Skip to main content

Technologies to Elucidate Functions of Glycans

  • Chapter
  • First Online:
Glycoscience: Basic Science to Applications

Abstract

Knockout, Transgenic, Neurodegeneration, Maintenance of homeostasis, Lipid rafts

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

References for Section 4.1

  1. Furukawa K et al (2017) Glycolipids: essential regulator of neuro-inflammation, metabolism and gliomagenesis. Biochim Biophys Acta 1861:2479–2484

    Article  CAS  Google Scholar 

  2. Ji S et al (2016) Increased a-series gangliosides positively regulate leptin/Ob receptor-mediated signals in hypothalamus of GD3 synthase-deficient mice. Biochem Biophys Res Commun 479:453–460

    Article  CAS  Google Scholar 

  3. Furukawa K et al (2016) Roles of glycosphingolipids in the regulation of the membrane organization and cell signaling in lipid rafts. In: Lipid/rafts. Nova Science Publishers, London, pp 129–146

    Google Scholar 

  4. Furukawa K et al (2014) Glycosphingolipids in the regulation of the nervous system. Adv Neurobiol 9:307–320

    Article  Google Scholar 

  5. Ohmi Y et al (2014) Ganglioside deficiency causes inflammation and neurodegeneration via the activation of complement system in the spinal cord. J Neuroinflammation 11:61

    Article  Google Scholar 

References for Section 4.2

  1. Lowe JB, Marth JD (2003) A genetic approach to mammalian glycan function. Annu Rev Biochem 72:643–691

    Article  CAS  Google Scholar 

  2. Furukawa K et al (2007) Knockout mice and glycolipids. In: Kamerling JP et al (eds) Comprehensive glycoscience from chemistry to systems biology, vol 4. Elsevier, Oxford, pp 149–157

    Chapter  Google Scholar 

  3. Honke K, Taniguchi N (2009) Animal models to delineate glycan functionality. In: Gabius H-J (ed) The sugar code, fundamentals of glycosciences. Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim, pp 385–401

    Google Scholar 

  4. Inokuchi J (2011) Physiopathological function of hematoside (GM3 ganglioside). Proc Jpn Acad Ser B Phys Biol Sci 87:179–198

    Article  CAS  Google Scholar 

  5. Furukawa K et al (2017) Glycolipids: essential regulator of neuro-inflammation, metabolism and gliomagenesis. Biochim Biophys Acta 1861:2479–2484

    Article  CAS  Google Scholar 

References for Section 4.3

  1. Laura M, Proia RL (2014) Simplifying complexity: genetically resculpting glycosphingolipid synthesis pathways in mice to reveal function. Glycoconj J 31:613–622

    Article  Google Scholar 

  2. Simpson MA et al (2004) Infantile-onset symptomatic epilepsy syndrome caused by a homozygous loss-of-function mutation of GM3 synthase. Nat Genet 36:1225–1229

    Article  CAS  Google Scholar 

  3. Boukhris A et al (2013) Alteration of ganglioside biosynthesis responsible for complex hereditary spastic paraplegia. Am J Hum Genet 93:118–123

    Article  CAS  Google Scholar 

  4. Yoshikawa M et al (2015) Ganglioside GM3 is essential for the structural integrity and function of cochlear hair cells. Hum Mol Genet 24:2796–2807

    Article  CAS  Google Scholar 

  5. Nagafuku M et al (2015) Control of homeostatic and pathogenic balance in adipose tissue by ganglioside GM3. Glycobiology 25:303–318

    Article  CAS  Google Scholar 

References for Section 4.4

  1. Haltiwanger RS, Lowe JB (2004) Role of glycosylation in development. Annu Rev Biochem 73:491–537

    Article  CAS  Google Scholar 

  2. Apweiler R et al (1999) On the frequency of protein glycosylation, as deduced from analysis of the SWISS-PROT database. Biochim Biophys Acta 1473:4–8

    Article  CAS  Google Scholar 

  3. Hang Q et al (2016) N-Glycosylation of integrin α5 acts as a switch for EGFR-mediated complex formation of integrin α5β1 to α6β4. Sci Rep 6:33507

    Article  CAS  Google Scholar 

  4. Jaeken J, Peanne R (2017) What is new in CDG? J Inherit Metab Dis 40:569–586

    Article  CAS  Google Scholar 

References for Section 4.5

  1. Mizumoto S et al (2014) Human genetic disorders and knockout mice deficient in glycosaminoglycan. Biomed Res Int 2014:495764

