hawkes, S.J.: What is a “ heavy metal”? J. Chem. Educ. 74(11), 1374 (1997)

    Article  CAS  Google Scholar 

  113. Duruibe, J., Ogwuegbu, M., Egwurugwu, J.: Heavy metal pollution and human biotoxic effects. Int. J. Phys. Sci. 2(5), 112–118 (2007)

    Google Scholar 

  114. Crapper, D., Krishnan, S., Dalton, A.: Brain aluminum distribution in Alzheimer’s disease and experimental neurofibrillary degeneration. Science 180(4085), 511–513 (1973)

    Article  CAS  PubMed  Google Scholar 

  115. Nayak, P.: Aluminum: impacts and disease. Environ. Res. 89(2), 101–115 (2002)

    Article  CAS  PubMed  Google Scholar 

  116. Walton, J.: An aluminum-based rat model for Alzheimer’s disease exhibits oxidative damage, inhibition of PP2A activity, hyperphosphorylated tau, and granulovacuolar degeneration. J. Inorg. Biochem. 101(9), 1275–1284 (2007)

    Article  CAS  PubMed  Google Scholar 

  117. Zhao, Y., Lin, Z., Liao, H., Duan, C., Meng, Q.: A highly selective fluorescent chemosensor for Al3+ derivated from 8-hydroxyquinoline. Inorg. Chem. Commun. 9(9), 966–968 (2006)

    Article  CAS  Google Scholar 

  118. McRae, R., Bagchi, P., Sumalekshmy, S., Fahrni, C.J.: In situ imaging of metals in cells and tissues. Chem. Rev. 109(10), 4780–4827 (2009)

    Article  CAS  PubMed  Google Scholar 

  119. Jiang, Y., Sun, L.L., Ren, G.Z., Niu, X., Wz, Hu, Hu, Z.Q.: A new fluorescence turn-on probe for Aluminum (III) with high selectivity and sensitivity, and its application to bioimaging. ChemistryOpen 4(3), 378–382 (2015)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  120. Huerta-Aguilar, C.A., Raj, P., Thangarasu, P., Singh, N.: Fluorescent organic nanoparticles (FONs) for selective recognition of Al3+: application to bio-imaging for bacterial sample. RSC Adv. 6(44), 37944–37952 (2016)

    Article  CAS  Google Scholar 

  121. Kaur, A., Raj, T., Kaur, S., Kaur, N.: Nano molar detection of Al3+ in aqueous medium and acidic soil using chromone based fluorescent organic nanoparticles (FONPs). Anal. Methods 6(21), 8752–8759 (2014)

    Article  CAS  Google Scholar 

  122. Clifton, J.C.: Mercury exposure and public health. Pediatr. Clin. North America 54(2), 237, e1-237, e45 (2007)

    Google Scholar 

  123. Bjørklund, G.: Mercury and acrodynia. J. Orthomol. Med. 10(3), 145–146 (1995)

    Google Scholar 

  124. Tokuomi, H., Kinoshita, Y., Teramoto, J., Imanishi, K.: Hunter-Russell syndrome. Nihon rinsho. Jpn. J. Clin. Med. 35, 518–519 (1976)

    Google Scholar 

  125. Davidson, P.W., Myers, G.J., Weiss, B.: Mercury exposure and child development outcomes. Pediatrics 113(Supplement 3), 1023–1029 (2004)

    PubMed  Google Scholar 

  126. James, W.D., Berger, T., Elston, D.: Andrews’ Diseases of the Skin: Clinical Dermatology. Elsevier Health Sciences (2015)

    Google Scholar 

  127. Sharma, H., Bhardwaj, V.K., Singh, N.: Nanomolar detection of AgI ions in aqueous medium by using naphthalimide-based imine-linked fluorescent organic nanoparticles-application in environmental samples. Eur. J. Inorg. Chem. 2014(31), 5424–5431 (2014)

    Article  CAS  Google Scholar 

  128. Delacroix, D., Guerre, J., Leblanc, P., Hickman, C., Penney, B.C.: Radionuclide and radiation protection data handbook. Med. Phys. 30(2), 277 (2003)

    Article  Google Scholar 

  129. Chopra, S., Singh, N., Thangarasu, P., Bhardwaj, V.K., Kaur, N.: Fluorescent organic nanoparticles as chemosensor for nanomolar detection of Cs+ in aqueous medium. Dyes Pigm. 106, 45–50 (2014)

