Skip to main content

Infantile Radiation and Aging Stresses: Effects of Calorie and Dietary Restrictions

  • Chapter
  • First Online:
Models, Molecules and Mechanisms in Biogerontology

Abstract

Biological macromolecules such as proteins, lipids, and nucleic acids in all living things are always exposed to endogenous and exogenous stress. An accumulation of damaged macromolecules in cells can lead to a decrease in normal cellular function and eventual cell death and/or carcinogenesis.

Reactive oxygen species (ROS) are considered to be major endogenous stressors which cause damage to macromolecules such as DNA, proteins, and lipids during aging. By contrast, ionizing radiation is an exogenous stressor which causes damage indiscriminately and abruptly to macromolecules, especially DNA, and increases cancer risk.

Lifelong calorie and dietary restrictions (CR/DR) are well known to have preventive effects on the onset of many age-associated disorders, including spontaneous cancers, and extend mean and maximum life span in various animals. However, limited information is available on the effect of CR/DR on intensive damage during infancy and on cumulative damages during aging.

Recent studies suggest that the level of protein carbonyls is correlated with cell death and spontaneous mutation rate. Therefore, it is of great interest to determine whether CR/DR reduces the level of accumulated altered proteins with age and prevents carcinogenesis.

Here, we describe our studies suggesting that CR initiated after infant radiation improves life span and reduces carcinogenesis and that short-term DR initiated even later in life attenuates the effects on accumulation of altered proteins, including carbonylated proteins.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Barja G (2014) The mitochondrial free radical theory of aging. Prog Mol Biol Transl Sci 127:1–27

    Article  CAS  Google Scholar 

  2. Liochev SI (2013) Reactive oxygen species and the free radical theory of aging. Free Radic Biol Med 60:1–4

    Article  CAS  Google Scholar 

  3. Goto S, Takahashi R, Nakamoto H, Ishigami A, Araki S (1996) Implication of changes in molecular biological parameters in aging animals by dietary restriction. Hong Kong J Gerontol 10:469–471

    Google Scholar 

  4. Goto S, Takahashi R, Kumiyama A, Radak Z, Hayashi T, Takenouch M et al (2001) Implications of protein degradation in aging. Ann N Y Acad Sci 928:54–64

    Article  CAS  Google Scholar 

  5. Krisko A, Radman M (2013) Phenotypic and genetic consequences of protein damage. PLoS Genet 9(9):e1003810

    Article  CAS  Google Scholar 

  6. Radman M (2016) Protein damage, radiation sensitivity and aging. DNA Repair (Amst) 44:186–192

    Article  CAS  Google Scholar 

  7. Richardson RB (2009) Ionizing radiation and aging: rejuvenating an old idea. Aging (Albany NY) 1(11):887–902

    Article  CAS  Google Scholar 

  8. Bertrand HA, Heerlihy JT, Ikeno Y, Yu BP (1999) Dietary restriction. In: Yu BP (ed) Methods of aging research. CRC Press, Boca Raton, pp 271–300

    Google Scholar 

  9. Takahashi R, Goto S (2002) Effect of dietary restriction beyond middle age: accumulation of altered proteins and protein degradation. Microsc Res Tech 59(4):278–281

    Article  CAS  Google Scholar 

  10. Stuchlikova E, Juricova-Horakova M, Dely Z (1975) New aspects of the dietary effect of life prolongation in rodents. What is the role of obesity in aging? Exp Gerontol 10:141–144

    Article  CAS  Google Scholar 

  11. Weindruch R, Walford RL (1982) Dietary restriction in mice beginning at 1 year of age: Effect on life-span and spontaneous cancer incidence. Science 215:1415–1417

    Article  CAS  Google Scholar 

  12. Goodrick CL, Ingram DK, Reynolds MA, Freeman JR, Cider NL (1983) Differential effects of intermittent feeding and voluntary exercise on body weight and lifespan in adults rats. J Gerontol 38:36–45

    Article  CAS  Google Scholar 

  13. Goodrick CL, Ingram DK, Reynolds MA, Freeman JR, Cider N (1990) Effects of intermittent feeding upon body weight and lifespan in inbred mice: interaction of genotype and age. Mech Ageing Dev 55:69–87

