Skip to main content

The Role of Microbes in Chromium Bioremediation of Tannery Effluent

  • Chapter
  • First Online:
Water and Wastewater Treatment Technologies

Part of the book series: Energy, Environment, and Sustainability ((ENENSU))

Abstract

Leather-based industries utilize nearly 90% of chromium-containing tanning agents for converting raw skin/hides into leather. Apart from chromium, different metals such as iron, aluminum, zircon, and titanium are also used for various tanning applications. Tannery wastewater is highly complex and contains high amount of inorganic, organic, and dissolved solids including chlorides and sulfates. The chromium present in the effluent can have adverse effects on the environment. Hence, the treatment of effluent before releasing it into the environment becomes an important issue. Bioremediation is a recent technique for treatment and disposal of industrial wastewater. This approach is advantageous as compared to conventional treatment methods which are costly, time-consuming, and generate toxic end products. Bioremediation is the potential, cost-effective, and environmental-friendly technique that uses several microbes in treatment of wastewater, soil, and sediments. Hence, this chapter focuses on the role of microbes in chromium remediation from tannery effluent. This chapter will also focus on the various mechanisms such as biosorption, bioaccumulation, and microbial reduction of chromium by microbial cells.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Batool R, Yrjala K, Hasnain S (2012) Hexavalent chromium reduction by bacteria from tannery effluent. J Microbiol Biotechnol 22:547–554

    Article  CAS  Google Scholar 

  • Benazir JF, Suganthi R, Rajvel D, Pooja MP, Mathithumilan B (2010) Bioremediation of chromium in tannery effluent by microbial consortia. Afr J Biotechnol 9:3140–3143

    Google Scholar 

  • Bhalerao SA, Sharma AS (2015) Chromium: as an environmental pollutant. Int J Curr Microbiol Appl Sci 4:732–746

    CAS  Google Scholar 

  • Bhattacharya A, Gupta A, Kaur A, Malik D (2015) Simultaneous bioremediation of phenol and Cr (Vi) from tannery wastewater using bacterial consortium. Int J Appl Sci Biotechnol 3:50–55

    Article  CAS  Google Scholar 

  • Bopp LH, Ehrlich HL (1988) Chromate resistance and reduction in Pseudomonas fluorescens strain LB300. Arch Microbiol 150:426–431

    Article  CAS  Google Scholar 

  • Campos J, Martinez-Pacheco M, Cervantes C (1995) Hexavalent-chromium reduction by a chromate-resistant Bacillus sp. strain. Antonie van Leeuwenhoek 68:203–208

    Article  CAS  Google Scholar 

  • Cefalu WT, Hu FB (2004) Role of chromium in human health and in diabetes. Diabetes Care 27:2741–2751

    Article  CAS  Google Scholar 

  • Chakraborty A et al (2016) Hexavalent chromium reduction potential of chromium resistant tannery effluent bacteria and their consortia. Int J Appl Sci 7(2)

    Google Scholar 

  • Cheung KH, Gu JD (2007) Mechanism of hexavalent chromium detoxification by microorganisms and bioremediation application potential: a review. Int Biodeter Biodegrad 59:8–15

    Article  CAS  Google Scholar 

  • Durai G, Rajasimman M (2011) Biological treatment of tannery wastewater—a review. Int J Environ Sci Technol 4:1–17

    Article  CAS  Google Scholar 

  • Farag S, Zaki S (2010) Identification of bacterial strains from tannery effluent and reduction of hexavalent chromium. J Exp Biol 31:877–882

    CAS  Google Scholar 

  • Ganguli A, Tripathi AK (1999) Survival and chromate reducing ability of Pseudomonas aeruginosa in industrial effluents. Lett Appl Microbiol 28:76–80

    Article  CAS  Google Scholar 

  • Ilias M et al (2011) Isolation and characterization of chromium (VI)-reducing bacteria from tannery effluents. Indian J Microbiol 51:76–81

    Article  CAS  Google Scholar 

  • Joutey NT, Savel H, Bahafid W, Ghachtouli N (2015) Mechanism of hexavalent chromium resistance and removal by microorganisms. In Whitacre DM, (ed) Reviews of Environmental Contamination and Toxicology, 233:45–69. https://doi.org/10.1007/978-3-319-10479-9_2

    Google Scholar 

  • Kimbrough DE, Cohen Y, Winer AM, Creelman L, Mabuni C (2010) A critical assessment of chromium in the environment. Crit Rev Environ Sci Technol. https://doi.org/10.1080/10643389991259164

    Article  CAS  Google Scholar 

  • Khanafari A, Eshghdoost S, Maschinchian A (2008) Removal of lead and chromium from aqueous solutions by Bacillus circulans biofilm. J Environ Health Sci Eng 5:195–200

    Google Scholar 

  • Komori K, Rivas A, Toda K, Ohtake H (1990) Biological removal of toxic chromium using an Enterobacter cloacae strain that reduces chromate under anaerobic conditions. Biotechnol Bioeng 35:951–954

    Article  CAS  Google Scholar 

  • Ksheminska H, Fedorovych D, Babyak L, Yanovych D, Kaszycki P, Koloczek H (2005) Chromium (III) and (VI) tolerance and bioaccumulation in yeast: a survey of cellular chromium content in selected strains of representative genera. Process Biochem 40:1565–1572