    Article  CAS  Google Scholar 

  130. Ortega, R., Fayard, B., Salomé, M., Devès, G., Susini, J.: Chromium oxidation state imaging in mammalian cells exposed in vitro to soluble or particulate chromate compounds. Chem. Res. Toxicol. 18(10), 1512–1519 (2005)

    Article  CAS  PubMed  Google Scholar 

  131. Eastmond, D.A., MacGregor, J.T., Slesinski, R.S.: Trivalent chromium: assessing the genotoxic risk of an essential trace element and widely used human and animal nutritional supplement. Crit. Rev. Toxicol. 38(3), 173–190 (2008)

    Article  CAS  PubMed  Google Scholar 

  132. Basketter, D., Horev, L., Slodovnik, D., Merimes, S., Trattner, A., Ingber, A.: Investigation of the threshold for allergic reactivity to chromium. Contact Dermatitis 44(2), 70–74 (2001)

    Article  CAS  PubMed  Google Scholar 

  133. Basketter, D., Briatico-Vangosa, G., Kaestner, W., Lally, C., Bontinck, W.: Nickel, cobalt and chromium in consumer products: a role in allergic contact dermatitis? Contact Dermatitis 28(1), 15–25 (1993)

    Article  CAS  PubMed  Google Scholar 

  134. Kaur, N., Kaur, S., Mehan, R., Aguilar, C.A.H., Thangarasu, P., Singh, N.: Fluorescent organic nanoparticles (FONs) of imine-linked peptide for the detection of Cr3+ in aqueous medium. Sens. Actuators B: Chem. 206, 90–97 (2015)

    Article  CAS  Google Scholar 

  135. Yang, Y., Wang, X., Cui, Q., Cao, Q., Li, L.: Self-assembly of fluorescent organic nanoparticles for Iron (III) sensing and cellular imaging. ACS Appl. Mater. Interfaces 8(11), 7440–7448 (2016)

    Article  CAS  PubMed  Google Scholar 

  136. Azadbakht, R., Hakimi, M., Khanabadi, J.: Fluorescent organic nanoparticles with enhanced fluorescence by self-aggregation and their application for detection of Fe3+ ions. New J. Chem. 42(8), 5929–5936 (2018)

    Article  CAS  Google Scholar 

  137. Donaldson, J.D., Beyersmann, D.: Cobalt and cobalt compounds. In Ullmann's Encyclopedia of Industrial Chemistry, (Ed.) (2005). doi:https://doi.org/10.1002/14356007.a07_281.pub2

  138. Morin, Y., Tětu, A., Mercier, G.: Québec beer-drinkers’ cardiomyopathy: clinical and hemodynamic aspects. Ann. N. Y. Acad. Sci. 156(1), 566–576 (1969)

    Article  CAS  PubMed  Google Scholar 

  139. Barceloux, D.G., Barceloux, D.: Cobalt. J. Toxicol. Clin. Toxicol. 37(2), 201–216 (1999)

    Article  CAS  PubMed  Google Scholar 

  140. Basketter, D.A., Angelini, G., Ingber, A., Kern, P.S., Menné, T.: Nickel, chromium and cobalt in consumer products: revisiting safe levels in the new millennium. Contact Dermatitis 49(1), 1–7 (2003)

    Article  CAS  PubMed  Google Scholar 

  141. Mahajan, P.G., Dige, N.C., Desai, N.K., Patil, S.R., Kondalkar, V.V., Hong, S.-K., Lee, K.H.: Selective detection of Co2+ by fluorescent nano probe: diagnostic approach for analysis of environmental samples and biological activities. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 198, 136–144 (2018)

    Article  CAS  Google Scholar 

  142. Kaur, G., Singh, A., Venugopalan, P., Kaur, N., Singh, N.: Selective recognition of lithium (i) ions using Biginelli based fluorescent organic nanoparticles in an aqueous medium. RSC Adv. 6(3), 1792–1799 (2016)

    Article  CAS  Google Scholar 

  143. Fosmire, G.J.: Zinc toxicity. Am. J. Clin. Nutr. 51(2), 225–227 (1990)

    Article  CAS  PubMed  Google Scholar 

  144. Mallevialle, J., Bruchet, A., Fiessinger, F.: How safe are organic polymers in water treatment? J. Am. Water Works Assoc. 87–93 (1984)

