Skip to main content

Abstract

The advent of technology has taken us so far in our lives that we cannot imagine any field without technology or devices. Name any area today, for example, business, education, media and communication, aerospace, etc. There are no surprises that health care has become one of the most advanced prospectives for technologies and its application to be used. Currently we are in the era where medical professionals are using applications to speed up diagnosis, treatment, surgical procedures, recovery, etc., to provide better services to the public. One of the most interesting aspects is the medical image processing which has come a long way from requiring human intervention to current day scenario where application accurately predicts the cause and location of tumor or abnormalities from ultrasound, MRI, PET scan, CT scan, X-ray data, etc. Buzz is going on in the medical arena that in the near future technologies will replace some of the health-care professional jobs. Until then let us start by understanding the current state of affair between technology in biomedical image processing field and its applications.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Aberle D, El-Saden S, Abbona P, Gomez A, Motamedi K, Ragavendra N, Bassett L, Seeger L, Brown M, Brown K, Bui AAT, Kangarloo H (2010) A primer on imaging anatomy and physiology. In: Medical imaging informatics. Springer, New York, pp 17–53

    Google Scholar 

  • Anbeek P, Vincken KL, van Bochove GS, van Osch MJP, van der Grond J (2005) Probabilistic segmentation of brain tissue in MR imaging. NeuroImage 27:795–804

    Article  PubMed  Google Scholar 

  • Anthimopoulos M, Christodoulidis S, Ebner L, Christe A, Mougiakakou S (2016) Lung pattern classification for interstitial lung diseases using a deep convolutional neural network. IEEE Trans Med Imag 35(5):1207–1216

    Article  Google Scholar 

  • Ashburner J, Friston KJ (2011) Diffeomorphic registration using geodesic shooting and Gauss-Newton optimisation. NeuroImage 55(3):954–967

    Article  PubMed  Google Scholar 

  • Bailey DL, Townsend DW, Valk PE, Maisey MN (2005) Positron-emission tomography: basic sciences. Springer, Secaucus, NJ. ISBN 1-85233-798-2

    Book  Google Scholar 

  • Bajcsy R, Kovačič S (1989) Multiresolution elasticmatching. Comput Vis Graph Image Process 46(1):1–21

    Article  Google Scholar 

  • Berahim M, Samsudin NA, Nathan SS (2018) A review: image analysis techniques to improve labeling accuracy of medical image classification. Int Conf Soft Comput Data Min 2018:298–307

    Google Scholar 

  • Besl PJ, McKay ND (Feb. 1992) Amethod for registration of 3-D shapes. IEEE Trans Pattern Anal Mach Intell 14(2):239–256

    Article  Google Scholar 

  • Bharatha A, Hirose M, Hata N, Warfield SK, Ferrant M, Zou KH, Suarez-Santana E, Ruiz-Alzola J, D’Amico A, Cormack RA, Kikinis R, Jolesz FA, Tempany CMC (2001) Evaluation of three-dimensional finite element-based deformable registration of pre and intraoperative prostate imaging. Med Phys 28(12):2551–2560

    Article  CAS  PubMed  Google Scholar 

  • Binh NT, Khare A (2010) Adaptive complex wavelet technique for medical image denoising. In Proceedings of third international conference on development of biomedical engineering, 195–198, Vietnam, January 11–14, 2010.

    Google Scholar 

  • Bookstein FL (Jun. 1989) Principal warps: thin-plate splines and the decomposition of deformations. IEEE Trans Pattern Anal Mach Intell 11(6):567–585

    Article  Google Scholar 

  • Bookstein FL (1991) Thin-plate splines and the atlas problem for biomedical images. Proc Int Conf Inf Process Med Imag:326–342

    Google Scholar 

  • Boykov Y, Veksler O, Zabih R (Nov. 2001) Fast approximate energy minimization via graph cuts. IEEE Trans Pattern Anal Mach Intell 23(11):1222–1239

    Article  Google Scholar 

  • Bradley WG (2008) History of medical imaging. Proc Am Philos Soc 152(3):349–361

    PubMed  Google Scholar 

  • Cao X, Miao J, Xiao Y (2017) Medical image segmentation of improved genetic algorithm research based on dictionary learning. World J Eng Technol (5):90–96

    Google Scholar 

  • Carlson N (2012) “Physiology of behavior”, methods and strategies of research, 11th edn. Pearson, London, p 151. ISBN 0205239390

    Google Scholar 

  • Carroll QB (2014) Radiography in the digital age, 2nd edn. Charles C Thomas, Springfield, p 9. ISBN 9780398080976

    Google Scholar 

  • Cheung W, Hamarneh G (2009) n-SIFT: N-dimensional scale invariant feature transform. IEEE Trans Imag Process 18(9):2012–2021