    Article  Google Scholar 

  2. Kitakaze K et al (2016) Protease-resistant modified human β-hexosaminidase B ameliorates symptoms in GM2 gangliosidosis model. J Clin Invest 126:1691–1703

    Article  Google Scholar 

  3. Ito Z et al (2010) N-acetylglucosamine 6-O-sulfotransferase-1-deficient mice show better functional recovery after spinal cord injury. J Neurosci 30:5937–5947

    Article  CAS  Google Scholar 

  4. Coles CH et al (2011) Proteoglycan-specific molecular switch for RPTPσ clustering and neuronal extension. Science 332:484–488

    Article  CAS  Google Scholar 

  5. Miyata S et al (2012) Persistent cortical plasticity by upregulation of chondroitin 6-sulfation. Nat Neurosci 15:414–422

    Article  CAS  Google Scholar 

References for Section 4.6

  1. Mizumoto S et al (2013) Human genetic disorders caused by mutations in genes encoding biosynthetic enzymes for sulfated glycosaminoglycans. J Biol Chem 288:10953–10961

    Article  CAS  Google Scholar 

  2. Inatani M et al (2003) Mammalian brain morphogenesis and midline axon guidance require heparan sulfate. Science 302:1044–1046

    Article  CAS  Google Scholar 

  3. Forsberg E, Kjellen L (2001) Heparan sulfate: lessons from knockout mice. J Clin Invest 108:175–180

    Article  CAS  Google Scholar 

  4. Irie F et al (2012) Autism-like socio-communicative deficits and stereotypies in mice lacking heparan sulfate. Proc Natl Acad Sci U S A 109:5052–5056

    Article  CAS  Google Scholar 

  5. Jones KB et al (2009) A mouse model of osteochondromagenesis from clonal inactivation of Ext1 in chondrocytes. Proc Natl Acad Sci U S A 107:2054–2059

    Article  Google Scholar 

References for Section 4.7

  1. Itoh K et al (2016) Mucin-type core 1 glycans regulate the localization of neuromuscular junctions and establishment of muscle cell architecture in Drosophila. Dev Biol 412: 114–127

    Article  CAS  Google Scholar 

  2. Yamamoto-Hino M et al (2015) Phenotype-based clustering of glycosylation-related genes by RNAi-mediated gene silencing. Genes Cells 20: 521–542

    Article  CAS  Google Scholar 

  3. Nishihara S (2010) Glycosyltransferases and transporters that contribute to proteoglycan synthesis in Drosophila: identification and functional analyses using the heritable and inducible RNAi system. Methods Enzymol 480: 323–51

    Google Scholar 

  4. Yamamoto-Hino M et al (2010) Identification of genes required for neural-specific glycosylation using functional genomics. PLoS Genet 23: e1001254

    Article  CAS  Google Scholar 

  5. Ueyama M et al (2010) Increased apoptosis of myoblasts in Drosophila model for the Walker-Warburg syndrome. PLoS One 5: e11557

    Article  Google Scholar 

References for Section 4.8

  1. McGary KL et al (2010) Systematic discovery of nonobvious human disease models through orthologous phenotypes. Proc Natl Acad Sci U S A 107:6544–6549

    Article  CAS  Google Scholar 

  2. McWhite CD et al (2015) Applications of comparative evolution to human disease genetics. Curr Opin Genet Dev 35:16–24

    Article  CAS  Google Scholar 

  3. Akiyoshi S et al (2015) RNAi screening of human glycogene orthologs in the nematode Caenorhabditis elegans and the construction of the C. elegans glycogene database. Glycobiology 25:8–20

    Article  CAS  Google Scholar 

  4. Mizuguchi S et al (2003) Chondroitin proteoglycans are involved in cell division of Caenorhabditis elegans. Nature 423:443–448

    Article  CAS  Google Scholar 

  5. Dejima K et al (2018) An aneuploidy-free and structurally defined balancer chromosome toolkit for Caenorhabditis elegans. Cell Rep 22:232–241