    Article  CAS  Google Scholar 

  145. Li, S., Zhou, Y., Yu, C., Chen, F., Xu, J.: Switching the ligand-exchange reactivities of chloro-bridged cyclopalladated azobenzenes for the colorimetric sensing of thiocyanate. New J. Chem. 33(7), 1462–1465 (2009)

    Article  CAS  Google Scholar 

  146. Bhardwaj, S., Maurya, N., Singh, A.K.: Chromone based fluorescent organic nanoparticles for high-precision in-situ sensing of Cu2+ and CN ions in 100% aqueous solutions. Sens. Actuators B: Chem. 260, 753–762 (2018)

    Article  CAS  Google Scholar 

  147. Baldessarini, R.J., Tondo, L., Davis, P., Pompili, M., Goodwin, F.K., Hennen, J.: Decreased risk of suicides and attempts during long-term lithium treatment: a meta-analytic review. Bipolar Disord. 8(5), 625–639 (2006)

    Article  CAS  PubMed  Google Scholar 

  148. Pettilä, V., Takkunen, O., Tukiainen, P.: Zinc chloride smoke inhalation: a rare cause of severe acute respiratory distress syndrome. Intensive Care Med. 26(2), 215–217 (2000)

    Article  PubMed  Google Scholar 

  149. Huerta-Aguilar, C.A., Pandiyan, T., Raj, P., Singh, N., Zanella, R.: Fluorescent organic nanoparticles (FONs) for the selective recognition of Zn2+: applications to multi-vitamin formulations in aqueous medium. Sens. Actuators B: Chem. 223, 59–67 (2016)

    Article  CAS  Google Scholar 

  150. Letterman, R.D., Pero, R.W.: Contaminants in polyelectrolytes used in water treatment. J. Am. Water Works Assoc. 87–97 (1990)

    Article  CAS  Google Scholar 

  151. Lakshminarayanan, P., Suresh, E., Ghosh, P.: Synthesis and characterization of a tripodal amide ligand and its binding with anions of different dimensionality. Inorg. Chem. 45(11), 4372–4380 (2006)

    Article  CAS  PubMed  Google Scholar 

  152. Xue, W., Li, L., Li, Q., Wu, A.: Novel furo [2, 3-d] pyrimidine derivative as fluorescent chemosensor for HSO4−. Talanta 88, 734–738 (2012)

    Article  CAS  PubMed  Google Scholar 

  153. Spence, G.T., Chan, C., Szemes, F., Beer, P.D.: Anion binding induced conformational changes exploited for recognition, sensing and pseudorotaxane disassembly. Dalton Trans. 41(43), 13474–13485 (2012)

    Article  CAS  PubMed  Google Scholar 

  154. Kato, R., Kawai, A., Hattori, T.: Optical detection of anions using N-(4-(4-nitrophenylazo) phenyl)-N′-propyl thiourea bound silica film. New J. Chem. 37(3), 717–721 (2013)

    Article  CAS  Google Scholar 

  155. Luo, Y.-H., Ge, S.-W., Song, W.-T., Sun, B.-W.: Supramolecular assembly and host–guest interaction of crown ether with inorganic acid and organic amine containing carboxyl groups. New J. Chem. 38(2), 723–729 (2014)

    Article  CAS  Google Scholar 

  156. Santos-Figueroa, L.E., Moragues, M.E., Climent, E., Agostini, A., Martínez-Máñez, R., Sancenón, F.: Chromogenic and fluorogenic chemosensors and reagents for anions. A comprehensive review of the years 2010–2011. Chem. Soc. Rev. 42(8), 3489–3613 (2013)

    Article  CAS  PubMed  Google Scholar 

  157. Lee, G.W., Singh, N., Jung, H.J., Jang, D.O.: Selective anion recognition by retarding the cooperative polarization effect of amide linkages. Tetrahedron Lett. 50(7), 807–810 (2009)

    Article  CAS  Google Scholar 

  158. Kumar, M.S., Kumar, S.L.A., Sreekanth, A.: Highly selective fluorogenic anion chemosensors: naked-eye detection of F and AcO ions in natural water using a test strip. Anal. Methods 5(22), 6401–6410 (2013)

    Article  CAS  Google Scholar 

  159. Lou, X., Ou, D., Li, Q., Li, Z.: An indirect approach for anion detection: the displacement strategy and its application. Chem. Commun. 48(68), 8462–8477 (2012)

