Skip to main content

Genetic and Molecular Bases of Brassinosteroid Metabolism and Interactions with Other Phytohormones

  • Chapter
  • First Online:
Brassinosteroids: Plant Growth and Development

Abstract

Brassinosteroids (BRs) regulate diverse physiological processes during plant life cycle. Recent years have witnessed a significant progress in elucidating various aspects of BR biosynthesis and signaling, which was achieved through genetic, biochemical and physiological analyses of mutants isolated in model and crop species. Mechanisms of BR biosynthesis and signal transduction are interconnected with pathways of biosynthesis and signaling of other phytohormones. These interactions form a complicated network of dependencies and enable a coordinated regulation of the various physiological processes. It was also reported that components of the BR signaling pathway, playing roles of both positive or negative regulators of the process, are involved in mechanisms of plant response to various stimuli and stress conditions. This fine-tuning of plant physiological reactions to various stimuli allows a balance between growth rate and stress response to be achieved. The process of identification of new components of the BR signalosome is still ongoing, and functional analysis of the new components broadens the view of the complicated network of hormonal interactions. The chapter presents genetic and molecular aspects of the BR biosynthesis and signaling and interactions with other phytohormones, which mediate physiological processes in plants.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Achard, P., Liao, L., Jiang, C., Desnos, T., Bartlett, J., Fu, X., & Harberd, N. P. (2007). DELLAs contribute to plant photomorphogenesis. Plant Physiology, 143, 1163–1172.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Alabadi, D., & Blazquez, M. A. (2009). Molecular interactions between light and hormone signaling to control plant growth. Plant Molecular Biology, 69, 409–417.

    Article  CAS  PubMed  Google Scholar 

  • Altmann, T. (1998). Recent advances in brassinosteroid molecular genetics. Current Opinion in Plant Biology, 1, 378–383.

    Article  CAS  PubMed  Google Scholar 

  • Azpiroz, R., Wu, Y., LoCascio, J. C., & Feldmann, K. A. (1998). An Arabidopsis brassinosteroid-dependent mutant is blocked in cell elongation. Plant Cell, 10, 219–230.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bai, M. Y., Zhang, L. Y., Gampala, S. S., Zhu, S. W., Song, W. Y., Chong, K., & Wang, Z. Y. (2007). Functions of OsBZR1 and 14-3-3 proteins in brassinosteroid signaling in rice. Proceedings of the National Academy of Science, 104, 13839–13844.

    Article  CAS  Google Scholar 

  • Bai, M. Y., Shang, J. X., Oh, E., Fan, M., Bai, Y., Zentella, R., Sun, T. P., & Wang, Z. Y. (2012). Brassinosteroid, gibberellin and phytochrome impinge on a common transcription module in Arabidopsis. Nature Cell Biology, 14, 810–817.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bancos, S., Nomura, T., Sato, T., Molnar, G., Bishop, G. J., Koncz, C., Yokota, T., Nagy, F., & Szekeres, M. (2002). Regulation of transcript levels of the Arabidopsis cytochrome P450 genes involved in brassinosteroid biosynthesis. Plant Physiology, 130, 504–513.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bancos, S., Szatmari, A. M., Castle, J., Kozma-Bognar, L., Shibata, K., Yokota, T., Bishop, G. J., Nagy, F., & Szekeres, M. (2006). Diurnal regulation of the brassinosteroid-biosynthethic CPD gene in Arabidopsis. Plant Physiology, 141, 299–309.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bell, E. M., Lin, W. C., Husbands, A. Y., Yu, L., Jaganatha, V., Jablonska, B., Mangeon, A., Neff, M. M., Girke, T., & Springer, P. S. (2012). Arabidopsis lateral organ boundaries negatively regulates brassinosteroid accumulation to limit growth in organ boundaries. Proceedings of the National Academy of Science, 109, 21146–21151.