    Article  CAS  Google Scholar 

  14. Braeckman BP, Demetrius L, Vanfleteren JR (2006) The dietary restriction effect in C. elegans and humans: is the worm a one-millimeter human? Biogerontology 7(3):127–133

    Article  Google Scholar 

  15. Colman RJ, Anderson RM, Johnson SC, Kastman EK, Kosmatka KJ, Beasley TM et al (2009) Caloric restriction delays disease onset and mortality in rhesus monkeys. Science 325(5937):201–204

    Article  CAS  Google Scholar 

  16. Fabrizio P, Longo VD (2003) The chronological life span of Saccharomyces cerevisiae. Aging Cell 2(2):73–81

    Article  CAS  Google Scholar 

  17. He D, Uehara Y, Furuya M, Ikehata H, Komura J, Yamauchi K et al Effects of calorie restriction on the age-dependent accumulation of mutations in the small intestine of lacZ-transgenic mice. Mech Ageing Dev 132(3):117–122

    Article  CAS  Google Scholar 

  18. Lawler DF, Larson BT, Ballam JM, Smith GK, Biery DN, Evans RH et al (2008) Diet restriction and ageing in the dog: major observations over two decades. Br J Nutr 99(4):793–805

    Article  CAS  Google Scholar 

  19. Weindruch R (1992) Effect of caloric restriction on age-associated cancers. Exp Gerontol 27(5-6):575–581

    Article  CAS  Google Scholar 

  20. Tucker MJ (1979) The effect of long-term food restriction on tumours in rodents. Int J Cancer 23(6):803–807

    Article  CAS  Google Scholar 

  21. Weindruch R, Walford R (1988) The retardation of aging and disease by dietary restriction. Charles C Thomas, Springfield

    Google Scholar 

  22. Dunn SE, Kari FW, French J, Leininger JR, Travlos G, Wilson R et al (1997) Dietary restriction reduces insulin-like growth factor I levels, which modulates apoptosis, cell proliferation, and tumor progression in p53-deficient mice. Cancer Res 57:4667–4672

    CAS  PubMed  Google Scholar 

  23. Ozasa K, Shimizu Y, Suyama A, Kasagi F, Soda M, Grant EJ et al (2012) Studies of the mortality of atomic bomb survivors, report 14, 1950-2003: an overview of cancer and noncancer diseases. Radiat Res 177(3):229–243

    Article  CAS  Google Scholar 

  24. Kazakov VS, Demidchik EP, Astakhova LN (1992) Thyroid cancer after Chernobyl. Nature 359(6390):21

    Article  CAS  Google Scholar 

  25. Berrington de Gonzalez A, Darby S (2004) Risk of cancer from diagnostic X-rays: estimates for the UK and 14 other countries. Lancet 363(9406):345–351

    Article  Google Scholar 

  26. Kumar S (2012) Second malignant neoplasms following radiotherapy. Int J Environ Res Public Health 9(12):4744–4759

    Article  Google Scholar 

  27. Pearce MS, Salotti JA, Little MP, McHugh K, Lee C, Kim KP et al (2012) Radiation exposure from CT scans in childhood and subsequent risk of leukaemia and brain tumours: a retrospective cohort study. Lancet 380(9840):499–505

    Article  Google Scholar 

  28. McCay CM (1935) Iodized salt a hundred years ago. Science 82(2128):350–351

    Article  CAS  Google Scholar 

  29. Gross L, Dreyfuss Y (1984) Reduction in the incidence of radiation-induced tumors in rats after restriction of food intake. Proc Natl Acad Sci U S A 81(23):7596–7598

    Article  CAS  Google Scholar 

  30. Gross L, Dreyfuss Y (1986) Inhibition of the development of radiation-induced leukemia in mice by reduction of food intake. Proc Natl Acad Sci U S A 83(20):7928–7931

    Article  CAS  Google Scholar 

  31. Yoshida K, Inoue T, Nojima K, Hirabayashi Y, Sado T (1997) Calorie restriction reduces the incidence of myeloid leukemia induced by a single whole-body radiation in C3H/He mice. Proc Natl Acad Sci U S A 94(6):2615–2619