    Article  Google Scholar 

  • Chung K, Scholten ET, Oudkerk M, De Jong PA, Prokop M, Van Ginneken B (2015) Automatic classification of pulmonary peri-fissural nodules in computed tomography using an ensemble of 2D views and a convolutional neural network out-of-the-box. Med Image Anal 26(1):195–202

    Article  PubMed  Google Scholar 

  • Clatz O, Sermesant M, Bondiau P-Y, Delingette H, Warfield SK, Malandain G, Ayache N (Oct. 2005) Realistic simulation of the 3-d growth of brain tumors in MR images coupling diffusion with biomechanical deformation. IEEE Trans Med Imag 24(10):1334–1346

    Article  Google Scholar 

  • Cootes TF, Taylor CJ, Cooper DH, Graham J (1995) Active shape models – their training and application. Comput Vis Imag Understand 61(1):38–59

    Article  Google Scholar 

  • Coyle SM, Ward TSE, Markham CM (2007) Brain–computer interface using a simplified functional near-infrared spectroscopy system. J Neur Eng 4(3):219–226. https://doi.org/10.1088/1741-2560/4/3/007

    Article  Google Scholar 

  • CT Scan (CAT Scan, Computerized Tomography) Imaging Procedure (2018) MedicineNet. Retrieved 29 Nov 2018

    Google Scholar 

  • Declerck J, Feldmar J, Goris ML, Betting F (Dec. 1997) Automatic registration and alignment on a template of cardiac stress and rest reoriented SPECT images. IEEE Trans Med Imag 16(6):727–737

    Article  CAS  Google Scholar 

  • Deserno TM, Antani S, Long R (2009) Ontology of gaps in content-based image retrieval. J Digit Imaging 22(2):202–215

    Article  PubMed  Google Scholar 

  • Despotovi I, Goossens B, Philips W (2015) MRI segmentation of the human brain: challenges, methods, and applications. Comput Math Methods Med 2015

    Google Scholar 

  • Dhawan AP (2008) Image segmentation and feature extraction. In: Principles and advanced methods in medical imaging and image analysis. World Scientific Publishing Co. Pte. Ltd, Singapore, pp 197–228

    Chapter  Google Scholar 

  • Dhawan AP, Dai S (2008) Clustering and pattern classification. In: Principles and advanced methods in medical imaging and image analysis. World Scientific Publishing Co. Pte. Ltd, Singapore, pp 229–265

    Chapter  Google Scholar 

  • DistanceDoc and MedRecorder: New Approach to Remote Ultrasound Imaging, Solutions, Epiphan Systems Archived 2011-02-14 at the Wayback Machine.. Epiphan.com. Retrieved on 2011-11-13.

    Google Scholar 

  • Dolovich M, Labiris R (2004) Imaging drug delivery and drug responses in the lung. Proc Am Thorac Soc 1:329–337

    Article  CAS  PubMed  Google Scholar 

  • Dou Q, Member S, Chen H, Member S, Yu L, Zhao L, Qin J (2016) Automatic detection of cerebral microbleeds from MR images via 3D convolutional neural networks. IEEE Trans Med Imaging 11(4):1–14

    Google Scholar 

  • Duggal R, Gupta A, Gupta R, Wadhwa M, Ahuja C (2016) Overlapping cell nuclei segmentation in microscopic images using deep belief networks. In: Proceedings of the tenth Indian conference on computer vision, graphics and image processing. ACM, New York, p 82

    Google Scholar 

  • Erickson BJ, Korfiatis P, Akkus Z, Kline TL (2017) Machine learning for medical imaging. Radiographics 37(2):505–515

    Article  PubMed  Google Scholar 

  • Esteva A et al (2017) Dermatologist-level classification of skin cancer with deep neural networks. Nature 542(7639):115–118

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Faggella D (2018) Machine learning healthcare applications – 2018 and beyond, article published in techemergence.com in Mar 2018

    Google Scholar 

  • Fletcher R, Reeves CM (1964) Function minimization by conjugate gradients. Comput J 7(2):149–154

    Article  Google Scholar 

  • Ford LR, Fulkerson DR (1956) Maximal flow through a network (PDF). Can J Math 8:399–404

    Google Scholar 

  • Frey BJ, MacKay DJC (1997) A revolution: belief propagation in graphs with cycles. Proc Conf Adv Neural Inf Process Syst:479–485

    Google Scholar 

  • Ganser KA, Dickhaus H, Metzner R, Wirtz CR (2004) A deformable digital brain atlas system according to Talairach and Tournoux. Med Imag Anal 8:3–22

    Article  Google Scholar 

  • Ge C et al (2018) 3D multi-scale convolutional networks for Glioma grading using MR images. IEEE Int Conf Imag Process Proc:141–145