    Article  CAS  Google Scholar 

References for Section 4.9

  1. NBRP Zebrafish: http://shigen.nig.ac.jp/zebra/

  2. NBRP Medaka: https://shigen.nig.ac.jp/medaka/

  3. Laughlin ST et al (2008) In vivo imaging of membrane-associated glycans in developing zebrafish. Science 320:664–667

    Article  CAS  Google Scholar 

  4. Service RF (2012) Looking for a sugar rush. Science 338:321–323

    Article  Google Scholar 

References for Section 4.10

  1. Liu J et al (2017) CRISPR/Cas9 in zebrafish: an efficient combination for human genetic diseases modeling. Hum Genet 136:1–12

    Article  Google Scholar 

  2. Avsar-Ban E et al (2010) Protein O-mannosylation is necessary for normal embryonic development in zebrafish. Glycobiology 20:1089–1102

    Article  CAS  Google Scholar 

  3. Uemura N et al (2015) Viable neuronopathic Gaucher disease model in Medaka (Oryzias latipes) displays axonal accumulation of alpha-synuclein. PLoS Genet 11:e1005065

    Article  Google Scholar 

  4. Keatinge M et al (2015) Glucocerebrosidase 1 deficient Danio rerio mirror key pathological aspects of human Gaucher disease and provide evidence of early microglial activation preceding alpha-synuclein-independent neuronal cell death. Hum Mol Genet 24:6640–6652

    Article  CAS  Google Scholar 

  5. Newman M et al (2014) Using the zebrafish model for Alzheimer’s disease research. Front Genet 5:Article 189

    PubMed  Google Scholar 

References for Section 4.11

  1. Westerfield M (2007) The Zebrafish book, 5th Edition; a guide for the laboratory use of zebrafish (Danio rerio), Eugene, University of Oregon Press. Distributed by the Institute of Neuroscience, University of Oregon, Copyright 1993 by Monte Westerfield, Edition 3; For on-line Edition 4, http://zfin.org/zf_info/zfbook/zfbk.html

  2. Kinoshita M et al (2009) Medaka: biology, management, and experimental protocols. Willey-Blackwell, Ames

    Book  Google Scholar 

  3. Tonoyama Y et al (2009) Essential role of β-1,4-galactosyltransferase 2 during medaka (Oryzias latipes) gastrulation. Mech Dev 126:580–594

    Article  CAS  Google Scholar 

  4. Avsar-Ban E et al (2010) Protein O-mannosylation is necessary for normal embryonic development in zebrafish. Glycobiology 20:1089–1102

    Article  CAS  Google Scholar 

  5. Moore CJ et al (2008) Genes required for functional glycosylation of dystroglycan are conserved in zebrafish. Genomics 92:159–167

    Article  CAS  Google Scholar 

References for Section 4.12

  1. Westerfield M (2007) The Zebrafish book, 5th Edition; A guide for the laboratory use of zebrafish (Danio rerio). University of Oregon Press, Eugene

    Google Scholar 

  2. Hisano Y et al (2015) Precise in-frame integration of exogenous DNA mediated by CRISPR/Cas9 system in zebrafish. Sci Rep 5:8841

    Article  CAS  Google Scholar 

  3. Hwang WY et al (2013) Efficient genome editing in zebrafish using a CRISPR-Cas system. Nat Biotechnol 31:227–229

    Article  CAS  Google Scholar 

  4. Ansai S, Kinoshita M (2017) Genome Editing of Medaka. Methods Mol Biol 1630:175–188

    Article  CAS  Google Scholar 

  5. Hanzawa K et al (2017) Structures and developmental alterations of N-glycans of zebrafish embryos. Glycobiology 27:228–245

    Google Scholar 

References for Section 4.13

  1. Buchanan BB et al (2000) Biochemistry & molecular biology of plants. American Society of Plant Physiologists, Rockville

    Google Scholar 

  2. Lombard V et al (2014) The carbohydrate-active enzymes database (CAZy) in 2013. Nucleic Acids Res 42:D490–D495

    Article  CAS  Google Scholar 

  3. Tan HT et al (2016) Emerging technologies for the production of renewable liquid transport fuels from biomass sources enriched in plant cell walls. Front Plant Sci 7:1854

    PubMed  PubMed Central  Google Scholar 

  4. Albersheim P et al (2011) Plant cell walls, Garland Science

    Google Scholar 

  5. Dicker M, Strasser R (2015) Using glyco-engineering to produce therapeutic proteins. Expert Opin Biol Ther 15:1501–1516

