Skip to main content

Metalenses and Meta-mirrors

  • Chapter
  • First Online:
Engineering Optics 2.0

Abstract

Lenses are the fundamental optical components and play the key roles in most of the optical systems, including cameras, microscopes, telescopes, projective lithographic machines, and spectrometers. Traditional lenses are made from materials such as glass or plastic and are polished or molded to desired shapes. However, the traditional refractive/reflective or diffractive lenses have their intrinsic limits in integration, weight, chromatic aberration, among others. The newly emerging metalenses may be promising alternatives to overcome these limits for practical applications. In this chapter, we will start with a brief review of the traditional lens in Sect. 9.1. Then, the design methods of the planar metalens and meta-mirror in EO 2.0 are introduced in Sect. 9.2. In Sects. 9.3 and 9.4, planar lenses with large numerical aperture (NA) and wide field of view, which are extremely difficult to realize in traditional optics with compact volume, are discussed in detail. Important technologies and the latest developments in metalenses, including achromatic or super-chromatic imaging, and tunable imaging, are elaborated and highlighted in Sects. 9.5 and 9.6. At last, we also give a brief introduction of nonlinear metalens in Sect. 9.7.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 139.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Lens. https://en.wikipedia.org/wiki/Lens_(optics)

  2. Objective lens system of Olympus E-30 DSLR Camera. https://commons.wikimedia.org/wiki/File:E-30-Cutmodel.jpg

  3. M. Totzeck, W. Ulrich, A. Göhnermeier, W. Kaiser, Pushing deep ultraviolet lithography to its limits. Nat. Photon. 1, 629 (2007)

    Article  CAS  Google Scholar 

  4. Fresnel lens, https://en.wikipedia.org/wiki/Fresnel_lens

  5. G. Andersen, D. Tullson, Broadband antihole photon sieve telescope. Appl. Opt. 46, 3706–3708 (2007)

    Article  Google Scholar 

  6. Solar imaging system with photon sieves. https://www.nasa.gov/topics/technology/features/kitchen-optics.html

  7. G. Cao, X. Gan, H. Lin, B. Jia, An accurate design of graphene oxide ultrathin flat lens based on Rayleigh-Sommerfeld theory. Opto-Electron. Adv. 1, 180012 (2018)

    Google Scholar 

  8. S. Wang, X. Ouyang, Z. Feng, Y. Cao, M. Gu, X. Li, Diffractive photonic applications mediated by laser reduced graphene oxides. Opto-Electron. Adv. 1, 170002 (2018)

    Google Scholar 

  9. H. Shi, C. Wang, C. Du, X. Luo, X. Dong, H. Gao, Beam manipulating by metallic nano-slits with variant widths. Opt. Express 13, 6815–6820 (2005)

    Article  Google Scholar 

  10. T. Xu, C. Wang, C. Du, X. Luo, Plasmonic beam deflector. Opt. Express 16, 4753–4759 (2008)

    Article  Google Scholar 

  11. L. Bourke, R.J. Blaikie, Genetic algorithm optimization of grating coupled near-field interference lithography systems at extreme numerical apertures. J. Opt. 19, 095003 (2017)

    Article  CAS  Google Scholar 

  12. P. Gao, N. Yao, C. Wang, Z. Zhao, Y. Luo, Y. Wang, G. Gao, K. Liu, C. Zhao, X. Luo, Enhancing aspect profile of half-pitch 32 nm and 22 nm lithography with plasmonic cavity lens. Appl. Phys. Lett. 106, 093110 (2015)

    Article  CAS  Google Scholar 

  13. M. Pu, Y. Guo, X. Li, X. Ma, X. Luo, Revisitation of extraordinary Young’s interference: from catenary optical fields to spin-orbit interaction in metasurfaces. ACS Photonics 5, 3198–3204 (2018)

    Article  CAS  Google Scholar 

  14. T. Xu, C. Du, C. Wang, X. Luo, Subwavelength imaging by metallic slab lens with nanoslits. Appl. Phys. Lett. 91, 201501 (2007)

    Article  CAS  Google Scholar 

  15. L. Verslegers, P.B. Catrysse, Z. Yu, J.S. White, E.S. Barnard, M.L. Brongersma, S. Fan, Planar lenses based on nanoscale slit arrays in a metallic film. Nano Lett. 9, 235–238 (2008)