    Google Scholar 

  • Gee JC, Bajcsy R (1999) Elastic matching: continuum mechanical and probabilistic analysis. Brain Warp:183–197

    Google Scholar 

  • Gefen S, Tretiak O, Nissanov J (Nov. 2003) Elastic 3-D alignment of rat brain histological images. IEEE Trans Med Imag 22(11):1480–1489

    Article  Google Scholar 

  • Gholipur K, Briggs G (2007) Brain function Localization: a survey of Image Registration techniques. IEEE Trans Med Imag 26(4):427–451

    Article  Google Scholar 

  • Ghose A, Ghose A, Dasgupta P (2018) New surgical robots on the horizon and the potential role of artificial intelligence. J Invest Clin Urol. https://doi.org/10.4111/icu.2018.59.4.221

  • Goel N, Yadav A, Singh BM (2016) Medical image processing: a review, IEEE CIPECH, Nov 2016

    Google Scholar 

  • Goodfellow I, Pouget-Abadie J, Mirza M, Xu B, Warde-Farley D, Ozair S, Courville A, Bengio Y (2014) Generative adversarial networks. arXiv:1406.2661

    Google Scholar 

  • Gopalakrishnan V, Menon PG, Madan S (2015) cMRI-BED: a novel informatics framework for cardiac MRI biomarker extraction and discovery applied to pediatric cardiomyopathy classification. BioMed Eng 14(suppl 2):1–16

    Google Scholar 

  • Greig DM, Porteous BT, Seheult AH (1989) Exact maximuma posteriori estimation for binary images. J R Stat Soc Ser B (Methodol) 51(2):271–279

    Google Scholar 

  • Haber E, Modersitzki J (2007) Image registration with guaranteed displacement regularity. Int J Comput Vis 71(3):361–372

    Article  Google Scholar 

  • Hadamard J (1923) Lectures on the Cauchy’s Problem in Linear Partial Differential Equations. Yale Univ. Press, New Haven, CT

    Google Scholar 

  • Hager WW, Zhang H (2006) A survey of nonlinear conjugate gradient methods. Pacific J Optimizat 2(1):35–58

    Google Scholar 

  • Hansen N, Ostermeier A (2001) Completely derandomized self-adaptation in evolution strategies. Evolution Comput 9(2):159–195

    Article  CAS  Google Scholar 

  • Haralick RM, Shapiro LG (1985) Image segmentation techniques. Comput Vis Grap Imag Process 29(1):100–132

    Article  Google Scholar 

  • Havaei M et al (2017) Brain tumor segmentation with deep neural networks. Med Imag Anal 35:18–31

    Article  Google Scholar 

  • He J, Christensen GE (2003) Large deformation inverse consistent elastic image registration. Int Conf Inf Process Med Imag:438–449

    Google Scholar 

  • Hellier P, Barillot C, Mémin É, Pérez P (2001) Hierarchical estimation of a dense deformation field for 3-D robust registration. IEEE Trans Med Imag 20(5):388–402

    Article  CAS  Google Scholar 

  • Hensel JM, Ménard C, Chung PW, Milosevic MF, Kirilova A, Moseley JL, Haider MA, Brock KK (2007) Development of multiorgan finite element-based prostate deformation model enabling registration of endorectal coil magnetic resonance imaging for radiotherapy planning. Int J Radiat Oncol Biol Phys 68(5):1522–1528

    Article  PubMed  Google Scholar 

  • Hestenes MR, Stiefel E (1952) Methods of conjugate gradients for solving linear systems. J Res Nat Bureau Stand 49(6):409–436

    Article  Google Scholar 

  • Hogea C, Biros G, Abraham F, Davatzikos C (2007) A robust framework for soft tissue simulations with application to modeling brain tumor mass effect in 3d MR images. Phys Med Biol (23):6893–6908

    Google Scholar 

  • Hong J, Vicory J, Schulz J, Styner M, Marron JS, Pizer SM (2016) Non-Euclidean classification of medically imaged objects via s-reps R. Med Image Anal 31:37–45

    Article  PubMed  PubMed Central  Google Scholar 

  • Iwahori Y, Hattori A, Adachi Y, Bhuyan MK, Robert J (2015) Automatic detection of polyp using hessian filter and HOG features. In: Procedia computer science international conference in knowledge based and intelligent information and engineering systems - KES2015, pp 730–739

    Google Scholar 

  • James AP, Dasarathy BV (2014) Medical image fusion: a survey of state of the art. Inf Fusion 19:4–19. arXiv:1401.0166

    Article  Google Scholar 

  • Jian B, Vemuri B (2011) Robust point set registration using Gaussian mixture models. IEEE Trans Pattern Anal Mach Intell 33(8):1633–1645

    Article  PubMed  Google Scholar 

  • Jin KH, McCann MT, Froustey E, Unser M (2017) Deep convolutional neural network for inverse problems in imaging. IEEE Trans Image Process 26(9):4509–4522