    Article  CAS  Google Scholar 

  160. Kim, H.J., Bhuniya, S., Mahajan, R.K., Puri, R., Liu, H., Ko, K.C., Lee, J.Y., Kim, J.S.: Fluorescence turn-on sensors for HSO4. Chem. Commun. 46, 7128–7130 (2009)

    Article  CAS  Google Scholar 

  161. Lu, W., Zhou, J., Liu, K., Chen, D., Jiang, L., Shen, Z.: A polymeric film probe with a turn-on fluorescence response to hydrogen sulfate ions in aqueous media. J. Mater. Chem. B 1(38), 5014–5020 (2013)

    Article  CAS  PubMed  Google Scholar 

  162. Chopra, S., Singh, J., Singh, N., Kaur, N.: Fluorescent organic nanoparticles of tripodal receptor as sensors for HSO4 in aqueous medium: application to real sample analysis. Anal. Methods 6(22), 9030–9036 (2014)

    Article  CAS  Google Scholar 

  163. Ward, J.M., Ohshima, M.: The role of iodine in carcinogenesis. In: Essential Nutrients in Carcinogenesis, pp. 529–542. Springer, 1986

    Google Scholar 

  164. Kaur, A., Raj, T., Kaur, S., Singh, N., Kaur, N.: Fluorescent organic nanoparticles of dihydropyrimidone derivatives for selective recognition of iodide using a displacement assay: application of the sensors in water and biological fluids. Org. Biomol. Chem. 13(4), 1204–1212 (2015)

    Article  CAS  PubMed  Google Scholar 

  165. Chopra, S., Singh, J., Kaur, H., Singh, H., Singh, N., Kaur, N.: Selective chemosensing of spermidine based on fluorescent organic nanoparticles in aqueous media via a Fe3+ displacement assay. New J. Chem. 39(5), 3507–3512 (2015)

    Article  CAS  Google Scholar 

  166. Chopra, S., Singh, J., Kaur, H., Singh, N., Kaur, N.: Estimation of biogenic amines and biothiols by metal complex of fluorescent organic nanoparticles acting as single receptor multi-analyte sensor in aqueous medium. Sens. Actuators B: Chem. 220, 295–301 (2015)

    Article  CAS  Google Scholar 

  167. Kaur, N., Kaur, M., Chopra, S., Singh, J., Kuwar, A., Singh, N.: Fe(III) conjugated fluorescent organic nanoparticles for ratiometric detection of tyramine in aqueous medium: a novel method to determine food quality. Food Chem. 245, 1257–1261 (2018)

    Article  CAS  PubMed  Google Scholar 

  168. Bhardwaj, V.K., Sharma, H., Singh, N.: Ratiometric fluorescent probe for biothiol in aqueous medium with fluorescent organic nanoparticles. Talanta 129, 198–202 (2014)

    Article  CAS  PubMed  Google Scholar 

  169. Hu, S., Huang, Q., Lin, Y., Wei, C., Zhang, H., Zhang, W., Guo, Z., Bao, X., Shi, J., Hao, A.: Reduced graphene oxide-carbon dots composite as an enhanced material for electrochemical determination of dopamine. Electrochim. Acta 130, 805–809 (2014)

    Article  CAS  Google Scholar 

  170. Venton, B.J., Wightman, R.M.: Psychoanalytical electrochemistry: dopamine and behavior. Anal. Chem. 75(19), 414 A–421 A (2003)

    Google Scholar 

  171. Iqbal, Z., Lai, E.P.C., Avis, T.J.: Antimicrobial effect of polydopamine coating on Escherichia coli. J. Mater. Chem. 22(40), 21608–21612 (2012)

    Article  CAS  Google Scholar 

  172. Ding, L., Qin, Z., Xiang, C., Zhou, G.: Novel fluorescent organic nanoparticles as a label-free biosensor for dopamine in serum. J. Mater. Chem. B 5(15), 2750–2756 (2017)

    Article  CAS  PubMed  Google Scholar 

  173. Bieri, M., Bürgi, T.: d-Penicillamine adsorption on gold: an in situ ATR-IR spectroscopic and QCM study. Langmuir 22(20), 8379–8386 (2006)