    Article  CAS  Google Scholar 

  • Bergonci, T., Ribeiro, B., Ceciliato, P. H. O., Guerrero-Abad, J. C., Silva-Filho, M. C., & Moura, D. S. (2014). Arabidopsis thaliana RALF1 opposes brassinosteroid effects on root cell elongation and lateral root formation. Journal of Experimental Botany, 65, 2219–2230.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bernardo-García, S., de Lucas, M., Martínez, C., Espinosa-Ruiz, A., Davière, J. M., & Prat, S. (2014). BR-dependent phosphorylation modulates PIF4 transcriptional activity and shapes diurnal hypocotyl growth. Genes & Development, 28, 1681–1694.

    Article  CAS  Google Scholar 

  • Beuchat, J., Scacchi, E., Tarkowska, D., Ragni, L., Strnad, M., & Hardtke, C. S. (2010). BRX promotes Arabidopsis shoot growth. The New Phytologist, 188, 23–29.

    Article  CAS  PubMed  Google Scholar 

  • Bishop, G. J. (2007). Refining the plant steroid hormone biosynthesis pathway. Trends in Plant Science, 12, 377–380.

    Article  CAS  PubMed  Google Scholar 

  • Bishop, G. J., & Yokota, T. (2001). Plants steroid hormones, brassinosteroids: Current highlights of molecular aspects on their synthesis/metabolism, transport, perception and response. Plant & Cell Physiology, 42, 114–120.

    Article  CAS  Google Scholar 

  • Bishop, G. J., Nomura, T., Yokota, T., Harrison, K., Noguchi, T., Fujioka, S., Takatsuto, S., Jones, J. D. G., & Kamiya, Y. (1999). The tomato DWARF enzyme catalyses C-6 oxidation in brassinosteroid biosynthesis. Proceedings of the National Academy of Sciences, 96, 1761–1766.

    Article  CAS  Google Scholar 

  • Bolduc, N., Yilmaz, A., Mejia-Guerra, M. K., Morohashi, K., O’Connor, D., Grotewold, E., & Hake, S. (2012). Unraveling the KNOTTED1 regulatory network in maize meristems. Genes & Development, 26, 1685–1690.

    Article  CAS  Google Scholar 

  • Castillon, A., Shen, H., & Huq, E. (2007). Phytochrome interacting factors: Central players in phytochrome-mediated light signaling networks. Trends in Plant Science, 12, 514–521.

    Article  CAS  PubMed  Google Scholar 

  • Castle, J., Szekeres, M., Jenkins, G., & Bishop, G. J. (2005). Unique and overlapping expression patterns of Arabidopsis CYP85 genes involved in brassinosteroid C-6 oxidation. Plant Molecular Biology, 57, 129–140.

    Article  CAS  PubMed  Google Scholar 

  • Catterou, M., Dubois, F., Schaller, H., Aubanelle, L., Vilcot, B., Sangwan-Norreel, B. S., & Sangwan, R. S. (2001a). Brassinosteroids, microtubules and cell elongation in Arabidopsis thaliana. Molecular, cellular and physiological characterization of the Arabidopsis bul1 mutant, defective in the Δ7-sterol-C5-desaturation step leading to brassinosteroid biosynthesis. Planta, 212, 659–672.

    Article  CAS  PubMed  Google Scholar 

  • Catterou, M., Dubois, F., Schaller, H., Aubanelle, L., Vilcot, B., Sangwan-Norreel, B. S., & Sangwan, R. S. (2001b). Brassinosteroids, microtubules and cell elongation in Arabidopsis thaliana. II. Effects of brassinosteroids on microtubules and cell elongation in the bul1 mutant. Planta, 212, 673–683.