    Article  CAS  Google Scholar 

  16. S. Ishii, V.M. Shalaev, A.V. Kildishev, Holey-metal lenses: sieving single modes with proper phases. Nano Lett. 13, 159–163 (2012)

    Article  CAS  Google Scholar 

  17. Y. Chen, C. Zhou, X. Luo, C. Du, Structured lens formed by a 2D square hole array in a metallic film. Opt. Lett. 33, 753–755 (2008)

    Article  Google Scholar 

  18. J. Li, S. Chen, H. Yang, J. Li, P. Yu, H. Cheng, C. Gu, H.-T. Chen, J. Tian, Simultaneous control of light polarization and phase distributions using plasmonic metasurfaces. Adv. Funct. Mater. 25, 704–710 (2015)

    Article  CAS  Google Scholar 

  19. K. Huang, H. Liu, F.J. Garcia-Vidal, M. Hong, B. Luk’yanchuk, J. Teng, C.-W. Qiu, Ultrahigh-capacity non-periodic photon sieves operating in visible light. Nat. Commun. 6, 7059 (2015)

    Google Scholar 

  20. L. Kipp, M. Skibowski, R.L. Johnson, R. Berndt, R. Adelung, S. Harm, R. Seemann, Sharper images by focusing soft X-rays with photon sieves. Nature 414, 184–188 (2001)

    Article  CAS  Google Scholar 

  21. H. Pahlevaninezhad, M. Khorasaninejad, Y.-W. Huang, Z. Shi, L.P. Hariri, D.C. Adams, V. Ding, A. Zhu, C.-W. Qiu, F. Capasso, M.J. Suter, Nano-optic endoscope for high-resolution optical coherence tomography in vivo. Nat. Photon. 12, 540–547 (2018)

    Article  CAS  Google Scholar 

  22. E. Arbabi, A. Arbabi, S.M. Kamali, Y. Horie, A. Faraon, Multiwavelength metasurfaces through spatial multiplexing. Sci. Rep. 6, 32803 (2016)

    Article  CAS  Google Scholar 

  23. Z.-B. Fan, Z.-K. Shao, M.-Y. Xie, X.-N. Pang, W.-S. Ruan, F.-L. Zhao, Y.-J. Chen, S.-Y. Yu, J.-W. Dong, Silicon nitride metalenses for close-to-one numerical aperture and wide-angle visible imaging. Phys. Rev. Appl. 10, 014005 (2018)

    Article  Google Scholar 

  24. A. She, S. Zhang, S. Shian, D.R. Clarke, F. Capasso, Large area metalenses: design, characterization, and mass manufacturing. Opt. Express 26, 1573–1585 (2018)

    Article  CAS  Google Scholar 

  25. M. Khorasaninejad, A.Y. Zhu, C. Roques-Carmes, W.T. Chen, J. Oh, I. Mishra, R.C. Devlin, F. Capasso, Polarization-insensitive metalenses at visible wavelengths. Nano Lett. 16, 7229–7234 (2016)

    Article  CAS  Google Scholar 

  26. X. Luo, Principles of electromagnetic waves in metasurfaces. Sci. China Phys. Mech. Astron. 58, 594201 (2015)

    Article  CAS  Google Scholar 

  27. X. Chen, L. Huang, H. Mühlenbernd, G. Li, B. Bai, Q. Tan, G. Jin, C.-W. Qiu, S. Zhang, T. Zentgraf, Dual-polarity plasmonic metalens for visible light. Nat. Commun. 3, 1198 (2012)

    Article  CAS  Google Scholar 

  28. X. Chen, M. Chen, M.Q. Mehmood, D. Wen, F. Yue, C.-W. Qiu, S. Zhang, Longitudinal multifoci metalens for circularly polarized light. Adv. Opt. Mater. 3, 1201–1206 (2015)

    Article  CAS  Google Scholar 

  29. F. Zhang, M. Pu, X. Li, P. Gao, X. Ma, J. Luo, H. Yu, X. Luo, All-dielectric metasurfaces for simultaneous giant circular asymmetric transmission and wavefront shaping based on asymmetric photonic spin-orbit interactions. Adv. Funct. Mater. 27, 1704295 (2018)