    Article  CAS  Google Scholar 

  32. Yoshida K, Inoue T, Hirabayashi Y, Nojima K, Sado T (1999) Calorie restriction and spontaneous hepatic tumors in C3H/He mice. J Nutr Health Aging 3(2):121–126

    CAS  PubMed  Google Scholar 

  33. Shang Y, Kakinuma S, Yamauchi K, Morioka T, Kokubo T, Tani S et al (2014) Cancer prevention by adult-onset calorie restriction after infant exposure to ionizing radiation in B6C3F1 male mice. Int J Cancer 135(5):1038–1047

    Article  CAS  Google Scholar 

  34. Sheldon WG, Bucci TJ, Hart RW, Turturro A (1995) Age-related neoplasia in a lifetime study of ad libitum-fed and food-restricted B6C3F1 mice. Toxicol Pathol 23(4):458–476

    Article  CAS  Google Scholar 

  35. Tani S, Blyth B, Shang Y, Morioka T, Kakinuma S, Shimada Y (2016) Using a multi-stage carcinogenesis model to investigate calorie restriction as a potential tool for post-irradiation mitigation of cancer risk. J Cancer Prev 21:115–120

    Article  Google Scholar 

  36. Tannenbaum A, Silverstone H (1949) The influence of the degree of caloric restriction on the formation of skin tumors and hepatomas in mice. Cancer Res 9(12):724–727

    CAS  PubMed  Google Scholar 

  37. Thompson HJ, Zhu Z, Jiang W (2003) Dietary energy restriction in breast cancer prevention. J Mammary Gland Biol Neoplasia 8(1):133–142

    Article  Google Scholar 

  38. Pashko LL, Schwartz AG (1996) Inhibition of 7,12-dimethylbenz[a]anthracene-induced lung tumorigenesis in A/J mice by food restriction is reversed by adrenalectomy. Carcinogenesis 17(2):209–212

    Article  CAS  Google Scholar 

  39. Stewart JW, Koehler K, Jackson W, Hawley J, Wang W, Au A et al (2005) Prevention of mouse skin tumor promotion by dietary energy restriction requires an intact adrenal gland and glucocorticoid supplementation restores inhibition. Carcinogenesis 26(6):1077–1084

    Article  CAS  Google Scholar 

  40. Jiang W, Zhu Z, McGinley JN, Thompson HJ (2004) Adrenalectomy does not block the inhibition of mammary carcinogenesis by dietary energy restriction in rats. J Nutr 134(5):1152–1156

    Article  CAS  Google Scholar 

  41. Longo VD, Fontana L (2010) Calorie restriction and cancer prevention: metabolic and molecular mechanisms. Trends Pharmacol Sci 31(2):89–98

    Article  CAS  Google Scholar 

  42. Prisco M, Romano G, Peruzzi F, Valentinis B, Baserga R (1999) Insulin and IGF-I receptors signaling in protection from apoptosis. Horm Metab Res 31(2-3):80–89

    Article  CAS  Google Scholar 

  43. Jenkins PJ, Bustin SA (2004) Evidence for a link between IGF-I and cancer. Eur J Endocrinol 151(Suppl 1):S17–S22

    Article  CAS  Google Scholar 

  44. Fontana L, Klein S (2007) Aging, adiposity, and calorie restriction. JAMA 297(9):986–994

    Article  CAS  Google Scholar 

  45. Kalaany NY, Sabatini DM (2009) Tumours with PI3K activation are resistant to dietary restriction. Nature 458(7239):725–731

    Article  CAS  Google Scholar 

  46. Hursting SD, Switzer BR, French JE, Kari FW (1993) The growth hormone: insulin-like growth factor 1 axis is a mediator of diet restriction-induced inhibition of mononuclear cell leukemia in Fischer rats. Cancer Res 53(12):2750–2757