    Article  Google Scholar 

  • Kadir T, Brady M (2001) Saliency, scale and image description. Int J Comput Vis 45(2):83–105

    Article  Google Scholar 

  • Kaur G, Singh B (2011) Intensity based image segmentation using wavelet analysis and clustering techniques. Indian J Comput Sci Eng 2(3)

    Google Scholar 

  • Kaushik D, Singh U, Singhal P, Singh V (2013) Medical image segmentation using genetic algorithm. Int J Comput Appl 81(18)

    Google Scholar 

  • Ker J, Wang L, Rao J, Lim T (2017) Deep learning applications in medical image analysis, Special section on soft computing techniques for image analysis in the medical industry current trends, challenges and solutions, IEEE Access, Dec 2017

    Google Scholar 

  • Kevles BH (1996) Naked to the bone medical imaging in the twentieth century. Rutgers University Press, Camden, NJ, pp 19–22. ISBN 978-0-8135-2358-3

    Google Scholar 

  • Khalvati F, Wong A, Haider MA (2015) Automated prostate cancer detection via comprehensive multi-parametric magnetic resonance imaging texture feature models. BMC Med Imag:1–14

    Google Scholar 

  • Kim J, Fessler JA (Nov. 2004) Intensity-based image registration using robust correlation coefficients. IEEE Trans Med Imag 23(11):1430–1444

    Article  Google Scholar 

  • Klein S, Staring M, Pluim JPW (Dec. 2007) Evaluation of optimization methods for nonrigid medical image registration using mutual information and B-splines. IEEE Trans Image Process 16(12):2879–2890

    Article  PubMed  Google Scholar 

  • Komodakis N, Tziritas G (2007) Approximate labeling via graph cuts based on linear programming. IEEE Trans Pattern Anal Mach Intell 29(8):1436–1453

    Article  PubMed  Google Scholar 

  • Komodakis N, Tziritas G, Paragios N (2008) Performance vs computational efficiency for optimizing single and dynamic MRFs: setting the state of the art with primal-dual strategies. Comput Vis Imag Understand 112(1):14–29

    Article  Google Scholar 

  • Kruggel F, Yves von Cramon D (Jun. 1999) Alignment of magnetic-resonance brain datasets with the stereotactical coordinate system. Med Imag Anal 3:175–185

    Article  CAS  Google Scholar 

  • Kybic J, Unser M (Nov. 2003) Fast parametric elastic image registration. IEEE Trans Imag Process 12(11):1427–1442

    Article  Google Scholar 

  • Lai ZF, Deng HF (2018) Medical image classification based on deep features extracted by deep model and statistic feature fusion with multilayer perceptron. Comp Intel Neurosci 2018

    Google Scholar 

  • Lashari SA, Ibrahim R (2013) A framework for medical images classification using soft set. Proc Technol 11:548–556

    Article  Google Scholar 

  • Last Image Hold Feature (2010) Fluoroscopic Radiation Management. Walter L. Robinson & Associates. Retrieved April 3, 2010

    Google Scholar 

  • LeCun Y (2013) LeNet-5, convolutional neural networks. Retrieved 16 Nov 2013

    Google Scholar 

  • Leow A, Huang S-C, Geng A, Becker J, Davis S, Toga A, Thompson P (2005) Inverse consistent mapping in 3D deformable image registration: its construction and statistical properties. Int Conf Inf Process Med Imag:493–503

    Google Scholar 

  • Lilja AR, Strong CW, Bailey BJ, Thurecht KJ, Houston ZH, Fletcher NL, McGhee JB (2018) Design-led 3D visualization of nanomedicines in virtual reality, VRST, Proceeding of the 24th ACM symposium on Virtual Reality Software and Technology Article No. 48

    Google Scholar 

  • Lin Q, Xu Z, Li B, Baucom R, Poulose B, Landman BA, Bodenheimera RE (2013) Immersive virtual reality for visualization of abdominal CT. Proc SPIE 28:8673. https://doi.org/10.1117/12.2008050

    Article  Google Scholar 

  • Litjens, Geert, Kooi, Thijs, Bejnordi, Babak Ehteshami, Setio, Arnaud Arindra Adiyoso, Ciompi, Francesco, Ghafoorian, Mohsen, Van Der Laak, Jeroen Awm, Van Ginneken, Clara I. Sánchez. (2017). A survey on deep learning in medical image analysis, Med Image Anal, vol. 42, pp. 60–88

    Google Scholar 

  • Liu T, Shen D, Davatzikos C (2004) Deformable registration of cortical structures via hybrid volumetric and surface warping. NeuroImage 22(4):1790–1801