    Article  CAS  PubMed  Google Scholar 

  174. Kean, W., Howard-Lock, H., Lock, C.: Chirality in antirheumatic drugs. The Lancet 338(8782–8783), 1565–1568 (1991)

    Article  CAS  Google Scholar 

  175. Saracino, M.A., Cannistraci, C., Bugamelli, F., Morganti, E., Neri, I., Balestri, R., Patrizi, A., Raggi, M.A.: A novel HPLC-electrochemical detection approach for the determination of d-penicillamine in skin specimens. Talanta 103, 355–360 (2013)

    Article  CAS  PubMed  Google Scholar 

  176. Mahajan, P.G., Kolekar, G.B., Patil, S.R.: Recognition of D-Penicillamine using Schiff base centered fluorescent organic nanoparticles and application to medicine analysis. J. Fluoresc. 27(3), 829–839 (2017)

    Article  CAS  PubMed  Google Scholar 

  177. Food, Drug Administration, H., Food Labeling: Revision of the nutrition and supplement facts labels. Final rule. Fed. Reg. 81(103), 33741–33999 (2016)

    Google Scholar 

  178. Mahajan, P.G., Dige, N.C., Suryawanshi, S.B., Dalavi, D.K., Kamble, A.A., Bhopate, D.P., Kadam, A.N., Kondalkar, V.V., Kolekar, G.B., Patil, S.R.: FRET Between Riboflavin and 9-Anthraldehyde based fluorescent organic nanoparticles possessing antibacterial activity. J. Fluoresc. 28(1), 207–215 (2018)

    Article  CAS  PubMed  Google Scholar 

  179. Diaz, M.H., Hauser, A.R.: Pseudomonas aeruginosa cytotoxin ExoU is injected into phagocytic cells during acute pneumonia. Infect. Immun. 78(4), 1447–1456 (2010)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  180. Fazeli, H., Akbari, R., Moghim, S., Narimani, T., Arabestani, M.R., Ghoddousi, A.R.: Pseudomonas aeruginosa infections in patients, hospital means, and personnel’s specimens. J. Res. Med. Sci. 17(4) (2012)

    Google Scholar 

  181. Seki, M., Machida, N., Yamagishi, Y., Yoshida, H., Tomono, K.: Nosocomial outbreak of multidrug-resistant Pseudomonas aeruginosa caused by damaged transesophageal echocardiogram probe used in cardiovascular surgical operations. J. Infect. Chemother. 19(4), 677–681 (2013)

    Article  PubMed  Google Scholar 

  182. Tam, V.H., Chang, K.-T., Abdelraouf, K., Brioso, C.G., Ameka, M., McCaskey, L.A., Weston, J.S., Caeiro, J.-P., Garey, K.W.: Prevalence, resistance mechanisms, and susceptibility of multidrug-resistant bloodstream isolates of Pseudomonas aeruginosa. Antimicrob. Agents Chemother. 54(3), 1160–1164 (2010)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  183. Lee, T.W., Brownlee, K.G., Denton, M., Littlewood, J.M., Conway, S.P.: Reduction in prevalence of chronic Pseudomonas aeruginosa infection at a regional pediatric cystic fibrosis center. Pediatr. Pulmonol. 37(2), 104–110 (2004)

    Article  PubMed  Google Scholar 

  184. Lyczak, J.B., Cannon, C.L., Pier, G.B.: Lung infections associated with cystic fibrosis. Clin. Microbiol. Rev. 15(2), 194–222 (2002)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  185. Lyczak, J.B., Cannon, C.L., Pier, G.B.: Establishment of Pseudomonas aeruginosa infection: lessons from a versatile opportunist. Microbes Infect. 2(9), 1051–1060 (2000)

    Article  CAS  PubMed  Google Scholar 

  186. Lister, P.D., Wolter, D.J., Hanson, N.D.: Antibacterial-resistant Pseudomonas aeruginosa: clinical impact and complex regulation of chromosomally encoded resistance mechanisms. Clin. Microbiol. Rev. 22(4), 582–610 (2009)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  187. Landman, D., Bratu, S., Kochar, S., Panwar, M., Trehan, M., Doymaz, M., Quale, J.: Evolution of antimicrobial resistance among Pseudomonas aeruginosa, Acinetobacter baumannii and Klebsiella pneumoniae in Brooklyn. N. Y. J. Antimicrob. Chemother. 60(1), 78–82 (2007)