    Article  CAS  Google Scholar 

  30. M. Khorasaninejad, W.T. Chen, A.Y. Zhu, J. Oh, R.C. Devlin, D. Rousso, F. Capasso, Multispectral chiral imaging with a metalens. Nano Lett. 16, 4595–4600 (2016)

    Article  CAS  Google Scholar 

  31. X. Xie, X. Li, M. Pu, X. Ma, K. Liu, Y. Guo, X. Luo, Plasmonic metasurfaces for simultaneous thermal infrared invisibility and holographic illusion. Adv. Funct. Mater. 28, 1706673 (2018)

    Article  CAS  Google Scholar 

  32. M. Khorasaninejad, W.T. Chen, R.C. Devlin, J. Oh, A.Y. Zhu, F. Capasso, Metalenses at visible wavelengths: Diffraction-limited focusing and subwavelength resolution imaging. Science 352, 1190–1194 (2016)

    Article  CAS  Google Scholar 

  33. M. Pu, P. Chen, C. Wang, Y. Wang, Z. Zhao, C. Hu, C. Huang, X. Luo, Broadband anomalous reflection based on gradient low-Q meta-surface. AIP Adv. 3, 052136 (2013)

    Article  Google Scholar 

  34. X. Li, S. Xiao, B. Cai, Q. He, T.J. Cui, L. Zhou, Flat metasurfaces to focus electromagnetic waves in reflection geometry. Opt. Lett. 37, 4940–4942 (2012)

    Article  Google Scholar 

  35. M. Pu, P. Chen, Y. Wang, Z. Zhao, C. Huang, C. Wang, X. Ma, X. Luo, Anisotropic meta-mirror for achromatic electromagnetic polarization manipulation. Appl. Phys. Lett. 102, 131906 (2013)

    Article  CAS  Google Scholar 

  36. A. Pors, M.G. Nielsen, R.L. Eriksen, S.I. Bozhevolnyi, Broadband focusing flat mirrors based on plasmonic gradient metasurfaces. Nano Lett. 13, 829–834 (2013)

    Article  CAS  Google Scholar 

  37. A.B. Klemm, D. Stellinga, E.R. Martins, L. Lewis, G. Huyet, L. O’Faolain, T.F. Krauss, Experimental high numerical aperture focusing with high contrast gratings. Opt. Lett. 38, 3410–3413 (2013)

    Article  Google Scholar 

  38. A. Arbabi, Y. Horie, A.J. Ball, M. Bagheri, A. Faraon, Subwavelength-thick lenses with high numerical apertures and large efficiency based on high-contrast transmitarrays. Nat. Commun. 6, 7069 (2015)

    Article  CAS  Google Scholar 

  39. W.T. Chen, A.Y. Zhu, M. Khorasaninejad, Z.J. Shi, V. Sanjeev, F. Capasso, Immersion meta-lenses at visible wavelengths for nanoscale imaging. Nano Lett. 17, 3188–3194 (2017)

    Article  CAS  Google Scholar 

  40. H. Liang, Q. Lin, X. Xie, Q. Sun, Y. Wang, L. Zhou, L. Liu, X. Yu, J. Zhou, T.F. Krauss, J. Li, Ultrahigh numerical aperture metalens at visible wavelengths. Nano Lett. 18, 4460–4466 (2018)

    Article  CAS  Google Scholar 

  41. R. Paniagua-Domínguez, Y.F. Yu, E. Khaidarov, S. Choi, V. Leong, R.M. Bakker, X. Liang, Y.H. Fu, V. Valuckas, L.A. Krivitsky, A.I. Kuznetsov, A metalens with a near-unity numerical aperture. Nano Lett. 18, 2124–2132 (2018)

    Article  CAS  Google Scholar 

  42. F. Lu, F.G. Sedgwick, V. Karagodsky, C. Chase, C.J. Chang-Hasnain, Planar high-numerical-aperture low-loss focusing reflectors and lenses using subwavelength high contrast gratings. Opt. Express 18, 12606–12614 (2010)