    Article  PubMed  Google Scholar 

  • Liu J, Ma W, Liu F, Hu Y, Yang J, Xu X (2007) Study and application of medical image visualization technology, ICDHM 2007: Digital Human Modeling, 668–677

    Google Scholar 

  • Long LR, Antani S, Deserno TM, Thoma GR (2009) Contentbased image retrieval in medicine retrospective assessment, state of the art, and future directions. Int J Health Inform Syst Informat 4(1):1–16

    Article  Google Scholar 

  • Maes F, Collignon A, Vandermeulen D, Marchal G, Suetens P (1997) Multimodality image registration by maximization of mutual information. IEEE Trans Med Imag 16(2):187–198

    Article  CAS  Google Scholar 

  • Maier-Hein L, Eisenmann M, Reinke A, Onogur S, Stankovic M, Scholz P, Arbel T, Bogunovic H, Bradley AP, Carass A, Feldmann C, Frangi AF, Full PM, van Ginneken B, Hanbury A, Honauer K, Kozubek M, Landman BA, März K, Maier O, MaierHein K, Menze BH, Müller H, Neher PF, Niessen W, Rajpoot N, Sharp GC, Sirinukunwattanal K, Speidel S, Stock C, Stoyanov D, Taha AA, van der Sommen F, Wang C-W, Weber M-A, Zheng G, Jannin P, Kopp-Schneider A (n.d.) Is the winner really the best? A critical analysis of common research practice in biomedical image analysis competitions, https://arxiv.org/pdf/1806.02051.pdf

  • Masood A, Al-jumaily A (2015) Semi advised SVM with adaptive differential evolution based feature selection for skin cancer diagnosis. J Comput Comm 3:184–190

    Article  Google Scholar 

  • Mazziotta J (2002) The international consortium for brain mapping: a probabilistic atlas and reference system for the human brain. In: Toga AW, Mazziotta JC (eds) Brain mapping: the methods. Academic, New York, pp 727–755

    Chapter  Google Scholar 

  • Mazziotta JC, Toga AW, Evans A, Fox P, Lancaster J (1995) A probabilistic atlas of the human brain: theory and rationale for its development. NeuroImage (2):89–101

    Google Scholar 

  • Mikolajczyk K, Schmid C (2004) Scale & affine invariant interest point detectors. Int J Comput Vis 60(1):63–86

    Article  Google Scholar 

  • Mikolajczyk K, Schmid C (Oct. 2005) A performance evaluation of local descriptors. IEEE Trans Pattern Anal Mach Intell 27(10):1615–1630

    Article  PubMed  Google Scholar 

  • Mikolajczyk K, Tuytelaars T, Schmid C, Zisserman A, Matas J, Schaffalitzky F, Kadir T, Gool LV (2005) A comparison of affine region detectors. Int J Comput Vis 65(1–2):43–72

    Article  Google Scholar 

  • Miranda E, Aryuni M, Irwansyah E (2016) A survey of medical image classification techniques. Int Conf Inf Manag Technol (ICIMTech):56–61, 2016

    Google Scholar 

  • Mittal D, Rani A (2016) Detection and classification of focal liver lesions using support vector machine classifiers. J Biomed Eng Med Imaging 3(1):21–34

    Google Scholar 

  • Modersitzki J (2008) Flirt with rigidity-image registration with a local nonrigidity penalty. Int J Comput Vis 76(2):153–163

    Article  Google Scholar 

  • Moré JJ, Thuente DJ (1994) Line search algorithms with guaranteed sufficient decrease. ACM Trans Math Software 20(3):286–307

    Article  Google Scholar 

  • Morel J-M, Yu G (2009) Asift: a new framework for fully affine invariant image comparison. SIAM J Imag Sci 2(2):438–469

    Article  Google Scholar 

  • Murphy KP, Weiss Y, Jordan MI (1999) Loopy belief propagation for approximate inference: an empirical study. Proc Conf Uncert Artif Intell:467–475

    Google Scholar 

  • Nandi D, Ashour AS, Samanta S, Chakraborty S, Salem MAM, Dey N (2015) Principal component analysis in medical image processing: a study. Int J Image Mining 1(1):65–86

    Article  Google Scholar 

  • Nguyen LD, Lin D, Lin Z, Cao J (2018) Deep CNNs for microscopic image classification by exploiting transfer learning and feature concatenation. In: Circuits and Systems (ISCAS), 2018 IEEE international symposium, pp 1–5

    Google Scholar 

  • Ni D, Qu Y, Yang X, Chui Y, Wong T-T, Ho S, Heng P (2008) Volumetric ultrasound panorama based on 3d sift. Proc Int Conf Med Image Comput Assist Intervent:52–60

    Google Scholar 

  • Novelline R (1997) Squire’s fundamentals of radiology, 5th edn. Harvard University Press, Cambridge, MA, pp 34–35. ISBN 0-674-83339-2

