Skip to main content

Synthesis of Calcium-Phosphate-Based Nanoparticles as Biocompatible and Biofunctional Element Blocks

  • Chapter
  • First Online:
New Polymeric Materials Based on Element-Blocks
  • 606 Accesses

Abstract

Calcium phosphate (CaP)-based nanoparticles containing functional substances such as DNA and Ag are biocompatible and biofunctional element blocks that are useful as agents for drug and gene delivery and as building blocks for higher-order biomaterials. Such CaP-based nanoparticles can be synthesized via precipitation from labile supersaturated CaP solutions supplemented with functional substances. In this chapter, conventional and laser-assisted precipitation processes for the synthesis of CaP-based nanoparticles are described with a focus on our recent studies. Both precipitation methods are simple (one-pot), rapid (nanoparticle formation occurs within a few tens of minutes), free of harmful additives, and capable of controlling the physicochemical and biological properties of the CaP-based nanoparticles. These characteristics represent advantages for future in vitro and in vivo applications of these precipitation processes and the resulting CaP-based nanoparticles.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Kokubo T, Takadama H (2006) How useful is SBF in predicting in vivo bone bioactivity? Biomaterials 27:2907–2915

    Article  CAS  Google Scholar 

  2. Oyane A, Araki H, Sogo Y, Ito A, Tsurushima H (2013) Spontaneous assembly of DNA–amorphous calcium phosphate nanocomposite spheres for surface-mediated gene transfer. CrystEngComm 15:4994–4997

    Article  CAS  Google Scholar 

  3. Oyane A, Araki H, Nakamura M, Shimizu Y, Shubhra QTH, Ito A, Tsurushima H (2016) Controlled superficial assembly of DNA–amorphous calcium phosphate nanocomposite spheres for surface-mediated gene delivery. Coll Surf B, Biointerface 141:519–527

    Article  CAS  Google Scholar 

  4. Shubhra QTH, Oyane A, Araki H, Nakamura M, Tsurushima H (2017) Calcium phosphate nanoparticles prepared from infusion fluids for stem cell transfection: process optimization and cytotoxicity analysis. Biomater Sci 5:972–981

    Article  CAS  Google Scholar 

  5. Nakamura M, Oyane A (2016) Physicochemical fabrication of calcium phosphate-based thin layers and nanospheres using laser processing in solutions. J Mater Chem B 4:6289–6301

    Article  CAS  Google Scholar 

  6. Nakamura M, Oyane A, Sakamaki I, Ishikawa Y, Shimizu Y, Koga K, Kawaguchi K, Koshizaki N (2014) A physicochemical process for fabricating submicrometre calcium iron phosphate spheres. RSC Adv 4:38442–38445

    Article  CAS  Google Scholar 

  7. Nakamura M, Oyane A, Sakamaki I, Ishikawa Y, Shimizu Y, Kawaguchi K (2015) Laser-assisted one-pot fabrication of calcium phosphate-based submicrospheres with internally crystallized magnetite nanoparticles through chemical precipitation. Phys Chem Chem Phys 17:8836–8842

    Article  CAS  Google Scholar 

  8. Nakamura M, Oyane A, Shimizu Y, Miyata S, Saeki A, Miyaji H (2016) Physicochemical fabrication of antibacterial calcium phosphate submicrospheres with dispersed silver nanoparticles via coprecipitation and photoreduction under laser irradiation. Acta Biomater 46:299–307

    Article  CAS  Google Scholar 

  9. Gebauer D, Cölfen H (2011) Prenucleation clusters and non-classical nucleation. Nano Today 6:564–584

    Article  CAS  Google Scholar 

  10. Onuma K, Ito A (1998) Cluster growth model for hydroxyapatite. Chem Mater 10:3346–3351

    Article  CAS  Google Scholar 

  11. Oyane A, Onuma K, Kokubo T, Ito A (1999) Clustering of calcium phosphate in the system CaCl2−H3PO4−KCl−H2O. J Phys Chem B 103:8230–8235

    Article  CAS  Google Scholar 

  12. Dey A, Bomans PHH, Müller FA, Will J, Frederik PM, de With G, Sommerdijk NAJM (2010) The role of prenucleation clusters in surface-induced calcium phosphate crystallization. Nat Mater 9:1010–1014

    Article  CAS  Google Scholar 

  13. Barrère F, Layrolle P, van Blitterswijk CA, de Groot K (2000) Fast formation of biomimetic Ca-P coatings on Ti6Al4V. Mater Res Soc Symp Proc 599:135–140

    Article  Google Scholar 

  14. Wang L, Nancollas GH (2008) Calcium orthophosphates: crystallization and dissolution. Chem Rev 108:4628–4669

    Article  CAS  Google Scholar 

  15. Wang X, Ito A, Li X, Sogo Y, Oyane A (2011) Signal molecules-calcium phosphate coprecipitation and its biomedical application as a functional coating. Biofabrication 3:022001

    Article  Google Scholar 

  16. Oyane A, Wang X, Sogo Y, Ito A, Tsurushima H (2012) Calcium phosphate composite layers for surface-mediated gene transfer. Acta Biomater 8:2034–2046

    Article  CAS  Google Scholar 

  17. Oyane A, Uchida M, Onuma K, Ito A (2006) Spontaneous growth of a laminin-apatite nano-composite in a metastable calcium phosphate solution. Biomaterials 27:167–175