    Article  CAS  PubMed  Google Scholar 

  • Chapman, E. J., Greenham, K., Castillejo, C., Sartor, R., Bialy, A., Sun, T.-P., & Estelle, M. (2012). Hypocotyl transcriptome reveals auxin regulation of growth-promoting genes through GA-dependent and -independent pathways. PLoS One, 7, e36210.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Choe, S., Dilkes, B. P., Fujioka, S., Takatsuto, S., Sakurai, A., & Feldmann, K. A. (1998). The DWF4 gene of Arabidopsis encodes a cytochrome P450 that mediates multiple 22α-hydroxylation steps in brassinosteroid biosynthesis. Plant Cell, 10, 231–243.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Choe, S., Noguchi, T., Fujioka, S., Takatsuto, S., Tissier, C. P., Gregory, B. D., Ross, A. S., Tanaka, A., Yoshida, S., Tax, F. E., & Feldmann, K. A. (1999a). The Arabidopsis dwf7/ste1 mutant is defective in the Δ7 sterol C-5 desaturation step leading to brassinosteroid biosynthesis. Plant Cell, 11, 207–221.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Choe, S., Dilkes, B. P., Gregory, B. D., Ross, A. S., Yuan, H., Noguchi, T., Fujioka, S., Takatsuto, S., Tanaka, A., Yoshida, S., Tax, F. E., & Feldmann, K. A. (1999b). The Arabidopsis dwarf1 mutant is defective in the conversion of 24-methylenecholesterol to campesterol in brassinosteroid biosynthesis. Plant Physiology, 119, 897–907.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Choe, S., Tanaka, A., Noguchi, T., Fujioka, S., Takatsuto, S., Ross, A. S., Tax, F. E., Yoshida, S., & Feldmann, K. A. (2000). Lesions in the sterol Δ7 reductase gene of Arabidopsis cause dwarfism due to a block in brassinosteroid biosynthesis. The Plant Journal, 21, 431–443.

    Article  CAS  PubMed  Google Scholar 

  • Choi, S., Cho, Y. H., Kim, K., Matsui, M., Son, S. H., Kim, S. K., Fujioka, S., & Hwang, I. (2013). BAT1, a putative acyltransferase, modulates brassinosteroid levels in Arabidopsis. The Plant Journal, 73, 380–391.

    Article  CAS  PubMed  Google Scholar 

  • Chono, M., Honda, I., Zeniya, H., Yoneyama, K., Saisho, D., Takeda, K., Takatsuto, S., Hoshino, T., & Watanabe, Y. (2003). A semidwarf phenotype of barley uzu results from a nucleotide substitution in the gene encoding a putative brassinosteroid receptor. Plant Physiology, 133, 1209–1219.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chory, J., Nagpal, P., & Peto, C. A. (1991). Phenotypic and genetic analysis of det2, a new mutant that affects light-regulated seedling development in Arabidopsis. Plant Cell, 3, 445–459.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Choudhary, S. P., Yu, J. Q., Yamaguchi-Shinozaki, K., Shinozaki, K., & Tran, L. S. (2012). Benefits of brassinosteroid crosstalk. Trends in Plant Science, 17, 594–605.

    Article  CAS  PubMed  Google Scholar 

  • Chung, Y., Maharjan, P. M., Lee, O., Fujioka, S., Jang, S., Kim, B., Takatsuto, S., Tsujimoto, M., Kim, H., Cho, S., Park, T., Cho, H., Hwang, I., & Choe, S. (2011). Auxin stimulates DWARF4 expression and brassinosteroid biosynthesis in Arabidopsis. The Plant Journal, 66, 564–578.

    Article  CAS  PubMed  Google Scholar 

  • Clouse, S. D. (2001). Integration of light and brassinosteroid signals in etiolated seedling growth. Trends in Plant Science, 6, 443–445.

    Article  CAS  PubMed  Google Scholar 

  • Clouse, S. D., & Sasse, J. M. (1998). Brassinosteroids: Essential regulators of plant growth and development. Annual Review of Plant Physiology and Plant Molecular Biology, 49, 427–451.

    Article  CAS  PubMed  Google Scholar 

  • Clouse, S. D., Langford, M., & McMorris, T. C. (1996). A brassinosteroid-insensitive mutant in Arabidopsis thaliana exhibits multiple defects in growth and development. Plant Physiology, 111, 671–678.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Corvalan, C., & Choe, S. (2017). Identification of brassinosteroid genes in Brachypodium distachyon. BMC Plant Biology, 17, 5.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • de Lucas, M., & Prat, S. (2014). PIFs get BRright: Phytochrome interacting factors as integrators of light and hormonal signals. The New Phytologist, 202, 1126–1141.

    Article  PubMed  CAS  Google Scholar 

  • de Lucas, M., Davière, J. M., Rodríguez-Falcón, M., Pontin, M., Iglesias-Pedraz, J. M., Lorrain, S., Fankhauser, C., Blázquez, M. A., Titarenko, E., & Prat, S. (2008). A molecular framework for light and gibberellin control of cell elongation. Nature, 451, 480–484.