    Google Scholar 

  • Nowinski WL, Thirunavuukarasuu A (2001) Atlas-assisted localization analysis of functional images. Med Imag Anal 5:207–220

    Article  CAS  Google Scholar 

  • Passat N, Ronse C, Baruthio J, Armspach J-P, Maillot C, Jahn C (2005) Region-growing segmentation of brain vessels: an atlas-based automatic approach. J Magn Res Imag 21(6):715–725

    Article  Google Scholar 

  • Pedram SA, Ferguson P, Ma J, Dutson E, Rosen J (2017) Autonomous suturing via surgical robot: an algorithm for optimal selection of needle diameter, shape, and path. In: Proceedings of IEEE international conference on robotics and automation. IEEE, Singapore

    Google Scholar 

  • Pennec X, Stefanescu R, Arsigny V, Fillard P, Ayache N (2005) Riemannian elasticity: a statistical regularization framework for non-linear registration. In International conference Medical Image Computing and Computer-Assisted Intervention, 943–950

    Google Scholar 

  • Pereira S, Pinto A, Alves V, Silva CA (2016) Brain tumor segmentation using convolutional neural networks in MRI images. IEEE Trans Med Imag 35(5):1240–1251

    Article  Google Scholar 

  • Pestscharing S, Schoffmann K (2017) Learning laparoscopic video shot classification for gynecological surgery. Multimed Tools Appl 77:8061–8079. https://doi.org/10.1007/s11042-017-4699-5

    Article  Google Scholar 

  • Petitjean C, Dacher J-N (2011) A review of segmentation methods in short axis cardiac MR images. Med Imag Anal 15(2):169–184

    Article  Google Scholar 

  • Pham DL, Xu C, Prince JL (2000) Current methods in medical image segmentation. Ann Rev Biomed Eng 2(1):315–337

    Article  CAS  Google Scholar 

  • Polyak BT (1969) The conjugate gradient method in extremal problems. USSR Computat Math Math Phys 9(4):94–112

    Article  Google Scholar 

  • Que Q, Tang Z, Wang R, Zeng Z, Wang J, Chua M, Gee TS, Yang X, Veeravalli B (2018) CardioXNet: automated detection for cardiomegaly based on deep learning. IEEE EMBC. https://doi.org/10.1109/EMBC.2018.8512374

  • Rabbitt RD, Weiss JA, Christensen GE, Miller MI (1995) Mapping of hyperelastic deformable templates using the finite element method. In: Proceedings of SPIE Visual Geometry, pp 252–265

    Google Scholar 

  • Radiographic Standard Operating Protocols (PDF) (2015) HEFT Radiology Directorate. Heart of England NHS Foundation Trust. Retrieved 27 Jan 2016

    Google Scholar 

  • Radiology – acute indications (2017) Royal Children’s Hospital, Melbourne. Retrieved 23 July 2017

    Google Scholar 

  • Rao KMM, Rao VDP Medical image processing

    Google Scholar 

  • Razzak MI, Naz S, Zaib A (n.d.) Deep learning for medical image processing: overview, challenges and future, https://arxiv.org/pdf/1704.06825.pdf

  • Richard P, Coiffet P (1995) Human perceptual issues in virtual environments: sensory substitution and information redundancy. In: Proceedings of IEEE international workshop on robot and human communication. IEEE, Tokyo

    Google Scholar 

  • Roell J (2017) Understanding recurrent neural networks: the preferred neural network for time-series data, Article in towards data science, Jun 26, 2017

    Google Scholar 

  • Roland PE, Zilles K (Nov. 1994) Brain atlases – a new research tool. Trends Neurosci 17:458–467

    Article  CAS  PubMed  Google Scholar 

  • Roland PE, Geyer S, Amunts K, Schormann T, Schleicher A, Malikovic A, Zilles K (1997) Cytoarchitectural maps of the human brain in standard anatomical space. Hum Brain Mapp 5:222–227

    Article  CAS  PubMed  Google Scholar 

  • Roth HR et al (2015) Deeporgan: multi-level deep convolutional networks for automated pancreas segmentation. Proc Int Conf Med Imag Comput Assist Intervent 2015:556–564

    Google Scholar 

  • Rueckert D, Sonoda LI, Hayes C, Hill DLG, Leach MO, Hawkes DJ (1999) Nonrigid registration using free-form deformations: application to breast MR images. IEEE Trans Med Imag 18(8):712–721

    Article  CAS  Google Scholar 

  • Sahoo PK, Soltani S, Wong AKC (1988) A survey of thresholding techniques. Comput Vis Graph Image Proc 41:233–260

    Article  Google Scholar 

  • Sakamoto M, Nakano H (2016) Cascaded neural networks with selective classifiers and its evaluation using lung x-ray ct images. arXiv preprint arXiv:1611.07136