    Article  CAS  Google Scholar 

  43. F. Aieta, P. Genevet, M. Kats, F. Capasso, Aberrations of flat lenses and aplanatic metasurfaces. Opt. Express 21, 31530–31539 (2013)

    Article  Google Scholar 

  44. A. Kalvach, Z. Szabó, Aberration-free flat lens design for a wide range of incident angles. J. Opt. Soc. Am. B 33, A66–A71 (2016)

    Article  CAS  Google Scholar 

  45. J. Hunt, T. Tyler, S. Dhar, Y.-J. Tsai, P. Bowen, S. Larouche, N.M. Jokerst, D.R. Smith, Planar, flattened Luneburg lens at infrared wavelengths. Opt. Express 20, 1706–1713 (2012)

    Article  Google Scholar 

  46. F. Zhang, M. Pu, J. Luo, H. Yu, X. Luo, Symmetry breaking of photonic spin-orbit interactions in metasurfaces. Opto-Electron. Eng. 44, 319–325 (2017)

    Google Scholar 

  47. H. Ma, T. Cui, Three-dimensional broadband and broad-angle transformation-optics lens. Nat. Commun. 1, 124 (2010)

    Article  CAS  Google Scholar 

  48. W.X. Jiang, C.-W. Qiu, T.C. Han, Q. Cheng, H.F. Ma, S. Zhang, T.J. Cui, Broadband all-dielectric magnifying lens for far-field high-resolution imaging. Adv. Mater. 25, 6963–6968 (2013)

    Article  CAS  Google Scholar 

  49. Y.-Y. Zhao, Y.-L. Zhang, M.-L. Zheng, X.-Z. Dong, X.-M. Duan, Z.-S. Zhao, Three-dimensional Luneburg lens at optical frequencies. Laser Photonics Rev. 10, 665–672 (2016)

    Article  CAS  Google Scholar 

  50. A. Arbabi, E. Arbabi, S.M. Kamali, Y. Horie, S. Han, A. Faraon, Miniature optical planar camera based on a wide-angle metasurface doublet corrected for monochromatic aberrations. Nat. Commun. 7, 13682 (2016)

    Article  CAS  Google Scholar 

  51. C. Sun, Shrinking the camera size. Nat. Mater. 16, 11 (2016)

    Article  CAS  Google Scholar 

  52. B. Groever, W.T. Chen, F. Capasso, Meta-Lens doublet in the visible region. Nano Lett. 17, 4902–4907 (2017)

    Article  CAS  Google Scholar 

  53. T. Gissibl, S. Thiele, A. Herkommer, H. Giessen, Two-photon direct laser writing of ultracompact multi-lens objectives. Nat. Photon. 10, 554–560 (2016)

    Article  CAS  Google Scholar 

  54. Extreme challenges in optics and imaging. https://www.fbo.gov/index?s=opportunity&mode=form&id=dc0f5e99441421af64f2048f696c5168&tab=core&_cview=0

  55. M. Pu, X. Li, Y. Guo, X. Ma, X. Luo, Nanoapertures with ordered rotations: symmetry transformation and wide-angle flat lensing. Opt. Express 25, 31471–31477 (2017)

    Article  CAS  Google Scholar 

  56. X. Li, L. Chen, Y. Li, X. Zhang, M. Pu, Z. Zhao, X. Ma, Y. Wang, M. Hong, X. Luo, Multicolor 3D meta-holography by broadband plasmonic modulation. Sci. Adv. 2, e1601102 (2016)

    Article  CAS  Google Scholar 

  57. Y. Li, X. Li, L. Chen, M. Pu, J. Jin, M. Hong, X. Luo, Orbital angular momentum multiplexing and demultiplexing by a single metasurface. Adv. Opt. Mater. 5, 1600502 (2017)

    Article  CAS  Google Scholar 

  58. X. Li, M. Pu, Y. Wang, X. Ma, Y. Li, H. Gao, Z. Zhao, P. Gao, C. Wang, X. Luo, Dynamic control of the extraordinary optical scattering in semicontinuous 2D metamaterials. Adv. Opt. Mater. 4, 659–663 (2016)