    Article  CAS  Google Scholar 

  188. Kaur, G., Raj, T., Kaur, N., Singh, N.: Pyrimidine-based functional fluorescent organic nanoparticle probe for detection of Pseudomonas aeruginosa. Org. Biomol. Chem. 13(16), 4673–4679 (2015)

    Article  CAS  PubMed  Google Scholar 

  189. Tiwari, G., Tiwari, R., Sriwastawa, B., Bhati, L., Pandey, S., Pandey, P., Bannerjee, S.K.: Drug delivery systems: an updated review. Int. J. Pharm. Invest. 2(1), 2 (2012)

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  190. Jana, A., Nguyen, K.T., Li, X., Zhu, P., Tan, N.S., Ågren, H., Zhao, Y.: Perylene-derived single-component organic nanoparticles with tunable emission: efficient anticancer drug carriers with real-time monitoring of drug release. ACS Nano 8(6), 5939–5952 (2014)

    Article  CAS  PubMed  Google Scholar 

  191. Breton, M., Prével, G., Audibert, J.-F., Pansu, R., Tauc, P., Le Pioufle, B., Français, O., Fresnais, J., Berret, J.-F., Ishow, E.: Solvatochromic dissociation of non-covalent fluorescent organic nanoparticles upon cell internalization. Phys. Chem. Chem. Phys. 13(29), 13268–13276 (2011)

    Article  CAS  PubMed  Google Scholar 

  192. Yavuz, M.S., Cheng, Y., Chen, J., Cobley, C.M., Zhang, Q., Rycenga, M., Xie, J., Kim, C., Song, K.H., Schwartz, A.G.: Gold nanocages covered by smart polymers for controlled release with near-infrared light. Nat. Mater. 8(12), 935–939 (2009)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  193. Jana, A., Devi, K.S.P., Maiti, T.K., Singh, N.P.: Perylene-3-ylmethanol: fluorescent organic nanoparticles as a single-component photoresponsive nanocarrier with real-time monitoring of anticancer drug release. J. Am. Chem. Soc. 134(18), 7656–7659 (2012)

    Article  CAS  PubMed  Google Scholar 

  194. Jana, A., Saha, B., Banerjee, D.R., Ghosh, S.K., Nguyen, K.T., Ma, X., Qu, Q., Zhao, Y., Singh, N.P.: Photocontrolled nuclear-targeted drug delivery by single component photoresponsive fluorescent organic nanoparticles of acridin-9-methanol. Bioconjug. Chem. 24(11), 1828–1839 (2013)

    Article  CAS  PubMed  Google Scholar 

  195. Gangopadhyay, M., Singh, T., Behara, K.K., Karwa, S., Ghosh, S., Singh, N.P.: Coumarin-containing-star-shaped 4-arm-polyethylene glycol: targeted fluorescent organic nanoparticles for dual treatment of photodynamic therapy and chemotherapy. Photochem. Photobiol. Sci. 14(7), 1329–1336 (2015)

    Article  CAS  PubMed  Google Scholar 

  196. Barman, S., Mukhopadhyay, S.K., Behara, K.K., Dey, S., Singh, N.P.: 1-acetylpyrene–salicylic acid: photoresponsive fluorescent organic nanoparticles for the regulated release of a natural antimicrobial compound, salicylic acid. ACS Appl. Mater. Interfaces 6(10), 7045–7054 (2014)

    Article  CAS  PubMed  Google Scholar 

  197. Bonnett, R.: Chemical aspects of photodynamic therapy. CRC Press, Boca Raton (2000)

    Google Scholar 

  198. Detty, M.R., Gibson, S.L., Wagner, S.J.: Current clinical and preclinical photosensitizers for use in photodynamic therapy. J. Med. Chem. 47(16), 3897–3915 (2004)

    Article  CAS  PubMed  Google Scholar 

  199. Wani, W.A., Baig, U., Shreaz, S., Shiekh, R.A., Iqbal, P.F., Jameel, E., Ahmad, A., Mohd-Setapar, S.H., Mushtaque, M., Hun, L.T.: Recent advances in iron complexes as potential anticancer agents. New J. Chem. (2016)

    Google Scholar 

  200. Chang, C.-C., Hsieh, M.-C., Lin, J.-C., Chang, T.-C.: Selective photodynamic therapy based on aggregation-induced emission enhancement of fluorescent organic nanoparticles. Biomaterials 33(3), 897–906 (2012)