    Google Scholar 

  • Sample S (2007-03-27) X-Rays. The electromagnetic spectrum. NASA. Retrieved 3 Dec 2007 https://en.wikipedia.org/wiki/X-ray

  • Sarikaya D, Corso JJ, Guru KA (2017) Detection and localization of robotic tools in robot-assisted surgery videos using deep neural networks for region proposal and detection. IEEE Trans Med Imag. https://doi.org/10.1109/TMI.2017.2665671

  • Scholl I, Aach T, Deserno TM, Kuhlen T (2011) Challenges of medical image processing. Comput Sci Res Dev 26:5–13. https://doi.org/10.1007/s00450-010-0146-9

    Article  Google Scholar 

  • Seetharaman K, Sathiamoorthy S (2016) A unified learning framework for content based medical image retrieval using a statistical model. J King Saud Univ Comput Inf Sci 28(1):110–124

    Google Scholar 

  • Setio AAA, Ciompi F, Litjens G, Gerke P, Jacobs C, Van Riel SJ, Wille MW, Naqibullah M, Clara IS, Van Ginneken B (2016) Pulmonary nodule detection in CT images: false positive reductionusing multi-view convolutional networks. IEEE Trans Med Imag 35(5):1160–1169

    Article  Google Scholar 

  • Sharma A (2015) A refinement: better classification of images using LDA in contrast with SURF and SVM for CBIR system. Int J Comput App 117(16)

    Google Scholar 

  • Sharma N, Aggarwal LM (2010) Automated medical image segmentation techniques. J Med Phys Assoc Med Phys India 35(1):3

    Google Scholar 

  • Shrimpton PC, Miller HC, Lewis MA, Dunn M (2011) Doses from Computed Tomography (CT) examinations in the UK – 2003 Review Archived 2011-09-22 at the Wayback Machine.

    Google Scholar 

  • Shvets A, Rakhlin A, Kalinin AA, Iglovikov V (2018) Automatic instrument segmentation in robot-assisted surgery using deep learning. bioRxiv. https://doi.org/10.1101/275867

  • Sirinukunwattana K, Raza SEA, Tsang Y, Snead DRJ, Cree IA, Rajpoot NM (2016) Locality sensitive deep learning for detection and classification of nuclei in routine colon cancer histology images. IEEE Trans Med Imaging 35(5):1–12

    Article  Google Scholar 

  • Solodova RF, Galatenko VV, Nakashidze ER, Andreytsev IL, Galatenko AV, Senchik DK et al (2016) Instrumental tactile diagnostics in robot-assisted surgery. Med Devices Evid Res 9:377–382. https://doi.org/10.2147/MDER.S116525

    Article  Google Scholar 

  • Song Y, Cai W, Huang H, Zhou Y, Wang Y, Feng DD (2015) Locality-constrained subcluster representation ensemble for lung image classification. Med Image Anal 22(1):102–113

    Article  PubMed  Google Scholar 

  • Tagare HD, Jaffe CC, Duncan J (1997) Medical image databases: a content-base

    Google Scholar 

  • Talairach J, Tournoux P (1988) Co-planar stereotaxic atlas of the human brain. Thieme, New York

    Google Scholar 

  • Thirumaran J, Shylaja S (2014) Medical image processing – an introduction, IJSR, ISSN (Online): 2319-7064

    Google Scholar 

  • Thompson PM, Woods RP, Mega MS, Toga AW (2000) Mathematical/computational challenges in creating deformable and probabilistic atlases of the brain. Hum Brain Mapp 9:81–92

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Toennies KD (2012) Guide to medical image analysis. Springer Adv Patt Recogn. https://doi.org/10.1007/978-1-4471-2751-2

  • Torresani L, Kolmogorov V, Rother C (2008) Feature correspondence via graph matching: models and global optimization. Proc Eur Conf Comput Vis:596–609

    Google Scholar 

  • Triggs B (2004) Detecting keypoints with stable position, orientation, and scale under illumination changes. Proc Eur Conf Comput Vis:100–113

    Google Scholar 

  • Tsui P-H, Yeh CK, Huang C-C (2012) Noise-assisted correlation algorithm for suppressing noise-induced artifacts in ultrasonic Nakagami images. IEEE Trans Infor Technol Biomed 16(3)

    Google Scholar 

  • Ultrasound Imaging of the Pelvis. radiologyinfo.org. Archived from the original on 2008-06-25. Retrieved 2008-06-21

    Google Scholar 

  • Upadhyay A, Kashyap R (2016) Fast segmentation methods for medical images. Int J Comput Appl 156(3):18–23