    Article  CAS  Google Scholar 

  59. X. Li, M. Pu, Z. Zhao, X. Ma, J. Jin, Y. Wang, P. Gao, X. Luo, Catenary nanostructures as compact Bessel beam generators. Sci. Rep. 6, 20524 (2016)

    Article  CAS  Google Scholar 

  60. M. Pu, X. Li, X. Ma, Y. Wang, Z. Zhao, C. Wang, C. Hu, P. Gao, C. Huang, H. Ren, X. Li, F. Qin, J. Yang, M. Gu, M. Hong, X. Luo, Catenary optics for achromatic generation of perfect optical angular momentum. Sci. Adv. 1, e1500396 (2015)

    Article  CAS  Google Scholar 

  61. W. Liu, Z. Li, H. Cheng, C. Tang, J. Li, S. Zhang, S. Chen, J. Tian, Metasurface enabled wide-angle fourier lens. Adv. Mater. 30, 1706368 (2018)

    Article  CAS  Google Scholar 

  62. Y. Guo, X. Ma, M. Pu, X. Li, Z. Zhao, X. Luo, High-efficiency and wide-angle beam steering based on catenary optical fields in ultrathin metalens. Adv. Opt. Mater. 6, 1800592 (2018)

    Article  CAS  Google Scholar 

  63. Y. Li, X. Li, M. Pu, Z. Zhao, X. Ma, Y. Wang, X. Luo, Achromatic flat optical components via compensation between structure and material dispersions. Sci. Rep. 6, 19885 (2016)

    Article  CAS  Google Scholar 

  64. Z. Zhao, M. Pu, H. Gao, J. Jin, X. Li, X. Ma, Y. Wang, P. Gao, X. Luo, Multispectral optical metasurfaces enabled by achromatic phase transition. Sci. Rep. 5, 15781 (2015)

    Article  CAS  Google Scholar 

  65. K. Li, Y. Guo, M. Pu, X. Li, X. Ma, Z. Zhao, X. Luo, Dispersion controlling meta-lens at visible frequency. Opt. Express 25, 21419–21427 (2017)

    Article  CAS  Google Scholar 

  66. O. Avayu, E. Almeida, Y. Prior, T. Ellenbogen, Composite functional metasurfaces for multispectral achromatic optics. Nat. Commun. 8, 14992 (2017)

    Article  CAS  Google Scholar 

  67. P. Venugopalan, Q. Zhang, X. Li, L. Kuipers, M. Gu, Focusing dual-wavelength surface plasmons to the same focal plane by a far-field plasmonic lens. Opt. Lett. 39, 5744–5747 (2014)

    Article  Google Scholar 

  68. O. Eisenbach, O. Avayu, R. Ditcovski, T. Ellenbogen, Metasurfaces based dual wavelength diffractive lenses. Opt. Express 23, 3928–3936 (2015)

    Article  CAS  Google Scholar 

  69. Z.-L. Deng, S. Zhang, G.P. Wang, Wide-angled off-axis achromatic metasurfaces for visible light. Opt. Express 24, 23118–23128 (2016)

    Article  Google Scholar 

  70. M. Khorasaninejad, F. Aieta, P. Kanhaiya, M.A. Kats, P. Genevet, D. Rousso, F. Capasso, Achromatic metasurface lens at telecommunication wavelengths. Nano Lett. 15, 5358–5362 (2015)

    Article  CAS  Google Scholar 

  71. F. Aieta, M.A. Kats, P. Genevet, F. Capasso, Multiwavelength achromatic metasurfaces by dispersive phase compensation. Science 347, 1342–1345 (2015)

    Article  CAS  Google Scholar 

  72. M. Khorasaninejad, Z. Shi, A.Y. Zhu, W.T. Chen, V. Sanjeev, A. Zaidi, F. Capasso, Achromatic metalens over 60 nm bandwidth in the visible and metalens with reverse chromatic dispersion. Nano Lett. 17, 1819–1824 (2017)

    Article  CAS  Google Scholar 

  73. S. Wang, J. Lai, T. Wu, C. Chen, J. Sun, Wide-band achromatic flat focusing lens based on all-dielectric subwavelength metasurface. Opt. Express 25, 7121–7130 (2017)