    Article  CAS  Google Scholar 

  18. Yazaki Y, Oyane A, Tsurushima H, Araki H, Sogo Y, Ito A, Yamazaki A (2014) Coprecipitation of DNA-lipid complexes with apatite and comparison with superficial adsorption for gene transfer applications. J Biomater Appl 28:937–945

    Article  CAS  Google Scholar 

  19. Yazaki Y, Oyane A, Sogo Y, Ito A, Yamazaki A, Tsurushima H (2011) Control of gene transfer on a DNA–fibronectin–apatite composite layer by the incorporation of carbonate and fluoride ions. Biomaterials 32:4896–4902

    Article  CAS  Google Scholar 

  20. Xie Y, Chen Y, Sun M, Ping Q (2013) A mini review of biodegradable calcium phosphate nanoparticles for gene delivery. Curr Pharm Biotechnol 14:918–925

    Article  CAS  Google Scholar 

  21. Sogo Y, Ito A, Fukasawa K, Kondo N, Ishikawa Y, Ichinose N, Yamazaki A (2005) Coprecipitation of cytochrome C with calcium phosphate on hydroxyapatite ceramic. Curr Appl Phys 5:526–530

    Article  Google Scholar 

  22. Mutsuzaki H, Ito A, Sakane M, Sogo Y, Oyane A, Ochiai N (2008) Fibroblast growth factor-2-apatite composite layers on titanium screw to reduce pin tract infection rate. J Biomed Mater Res B Appl Biomater 86:365–374

    Article  Google Scholar 

  23. Bodhak S, Kikuchi M, Sogo Y, Tsurushima H, Ito A, Oyane A (2013) Calcium phosphate coating on a bioresorbable hydroxyapatite/collagen nanocomposite for surface functionalization. Chem Lett 42:1029–1031

    Article  CAS  Google Scholar 

  24. Zhou H, Bhaduri S (2012) Novel microwave synthesis of amorphous calcium phosphate nanospheres. J Biomed Mater Res B Appl Biomater 100:1142–1150

    Article  Google Scholar 

  25. Qi C, Zhu YJ, Zhao XY, Lu BQ, Tang QL, Zhao J, Chen F (2013) Highly stable amorphous calcium phosphate porous nanospheres: microwave-assisted rapid synthesis using ATP as phosphorus source and stabilizer, and their application in anticancer drug delivery. Chem Eur J 19:981–987

    Article  CAS  Google Scholar 

  26. Zhao J, Zhu YJ, Zheng JQ, Chen F, Wu J (2013) Microwave-assisted hydrothermal preparation using adenosine 5′-triphosphate disodium salt as a phosphate source and characterization of zinc-doped amorphous calcium phosphate mesoporous microspheres. Microporous Mesoporous Mater 180:79–85

    Article  CAS  Google Scholar 

  27. Rouhani P, Taghavinia N, Rouhani S (2010) Rapid growth of hydroxyapatite nanoparticles using ultrasonic irradiation. Ultrason Sonochem 17:853–856

    Article  CAS  Google Scholar 

  28. Wang H, Pyatenko A, Kawaguchi K, Li X, Swiatkowska-Warkocka Z, Koshizaki N (2010) Selective pulsed heating for the synthesis of semiconductor and metal submicrometer spheres. Angew Chem Int Ed 49:6361–6364

    Article  CAS  Google Scholar 

  29. Nakamura M, Oyane A, Sakamaki I, Shimizu Y, Koga K, Koshizaki N (2015) A physicochemical process for fabricating submicrometer hollow fluorescent spheres of Tb3+-incorporated calcium phosphate. RSC Adv 5:22620–22624

    Article  CAS  Google Scholar 

  30. Wu HC, Wang TW, Sun JS, Wang WH, Lin FH (2007) A novel biomagnetic nanoparticle based on hydroxyapatite. Nanotechnology 18:165601

    Article  Google Scholar 

  31. Ansar EB, Ajeesh M, Yokogawa Y, Wunderlich W, Varma H (2012) Synthesis and characterization of iron oxide embedded hydroxyapatite bioceramics. J Am Ceram Soc 95:2695–2699

    Article  CAS  Google Scholar 

  32. Atkins PW (1998) Physical chemistry, 6th edn. Oxford University Press, Oxford, p 936

    Google Scholar 

  33. Selwitz RH, Ismail AI, Pitts NB (2007) Dental caries. Lancet 369:51–59

    Article  CAS  Google Scholar 

Download references

Acknowledgments

Our research was supported by JSPS KAKENHI grant numbers JP16H03831, JP26560250, and JP15F15030, Japan; the Magnetic Health Science Foundation, Japan; and the Amada Foundation, Japan. We would like to thank Dr. Quazi T. H. Shubhra, Ms. Hiroko Araki, Ms. Ikuko Sakamaki, Dr. Yoshiki Shimizu, Dr. Kenji Koga, Dr. Alexander Pyatenko, and Dr. Atsuo Ito from AIST, Dr. Hirofumi Miyaji and Dr. Naoto Koshizaki from Hokkaido University, and Dr. Hideo Tsurushima from the University of Tsukuba for their contributions to our research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ayako Oyane .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Oyane, A., Nakamura, M. (2019). Synthesis of Calcium-Phosphate-Based Nanoparticles as Biocompatible and Biofunctional Element Blocks. In: Chujo, Y. (eds) New Polymeric Materials Based on Element-Blocks. Springer, Singapore. https://doi.org/10.1007/978-981-13-2889-3_24

Download citation

Publish with us

Policies and ethics