    Google Scholar 

  • Van Grinsven MJJP, Van Ginneken B, Hoyng CB, Theelen T, Clara IS (2016) Fast convolutional neural network training using selective data sampling: application to hemorrhage detection in color fundus images. IEEE Trans Med Imaging 35(5):1273–1284

    Article  PubMed  Google Scholar 

  • Van Tulder G, De Bruijne M (2016) Combining generative and discriminative representation learning for lung CT analysis with convolutional restricted boltzmann machines. IEEE Trans Med Imaging 35(5):1262–1272

    Article  PubMed  Google Scholar 

  • Varytimidis C, Rapantzikos K, Loukas C, Kolias S (2016) Surgical video retrieval using deep neural networks. In: Proceedings of workshop and challenges on modeling and monitoring of computer assisted interventions. MICCAI, Athens

    Google Scholar 

  • Viola P, Wells WM III (1997) Alignment by maximization of mutual information. Int J Comput Vis 24(2):137–154

    Article  Google Scholar 

  • Wang J, Blackburn TJ (2000) The AAPM/RSNA physics tutorial for residents: X-ray image intensifiers for fluoroscopy. Radiographics 20(5): 1471–1477. doi:https://doi.org/10.1148/radiographics.20.5.g00se181471. ISSN 0271-5333. PMID 10992034.

  • Wang L, Pedersen PC, Agu E, Strong DM, Tulu B (2017) Area determination of diabetic foot ulcer images using a cascaded two-stage SVM-based classification. IEEE Trans Biomed Eng 64(9):2098–2109

    Article  PubMed  Google Scholar 

  • Weizenecker J, Gleich B, Rahmer J, Dahnke H, Borgert J (2009) Three-dimensional real-time in vivo magnetic particle imaging. Phys Med Biol 54(5):L1–L10. https://doi.org/10.1088/0031-9155/54/5/L01

    Article  CAS  PubMed  Google Scholar 

  • Withey DJ, Koles, ZJ (2007) Medical image segmentation: methods and software, 140–143

    Google Scholar 

  • Woods RP (2003) Characterizing volume and surface deformations in an atlas framework: theory, applications, and implementation. Neuroimage 18:769–788

    Article  PubMed  Google Scholar 

  • Wu Y-T, Kanade T, Li C-C, Cohn J (2000) Image registration using wavelet-based motion model. Int J Comput Vis 38(2):129–152

    Article  Google Scholar 

  • Xue Z, Shen D, Davatzikos C (Oct. 2004) Determining correspondence in 3-D MR brain images using attribute vectors as morphological signatures of voxels. IEEE Trans Med Imag 23(10):1276–1291

    Article  Google Scholar 

  • Yamamoto T, Abolhassani N, Jung S, Okamura AM, Judkins T (2012) Augmented reality and haptic interfaces for robot-assisted surgery. Int J Med Robotics Comput Assist Surg 8:45–56. https://doi.org/10.1002/rcs.421

    Article  Google Scholar 

  • Yang X, Xue Z, Liu X, Xiong D (2011) Topology preservation evaluation of compact-support radial basis functions for image registration. Pattern Recognit Lett 32(8):1162–1177

    Article  Google Scholar 

  • Yu YE, Bishop M, Zheng B, Ferguson RM, Khandhar AP, Kemp SJ, Krishnan KM, Goodwill PW, Conolly SM (2017) Magnetic particle imaging: a novel in vivo imaging platform for cancer detection. Nano Lett 17(3):1648–1654. https://doi.org/10.1021/acs.nanolett.6b04865

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zagorchev L, Goshtasby A (2006) A comparative study of transformation functions for nonrigid image registration. IEEE Trans Imag Process 15(3):529–538

    Article  Google Scholar 

  • Zhang W et al (2015) Deep convolutional neural networks for multi-modality isointense infant brain image segmentation. NeuroImage 108:214–224

    Article  PubMed  Google Scholar 

  • Zhao Z, Voros S, Weng Y, Chang F, Li R (2017) Tracking-by-detection of surgical instruments in minimally invasive surgery via the convolutional neural network deep learning-based method. Comput Assist Surg 22:26–35. https://doi.org/10.1080/24699322.2017.1378777

    Article  Google Scholar 

  • Zhu H (2003) Medical image processing overview

    Google Scholar 

  • Zhu Q, Du B, Wu J, Yan P (2018) A deep learning health data analysis approach: automatic 3D prostate MR segmentation with densely-connected volumetric convnets. IJCNN. https://doi.org/10.1109/IJCNN.2018.8489136

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Singapore Pte Ltd.

About this chapter

Cite this chapter

Emami, T., Janney, S.S., Chakravarty, S. (2019). Elements of Medical Image Processing. In: Paul, S. (eds) Biomedical Engineering and its Applications in Healthcare. Springer, Singapore. https://doi.org/10.1007/978-981-13-3705-5_20

Download citation

Publish with us

Policies and ethics