    Article  Google Scholar 

  74. S. Wang, P.C. Wu, V.-C. Su, Y.-C. Lai, C.H. Chu, J.-W. Chen, S.-H. Lu, J. Chen, B. Xu, C.-H. Kuan, T. Li, S. Zhu, D.P. Tsai, Broadband achromatic optical metasurface devices. Nat. Commun. 8, 187 (2017)

    Article  CAS  Google Scholar 

  75. H.H. Hsiao, H. Chen Yu, J. Lin Ren, C. Wu Pin, S. Wang, H. Chen Bo, P. Tsai Din, Integrated resonant unit of metasurfaces for broadband efficiency and phase manipulation. Adv. Opt. Mater. 6, 1800031 (2018)

    Google Scholar 

  76. W.T. Chen, A.Y. Zhu, V. Sanjeev, M. Khorasaninejad, Z. Shi, E. Lee, F. Capasso, A broadband achromatic metalens for focusing and imaging in the visible. Nat. Nanotechnol. 13, 220 (2018)

    Article  CAS  Google Scholar 

  77. S. Wang, P.C. Wu, V.-C. Su, Y.-C. Lai, M.-K. Chen, H.Y. Kuo, B.H. Chen, Y.H. Chen, T.-T. Huang, J.-H. Wang, R.-M. Lin, C.-H. Kuan, T. Li, Z. Wang, S. Zhu, D.P. Tsai, A broadband achromatic metalens in the visible. Nat. Nanotechnol. 13, 227 (2018)

    Article  CAS  Google Scholar 

  78. A. Nemati, Q. Wang, M. Hong, J. Teng, Tunable and reconfigurable metasurfaces and metadevices. Opto-Electron. Adv. 1, 180009 (2018)

    Article  Google Scholar 

  79. S. Song, X. Ma, M. Pu, X. Li, K. Liu, P. Gao, Z. Zhao, Y. Wang, C. Wang, X. Luo, Actively tunable structural color rendering with tensile substrate. Adv. Opt. Mater. 5, 1600829 (2017)

    Article  CAS  Google Scholar 

  80. H.-S. Ee, R. Agarwal, Tunable metasurface and flat optical zoom lens on a stretchable substrate. Nano Lett. 16, 2818–2823 (2016)

    Article  CAS  Google Scholar 

  81. S.M. Kamali, E. Arbabi, A. Arbabi, Y. Horie, A. Faraon, Highly tunable elastic dielectric metasurface lenses. Laser Photonics Rev. 10, 1062 (2016)

    Article  Google Scholar 

  82. L.W. Alvarez, Two-element variable-power spherical lens. US Patent, US3305294A (1967)

    Google Scholar 

  83. A. Zhan, S. Colburn, C.M. Dodson, A. Majumdar, Metasurface freeform nanophotonics. Sci. Rep. 7, 1673 (2017)

    Article  CAS  Google Scholar 

  84. C. Min, P. Wang, X. Jiao, Y. Deng, H. Ming, Beam manipulating by metallic nano-optic lens containing nonlinear media. Opt. Express 15, 9541–9546 (2007)

    Article  CAS  Google Scholar 

  85. M.A. Kats, D. Sharma, J. Lin, P. Genevet, R. Blanchard, Z. Yang, M.M. Qazilbash, D.N. Basov, S. Ramanathan, F. Capasso, Ultra-thin perfect absorber employing a tunable phase change material. Appl. Phys. Lett. 101, 221101 (2012)

    Article  CAS  Google Scholar 

  86. M.A. Kats, R. Blanchard, P. Genevet, Z. Yang, M.M. Qazilbash, D.N. Basov, S. Ramanathan, F. Capasso, Thermal tuning of mid-infrared plasmonic antenna arrays using a phase change material. Opt. Lett. 38, 368–370 (2013)

    Article  CAS  Google Scholar 

  87. Y. Chen, X. Li, X. Luo, S.A. Maier, M. Hong, Tunable near-infrared plasmonic perfect absorber based on phase-change materials. Photon. Res. 3, 54–57 (2015)

    Article  CAS  Google Scholar 

  88. Y. Chen, X. Li, Y. Sonnefraud, A.I. Fernandez-Dominguez, X. Luo, M. Hong, S.A. Maier, Engineering the phase front of light with phase-change material based planar lenses. Sci. Rep. 5, 8860 (2015)

