Skip to main content

Treatment of Wastewater Using Vermifiltration Technology

  • Chapter
  • First Online:
Water Conservation, Recycling and Reuse: Issues and Challenges

Abstract

This chapter focuses on an alternative biological method for wastewater treatment using the vermifiltration system. The vermifiltration system must meet the desired process and design parameters for optimum wastewater treatment. A case study for swine wastewater treatment using a 3-stage vermifiltration process was used. Three vermifilters with media which is comprised of Eisenia fetida earthworms, garden soil, sand and quartz stones were used as the filtration media. The swine wastewater chemical oxygen demand (COD), biological oxygen demand (BOD5), total suspended solids (TSS), total dissolved solids (TDS), electrical conductivity (EC) and dissolved oxygen (DO) values were measured before and after treatment with the vermifiltration at each stage. The parameters were measured using standard methods. Treatment using a 3-stage vermifilter connected in series resulted in 99.2% reduction in COD, 99.4% in BOD5, 99.2% in TSS, 80.2% in TDS and 86.9% in EC. The DO concentration increased by >345.5%. Application of the vermifiltration technology in swine wastewater treatment allows for effective biological contaminants, and the technology is easily adoptable in developing countries due to its simplicity and treats water to acceptable standards.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Adugna AT (2016) Concentrated greywater treatment by vermifiltration for Sub-Saharan urban poor. International Institute for Water and Environmental Engineering Thesis for the grade of: doctor in sciences and Technologies of Water, Energy and Environment Specialty: Water

    Google Scholar 

  • APHA (2005) Standard methods for the examination of water and wastewater, 21st edn. America Public Health Association, American Water Works, Association, Water Environment Federation, Washington, DC

    Google Scholar 

  • Bartlett MD, Briones MJI, Neilson R, Schmidt O, Spurgeon D, Creamer RE (2010) A critical review of current methods in earthworm ecology: from individuals to populations. Eur J Soil Biol 46(2):67–73

    Article  Google Scholar 

  • Baumgartner R (2013) Developing a testing protocol for Vermifiltration-based Onsite Wastewater Treatment Systems (VOWTS), pp 1–60

    Google Scholar 

  • Chan K-Y, Munro K (2001) Evaluating mustard extracts for earthworm sampling. Pedobiologia 45(3):272–278

    Article  Google Scholar 

  • ÄŒoja T, Zehetner K, Bruckner A, Watzinger A, Meyer E (2008) Efficacy and side effects of five sampling methods for soil earthworms (Annelida, Lumbricidae). Ecotoxicol Environ Saf 71(2):552–565

    Article  Google Scholar 

  • Deng L, Zheng P, Chen Z, Mamood Q (2008) Improvement in post-treatment of digested piggery wastewater. Bioresour Technol 99(8):3136–3145

    Article  CAS  Google Scholar 

  • Edwards CA, Fletcher KE (1988) Interactions between earthworms and micro-organisms in organic-matter breakdown. Agric Ecosyst Environ 24:235–247

    Article  Google Scholar 

  • Ghatnekar SD, Kavian MF, Sharma SM, Ghatnekar GS, Ghatnekar AV (2010) Application of vermifilter based effluent treatment plant (pilot scale) for bio-management of liquid effluents for the gelatin industry. Dyn Soil Dyn Plant 4(1):83–88

    Google Scholar 

  • Jiménez JJ, Lavelle P, Decaens T (2006) The efficiency of soil hand-sorting in assessing the abundance and biomass of earthworm communities. Its usefulness in population dynamics and cohort analysis studies. Eur J Soil Biol 42(1):S225–S230

    Article  Google Scholar 

  • Kharwade AM, Khedikar IP (2011) Laboratory scale studies on domestic grey water through vermifilter and non-vermifilter. J Eng Res Stud 2(4):35–39

    Google Scholar 

  • Malek TEBUA, Ismali SA, Ibrahim MH (2013) A study on hydraulic loading rate and worm density in vermifiltration of palm oil mill effluent. J Ind Res Technol 3(1):1–5

    Google Scholar 

  • Meiyan X, Xiaowei L, Yang L (2010) Treatment performance of small-scales vermifilter for domestic wastewater and its relationship to earthworm growth, reproduction and enzymatic activity. Afr J Biotechnol 9(44):7513–7520

    Article  Google Scholar 

  • Neuhauser EF, Loehr RC, Malecki MR (1988) The potential of earthworms for managing sewage sludge. In: Edward CA, Neuhauser EF (eds) Earthworms in waste and environmental management. SPB Academic Publishing, The Hague ISBN:90-5103-017-7

    Google Scholar 

  • Sinha RK, Bharambe G, Chaudhari U (2008) Sewage treatment by vermifiltration with synchronous treatment of sludge by earthworms: a low-cost sustainable technology over conventional systems with potential for decentralization, vol 28. Springer Science, pp 409–420

    Google Scholar 

  • Sinha RK, Herat S, Bharambe G, Patil S, Bapat PS, Chauhan K, Valani D (2009) Vermiculture biotechnology: the emerging cost-effective and sustainable technology of the 21st century for multiple uses from waste and land management to safe and sustained food production. Environ Res J. NOVA Science Publishers, Hauppauge 3(1):41–110

    Article  Google Scholar 

  • Suthar S (2012) Vermistabilization of wastewater sludge from milk processing industry. Ecol Eng 47:115–119

    Article  Google Scholar 

  • Tchobanoglous G, Burton FL, Stensel HD (1981) Wastewater engineering: treatment and reuse. Metcalf and Eddy, New York

    Google Scholar 

  • Xing M, Xiaowei L, Jian Y (2010) Treatment performance of small scale vermifilter for domestic wastewater and its relationship to earthworms’ growth, reproduction and enzymatic activity. Afr J Biotechnol 9(44):7513–7520

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Manyuchi, M.M., Mupoperi, N., Mbohwa, C., Muzenda, E. (2019). Treatment of Wastewater Using Vermifiltration Technology. In: Singh, R., Kolok, A., Bartelt-Hunt, S. (eds) Water Conservation, Recycling and Reuse: Issues and Challenges. Springer, Singapore. https://doi.org/10.1007/978-981-13-3179-4_12

Download citation

Publish with us

Policies and ethics