    CAS  PubMed  Google Scholar 

  47. Merker K, Stolzing A, Grune T (2001) Proteolysis, caloric restriction and aging. Mech. Ageing Dev 122:595–615

    Article  CAS  Google Scholar 

  48. Tavernarakis N, Driscoll M (2002) Caloric restriction and lifespan: a role for protein turnover? Mech Ageing Dev 123:215–229

    Article  CAS  Google Scholar 

  49. Lipman RD, Smith DE, Bronson RT, Blumberg J (1995) Is late-life caloric restriction beneficial? Aging Clin Exp Res 7:136–139

    Article  CAS  Google Scholar 

  50. Lipman RD, Smith DE, Blumberg J, Bronson RT (1998) Effects of caloric restriction or augmentation in adult rats: longevity and lesion biomarkers of aging. Aging Clin Exp Res 10:436–470

    Article  Google Scholar 

  51. Mattison JA, Roth GS, Beasley TM, Tilmont EM, Handy AM, Herbert RL et al (2012) Impact of caloric restriction on health and survival in rhesus monkeys from the NIA study. Nature 489:318–321

    Article  CAS  Google Scholar 

  52. Takahashi R, Goto S (1987) Age-associated accumulation of heat-labile aminoacyl tRNAsynthetases in mice and rats. Arch Gerontol Geriatr 6:73–82

    Article  CAS  Google Scholar 

  53. Takahashi R, Goto S (1987) Influence of dietary restriction on accumulation of heat-labile enzyme molecules in the liver and brain of mice. Arch Biochem Biophys 257:200–206

    Article  CAS  Google Scholar 

  54. Ikeda T, Ishigami A, Goto S (1992) Change with donor age in the degradation rate of endogenous proteins of mouse hepatocytes in primary culture. Arch Gerontol Geriatr 15:181–188

    Article  CAS  Google Scholar 

  55. Ishigami A, Goto S (1990) Effect of dietary restriction on the degradation of proteins in senescent mouse liver parenchymal cells in culture. Arch Biochem Biophys 283:362–366

    Article  CAS  Google Scholar 

  56. Hershko A, Ciechanover A (1982) Mechanism of intracellular protein breakdown. Annu Rev Biochem 51:335–364

    Article  CAS  Google Scholar 

  57. Parsell DA, Lindquist S (1993) The function of heat-shock proteins in stress tolerance: degradation and reactivation of damaged proteins. Annu Rev Genet 27:437–496

    Article  CAS  Google Scholar 

  58. Hayashi T, Goto S (1998) Age-related changes in the 20S and 26S proteasome activities in the liver of male F344 rats. Mech Ageing Dev 102:55–66

    Article  CAS  Google Scholar 

  59. Radák Z, Takahashi R, Kumiyama A, Nakamoto H, Ohno H, Ookawara T et al (2002) Effect of aging and late onset dietary restriction on antioxidant enzymes and proteasome activities, and protein carbonylation of rat skeletal muscle and tendon. Exp Gerontol 37:1423–1430

    Article  Google Scholar 

  60. Nagai M, Takahashi R, Goto S (2000) Dietary restriction initiated late in life can reduce mitochondrial protein carbonyls in rat liver: Western blot studies. Biogerontology 1:321–328

    Article  CAS  Google Scholar 

  61. Cao SX, Dhahbi JM, Mote PL, Spindler SR (2001) Genomic profiling of short- and long-term caloric restriction effects in the liver of aging mice. Proc Natl Acad Sci U S A 98:10630–10635

    Article  CAS  Google Scholar 

  62. Hass BS, Lewis SM, Duffy PH, Ershler W, Feuers RJ, Good RA et al (1996) Dietary restriction in humans: report on the Little Rock Conference on the value, feasibility, and parameters of a proposed study. Mech Ageing Dev 91:79–94

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ryoya Takahashi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Shang, Y., Odera, K., Kakinuma, S., Shimada, Y., Takahashi, R. (2019). Infantile Radiation and Aging Stresses: Effects of Calorie and Dietary Restrictions. In: Rath, P. (eds) Models, Molecules and Mechanisms in Biogerontology. Springer, Singapore. https://doi.org/10.1007/978-981-13-3585-3_16

Download citation

Publish with us

Policies and ethics