    Article  CAS  Google Scholar 

  89. Y.G. Chen, T.S. Kao, B. Ng, X. Li, X.G. Luo, B. Luk’yanchuk, S.A. Maier, M.H. Hong, Hybrid phase-change plasmonic crystals for active tuning of lattice resonances. Opt. Express 21, 13691–13698 (2013)

    Article  CAS  Google Scholar 

  90. V.K. Mkhitaryan, D.S. Ghosh, M. Rudé, J. Canet-Ferrer, R.A. Maniyara, K.K. Gopalan, V. Pruneri, Tunable complete optical absorption in multilayer structures including Ge2Sb2Te5 without lithographic patterns. Adv. Opt. Mater. 5, 1600452 (2016)

    Article  CAS  Google Scholar 

  91. T. Li, L. Huang, J. Liu, Y. Wang, T. Zentgraf, Tunable wave plate based on active plasmonic metasurfaces. Opt. Express 25, 4216–4226 (2017)

    Article  Google Scholar 

  92. C.H. Chu, M.L. Tseng, J. Chen, P.C. Wu, Y.-H. Chen, H.-C. Wang, T.-Y. Chen, W.T. Hsieh, H.J. Wu, G. Sun, D.P. Tsai, Active dielectric metasurface based on phase-change medium. Laser Photonics Rev. 10, 986–994 (2016)

    Article  CAS  Google Scholar 

  93. Q. Wang, E.T.F. Rogers, B. Gholipour, C.-M. Wang, G. Yuan, J. Teng, N.I. Zheludev, Optically reconfigurable metasurfaces and photonic devices based on phase change materials. Nat. Photon. 10, 60–65 (2016)

    Article  CAS  Google Scholar 

  94. N. Raeis-Hosseini, J. Rho, Metasurfaces based on phase-change material as a reconfigurable platform for multifunctional devices. Materials 10, 1046 (2017)

    Article  CAS  Google Scholar 

  95. A.M. Shaltout, A.V. Kildishev, V.M. Shalaev, Evolution of photonic metasurfaces: from static to dynamic. J. Opt. Soc. Am. B 33, 501–510 (2016)

    Article  CAS  Google Scholar 

  96. H.-X. Xu, S. Sun, S. Tang, S. Ma, Q. He, G.-M. Wang, T. Cai, H.-P. Li, L. Zhou, Dynamical control on helicity of electromagnetic waves by tunable metasurfaces. Sci. Rep. 6, 27503 (2016)

    Article  CAS  Google Scholar 

  97. B.O. Zhu, K. Chen, N. Jia, L. Sun, J. Zhao, T. Jiang, Y. Feng, Dynamic control of electromagnetic wave propagation with the equivalent principle inspired tunable metasurface. Sci. Rep. 4, 4971 (2014)

    Article  CAS  Google Scholar 

  98. J. Zhao, Q. Cheng, J. Chen, M.Q. Qi, W.X. Jiang, T.J. Cui, A tunable metamaterial absorber using varactor diodes. New J. Phys. 15, 043049 (2013)

    Article  CAS  Google Scholar 

  99. X. Wu, C. Hu, Y. Wang, M. Pu, C. Huang, C. Wang, X. Luo, Active microwave absorber with the dual-ability of dividable modulation in absorbing intensity and frequency. AIP Adv. 3, 022114 (2013)

    Article  Google Scholar 

  100. D.F. Sievenpiper, J.H. Schaffner, H.J. Song, R.Y. Loo, G. Tangonan, Two-dimensional beam steering using an electrically tunable impedance surface. IEEE Trans. Antennas Propag. 51, 2713–2722 (2003)

    Article  Google Scholar 

  101. K. Chen, Y. Feng, F. Monticone, J. Zhao, B. Zhu, T. Jiang, L. Zhang, Y. Kim, X. Ding, S. Zhang, A. Alù, C.-W. Qiu, A reconfigurable active Huygens’ metalens. Adv. Mater. 29, 1606422 (2017)