    Article  CAS  Google Scholar 

  • Lalith VS, Mohan S (2017) Selection and use of efficient bacterial strains for chromium biosorption in tannery effluent. Int J of Recent Sci Res 8:16230–16233

    Google Scholar 

  • Malik A (2004) Metal bioremediation by growing cells. Environ Int 30:261–278

    Article  CAS  Google Scholar 

  • Mani D, Kumar C (2014) Biotechnological advances in bioremediation of heavy metals contaminated ecosystems: an overview with special reference to phytoremediation. Int J Environ Sci Technol 11:843–872

    Article  CAS  Google Scholar 

  • Munawaroh HSH, Gumilar GG, Kartikasari S, Kusumawaty D (2017) Microbial Reduction of Cr (VI) into Cr (III) by locally isolated Pseudomonas aeruginosa. Mater Sci Eng 180:012279

    Google Scholar 

  • Naeem A, Batool R, Jamil N (2013) Cr (VI) reduction by Cellulosimicrobium sp. isolated from tannery effluent. Turk J Biol 37:315–322

    CAS  Google Scholar 

  • Narayani M, Shetty KV (2012) Chromium-resistant bacteria and their environmental condition for hexavalent chromium removal: a review. Crit Rev Environ Sci Technol. https://doi.org/10.1080/10643389.2011.627022

    Article  CAS  Google Scholar 

  • Pandi M, Shashirekha V, Swamy M (2009) Bioabsorption of chromium from retan chrome liquor by cyanobacteria. Microbiological Research, 164:420–428

    Article  CAS  Google Scholar 

  • Park D, Lim S-R, Yun YS, Park JM (2008) Development of a new Cr(VI)-biosorbent from agricultural biowaste. Bioresour Technol 99:8810–8818

    Article  CAS  Google Scholar 

  • Pinon-Castillo HA et al (2010) Hexavalent chromium reduction by bacterial consortia and pure strains from an alkaline industrial effluent. J Appl Microbiol 109:2173–2182

    Article  CAS  Google Scholar 

  • Polti MA, Amoroso MJ, Abate CM (2011) Intracellular chromium accumulation by Streptomyces sp. MC1. Water Air Soil Pollut 214:49–57

    Article  CAS  Google Scholar 

  • Priester JH, Olson SG, Webb SM, Neu MP, Hersman LE, Holden PA (2006) Enhanced exopolymer production and chromium stabilization in Pseudomonas putida unsaturated biofilms. Appl Environ Microbiol 72:1988–1996

    Article  CAS  Google Scholar 

  • Rath BP, Das S, Mohapatra PKD, Thatoi H (2014) Optimization of extracellular chromate reductase production by Bacillus amyloliquefaciens (CSB 9) isolated from chromate mine environment. Biocatal Agric Biotechnol, 3:35–41

    Article  Google Scholar 

  • Saha B, Orvig C (2010) Biosorbents for hexavalent chromium elimination from industrial and municipal effluents. Coord Chem Rev 254:2959–2972

    Article  CAS  Google Scholar 

  • Shadreck M, Mugadza T (2013) Chromium, an essential nutrient and pollutant: a review. Afr J Pure Appl Chem 7:310–317

    Google Scholar 

  • Shashirekha V, Sridharan MR, Swamy M (2011) Bioremediation of tannery effluents using a consortium of Blue–Green Algal species. Clean-Soil Air Water. https://doi.org/10.1002/clen.201000548

    Article  CAS  Google Scholar 

  • Shukla D, Vankar PS, Srivastava SK (2012) Bioremediation of hexavalent chromium by a cyanobacterial mat. Appl Water Sci 2:245–251

    Article  CAS  Google Scholar 

  • Srinath T, Verma T, Ramteke PW, Garg SK (2002) Chromium (VI) biosorption and bioaccumulation by chromate resistant bacteria. Chemosphere 48:427–435

    Article  CAS  Google Scholar 

  • Srivastava S, Thakur IS (2007) Evaluation of biosorption potency of Acinetobacter sp. for removal of hexavalent chromium from tannery effluent. Biodegradation 18:637–646

    Article  CAS  Google Scholar 

  • Wang PC, Toda K, Ohtake H, Kusaka I, Yabe I (1991) Membrane-bound respiratory system of Enterobacter cloacae strain HO1 grown anaerobically with chromate. FEMS Microbiol Lett 78:11–16

    Article  CAS  Google Scholar 

  • World Health Organization (2004) Chromium in drinking water. http://www.who.int/water_sanitation_health/dwq/chemicals/chromium.pdf

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vipin Kumar .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Gupta, P., Rani, R., Chandra, A., Varjani, S., Kumar, V. (2019). The Role of Microbes in Chromium Bioremediation of Tannery Effluent. In: Bui, XT., Chiemchaisri, C., Fujioka, T., Varjani, S. (eds) Water and Wastewater Treatment Technologies. Energy, Environment, and Sustainability. Springer, Singapore. https://doi.org/10.1007/978-981-13-3259-3_17

Download citation

Publish with us

Policies and ethics