    Article  CAS  PubMed  Google Scholar 

  201. Austin, L.A., Kang, B., Yen, C.-W., El-Sayed, M.A.: Plasmonic imaging of human oral cancer cell communities during programmed cell death by nuclear-targeting silver nanoparticles. J. Am. Chem. Soc. 133(44), 17594–17597 (2011)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  202. Srinivas, P., Patra, C.R., Bhattacharya, S., Mukhopadhyay, D.: Cytotoxicity of naphthoquinones and their capacity to generate reactive oxygen species is quenched when conjugated with gold nanoparticles. Int J Nanomed. 6, 2113–2122 (2011)

    Article  CAS  Google Scholar 

  203. Sage, J., Van Uitert, R., Duffy, T.: Early changes in blood brain barrier permeability to small molecules after transient cerebral ischemia. Stroke 15(1), 46–50 (1984)

    Article  CAS  PubMed  Google Scholar 

  204. Kuroiwa, T., Ting, P., Martinez, H., Klatzo, I.: The biphasic opening of the blood-brain barrier to proteins following temporary middle cerebral artery occlusion. Acta Neuropathol. 68(2), 122–129 (1985)

    Article  CAS  PubMed  Google Scholar 

  205. Brightman, M.W., Klatzo, I., Olsson, Y., Reese, T.S.: The blood-brain barrier to proteins under normal and pathological conditions. J. Neurol. Sci. 10(3), 215–239 (1970)

    Article  CAS  PubMed  Google Scholar 

  206. Stoll, G., Kleinschnitz, C., Meuth, S.G., Braeuninger, S., Ip, C.W., Wessig, C., Nölte, I., Bendszus, M.: Transient widespread blood—brain barrier alterations after cerebral photothrombosis as revealed by gadofluorine M-enhanced magnetic resonance imaging. J. Cereb. Blood Flow Metab. 29(2), 331–341 (2009)

    Article  CAS  PubMed  Google Scholar 

  207. Latour Lawrence, L., Kang, D.-W., Ezzeddine Mustapha, A., Chalela Julio, A., Warach, S.: Early blood–brain barrier disruption in human focal brain ischemia. Ann. Neurol. 56(4), 468–477 (2004)

    Article  CAS  PubMed  Google Scholar 

  208. Khatri, R., McKinney, A.M., Swenson, B., Janardhan, V.: Blood–brain barrier, reperfusion injury, and hemorrhagic transformation in acute ischemic stroke. Neurology 79(13 Supplement 1), S52–S57 (2012)

    Article  PubMed  Google Scholar 

  209. Cai, X., Bandla, A., Mao, D., Feng, G., Qin, W., Liao, L.-D., Thakor, N., Tang Ben, Z., Liu, B.: Biocompatible red fluorescent organic nanoparticles with tunable size and aggregation-induced emission for evaluation of blood-brain barrier damage. Adv. Mater. 28(39), 8760–8765 (2016)

    Article  CAS  PubMed  Google Scholar 

  210. Shilo, M., Sharon, A., Baranes, K., Motiei, M., Lellouche, J.-P.M., Popovtzer, R.: The effect of nanoparticle size on the probability to cross the blood-brain barrier: an in-vitro endothelial cell model. J. Nanobiotechnol. 13(1), 19 (2015)

    Google Scholar 

  211. Labat-gest, V., Tomasi, S.: Photothrombotic ischemia: a minimally invasive and reproducible photochemical cortical lesion model for mouse stroke studies. J. Visualized Exp.: JoVE 76, 50370 (2013)

    Google Scholar 

  212. Talley Watts, L., Zheng, W., Garling, R.J., Frohlich, V.C., Lechleiter, J.D.: Rose Bengal photothrombosis by confocal optical imaging in vivo: a model of single vessel stroke. J. Visualized Exp.: JoVE 100, 52794 (2015)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Waseem A. Wani .

Rights and permissions

Reprints and permissions

Copyright information

© 2018 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Wani, W.A., Shahid, M., Hussain, A., AlAjmi, M.F. (2018). Applications of Fluorescent Organic Nanoparticles. In: Fluorescent Organic Nanoparticles. SpringerBriefs in Materials. Springer, Singapore. https://doi.org/10.1007/978-981-13-2655-4_3

Download citation

Publish with us

Policies and ethics