    Article  CAS  Google Scholar 

  102. H.T. Chen, J.F. O’Hara, A.K. Azad, A.J. Taylor, R.D. Averitt, D.B. Shrekenhamer, W.J. Padilla, Experimental demonstration of frequency-agile terahertz metamaterials. Nat. Photon. 2, 295–298 (2008)

    Article  CAS  Google Scholar 

  103. H.T. Chen, W.J. Padilla, J.M.O. Zide, A.C. Gossard, A.J. Taylor, R.D. Averitt, Active terahertz metamaterial devices. Nature 444, 597–600 (2006)

    Article  CAS  Google Scholar 

  104. O. Balci, E.O. Polat, N. Kakenov, C. Kocabas, Graphene-enabled electrically switchable radar-absorbing surfaces. Nat. Commun. 6, 6628 (2015)

    Article  CAS  Google Scholar 

  105. Z. Fang, Y. Wang, A.E. Schlather, Z. Liu, P.M. Ajayan, F.J. García de Abajo, P. Nordlander, X. Zhu, N.J. Halas, Active tunable absorption enhancement with graphene nanodisk arrays. Nano Lett. 14, 299–304 (2014)

    Article  CAS  Google Scholar 

  106. W. Li, B. Chen, C. Meng, W. Fang, Y. Xiao, X. Li, Z. Hu, Y. Xu, L. Tong, H. Wang, W. Liu, J. Bao, Y.R. Shen, Ultrafast all-optical graphene modulator. Nano Lett. 14, 955–959 (2014)

    Article  CAS  Google Scholar 

  107. E. Arbabi, A. Arbabi, S.M. Kamali, Y. Horie, M. Faraji-Dana, A. Faraon, MEMS-tunable dielectric metasurface lens. Nat. Commun. 9, 812 (2018)

    Article  CAS  Google Scholar 

  108. A. She, S. Zhang, S. Shian, D.R. Clarke, F. Capasso, Adaptive metalenses with simultaneous electrical control of focal length, astigmatism, and shift. Sci. Adv. 4, eaap9957 (2018)

    Google Scholar 

  109. M. Rahmani, G. Leo, I. Brener, A. Zayats, S. Maier, C. De Angelis, H. Tan, V.F. Gili, F. Karouta, R. Oulton, Nonlinear frequency conversion in optical nanoantennas and metasurfaces: materials evolution and fabrication. Opto-Electron. Adv. 1, 180021 (2018)

    Article  Google Scholar 

  110. M. Kauranen, A.V. Zayats, Nonlinear plasmonics. Nat. Photon. 6, 737–748 (2012)

    Article  CAS  Google Scholar 

  111. S. Chen, G. Li, W. Cheah Kok, T. Zentgraf, S. Zhang, Controlling the phase of optical nonlinearity with plasmonic metasurfaces. Nanophotonics 7, 1013–1024 (2018)

    Google Scholar 

  112. N. Segal, S. Keren-Zur, N. Hendler, T. Ellenbogen, Controlling light with metamaterial-based nonlinear photonic crystals. Nat. Photonics 9, 180–184 (2015)

    Article  CAS  Google Scholar 

  113. E. Almeida, G. Shalem, Y. Prior, Subwavelength nonlinear phase control and anomalous phase matching in plasmonic metasurfaces. Nat. Commun. 7, 10367 (2016)

    Article  CAS  Google Scholar 

  114. J. Lee, M. Tymchenko, C. Argyropoulos, P.-Y. Chen, F. Lu, F. Demmerle, G. Boehm, M.-C. Amann, A. Alu, M.A. Belkin, Giant nonlinear response from plasmonic metasurfaces coupled to intersubband transitions. Nature 511, 65–69 (2014)

    Article  CAS  Google Scholar 

  115. M. Tymchenko, J.S. Gomez-Diaz, J. Lee, N. Nookala, M.A. Belkin, A. Alù, Gradient nonlinear pancharatnam-berry metasurfaces. Phys. Rev. Lett. 115, 207403 (2015)

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiangang Luo .

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Luo, X. (2019). Metalenses and Meta-mirrors. In: Engineering Optics 2.0. Springer, Singapore. https://doi.org/10.1007/978-981-13-5755-8_9

Download citation

Publish with us

Policies and ethics