    Article  Google Scholar 

References for Section 4.14

  1. Pedersen CT et al (2017) N-glycan maturation mutants in Lotus japonicus for basic and applied glycoprotein research. Plant J 91:394–497

    Article  CAS  Google Scholar 

  2. Mercx S et al (2017) Inactivation of the β(1,2)-xylosyltransferase and the α(1,3)-fucosyltransferase genes in Nicotiana tabacum BY-2 cells by a multiplex CRISPR/Cas9 strategy results in glycoproteins without plant-specific glycans. Front Plant Sci 8:403

    Article  Google Scholar 

  3. Limkul J et al (2016) The production of human glucocerebrosidase in glyco-engineered Nicotiana benthamiana plants. Plant Biotechnol J 14:1682–1694

    Article  CAS  Google Scholar 

  4. von Schaewen A et al (2015) Arabidopsis thaliana KORRIGAN1 protein: N-glycan modification, localization, and function in cellulose biosynthesis and osmotic stress responses. Plant Signal Behav 10:e1024397

    Google Scholar 

References for Section 4.15

  1. Chiba Y et al (1998) Production of human compatible high mannose-type (Man5GlcNAc2) sugar chains in Saccharomyces cerevisiae. J Biol Chem 273:26298–26304

    Article  CAS  Google Scholar 

  2. Choi BK et al (2003) Use of combinatorial genetic libraries to humanize N-linked glycosylation in the yeast Pichia pastoris. Proc Natl Acad Sci U S A 100:5022–5027

    Article  CAS  Google Scholar 

  3. Kuroda K et al (2008) Efficient antibody production upon suppression of O mannosylation in the yeast Ogataea minuta. Appl Environ Microbiol 74:446–453

    Article  CAS  Google Scholar 

  4. Nett JH et al (2005) Cloning and disruption of the Pichia pastoris ARG1, ARG2, ARG3, HIS1, HIS2, HIS5, HIS6 genes and their use as auxotrophic markers. Yeast 22:295–304

    Article  CAS  Google Scholar 

  5. Jacobs PP et al (2009) Engineering complex-type N-glycosylation in Pichia pastoris using GlycoSwitch technology. Nat Protoc 4:58–70

    Article  Google Scholar 

References for Section 4.16

  1. Osada H (2010) Introduction of new tools for chemical biology research on microbial metabolites. Biosci Biotechnol Biochem 74:1135–1140

    Article  CAS  Google Scholar 

  2. Miyazaki I et al (2010) A small-molecule inhibitor shows that pirin regulates migration of melanoma cells. Nat Chem Biol 6:667–673

    Article  CAS  Google Scholar 

  3. Kato N et al (2012) Construction of a microbial natural product library for chemical biology studies. Curr Opin Chem Biol 16:101–108

    Article  CAS  Google Scholar 

  4. Kawatani M et al (2015) Identification of matrix metalloproteinase inhibitors by chemical arrays. Biosci Biotechnol Biochem 79:1597–1602

    Article  CAS  Google Scholar 

  5. Piotrowski JS et al (2017) Functional annotation of chemical libraries across diverse biologocal processes. Nat Chem Biol 13:982–993. (errata, 13, 1286)

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Koichi Furukawa , Koichi Honke , Jin-ichi Inokuchi , Jianguo Gu , Kenji Kadomatsu , Hiroshi Kitagawa , Shoko Nishihara , Kazuya Nomura , Shogo Oka , Makoto Ito , Ken Kitajima , Shunji Natsuka , Motoi Kanagawa , Takeshi Ishimizu , Kazuhito Fujiyama , Yasunori Chiba , Hiroyuki Osada , Koichi Furukawa , Koichi Honke , Jin-ichi Inokuchi , Jianguo Gu , Kenji Kadomatsu , Hiroshi Kitagawa , Shoko Nishihara , Kazuya Nomura , Shogo Oka , Makoto Ito , Ken Kitajima , Shunji Natsuka , Takeshi Ishimizu , Kazuhito Fujiyama , Yasunori Chiba or Hiroyuki Osada .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Furukawa, K. et al. (2019). Technologies to Elucidate Functions of Glycans. In: Taniguchi, N., et al. Glycoscience: Basic Science to Applications. Springer, Singapore. https://doi.org/10.1007/978-981-13-5856-2_4

Download citation

Publish with us

Policies and ethics