    Article  CAS  PubMed  Google Scholar 

  • Di Rubbo, S., Irani, N. G., & Russinova, E. (2011). PP2A phosphatases: The “on-off” regulatory switches of brassinosteroid signaling. Science Signaling, 4, 25.

    Article  CAS  Google Scholar 

  • Dockter, C., Gruszka, D., Braumann, I., Druka, A., Druka, I., Franckowiak, J., Gough, S. P., Janeczko, A., Kurowska, M., Lundqvist, J., Lundqvist, U., Marzec, M., Matyszczak, I., Müller, A. H., Oklestkova, J., Schulz, B., Zakhrabekova, S., & Hansson, M. (2014). Induced variations in brassinosteroid genes define barley height and sturdiness, and expand the green revolution genetic toolkit. Plant Physiology, 166, 1912–1927.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Du, L., & Poovaiah, B. W. (2005). Ca2+/calmodulin is critical for brassinosteroid biosynthesis and plant growth. Nature, 437, 741–745.

    Article  CAS  PubMed  Google Scholar 

  • Du, J., Zhao, B., Sun, X., Sun, M., Zhang, D., Zhang, S., & Yang, W. (2017). Identification and characterization of multiple intermediate alleles of the key genes regulating brassinosteroid biosynthesis pathways. Frontiers in Plant Science, 7, 1893.

    Article  PubMed  PubMed Central  Google Scholar 

  • Feng, S., Martinez, C., Gusmaroli, G., Wang, Y., Zhou, J., Wang, F., Chen, L., Yu, L., Iglesias-Pedraz, J. M., Kircher, S., Schäfer, E., Fu, X., Fan, L. M., & Deng, X. W. (2008). Coordinated regulation of Arabidopsis thaliana development by light and gibberellins. Nature, 451, 475–479.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ferguson, B. J., Ross, J. J., & Reid, J. B. (2005). Nodulation phenotypes of gibberellin and brassinosteroid mutants of pea. Plant Physiology, 138, 2396–2405.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Friedrichsen, D. M., Joazeiro, C. A. P., Li, J., Hunter, T., & Chory, J. (2000). Brassinosteroid-insensitive 1 is a ubiquitously expressed leucine-rich repeat receptor serine/threonine kinase. Plant Physiology, 123, 1247–1255.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Friedrichsen, D. M., Nemhauser, J., Muramitsu, T., Maloof, J. N., Alonso, J., Ecker, J. R., Furuya, M., & Chory, J. (2002). Three redundant brassinosteroid early response genes encode putative bHLH transcription factors required for normal growth. Genetics, 162, 1445–1456.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Frigerio, M., Alabadi, D., Perez-Gomez, J., Garcıa-Carcel, L., Phillips, A. L., Hedden, P., & Blazquez, M. A. (2006). Transcriptional regulation of gibberellin metabolism genes by auxin signaling in Arabidopsis. Plant Physiology, 142, 553–563.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fujioka, S., & Yokota, T. (2003). Biosynthesis and metabolism of brassinosteroids. Annual Review of Plant Biology, 54, 137–164.

    Article  CAS  PubMed  Google Scholar 

  • Fujioka, S., Takatsuto, S., & Yoshida, S. (2002). An early C-22 oxidation branch in the brassinosteroid biosynthetic pathway. Plant Physiology, 130, 930–939.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fukaki, H., Taniguchi, N., & Tasaka, M. (2006). PICKLE is required for SOLITARY-ROOT/IAA14-mediated repression of ARF7 and ARF19 activity during Arabidopsis lateral root initiation. The Plant Journal, 48, 380–389.

    Article  CAS  PubMed  Google Scholar 

  • Furuta, K., Kubo, M., Sano, K., Demura, T., Fukuda, H., Liu, Y. G., Shibata, D., & Kakimoto, T. (2011). The CKH2/PKL chromatin remodeling factor negatively regulates cytokinin responses in Arabidopsis calli. Plant & Cell Physiology, 52, 618–628.

    Article  CAS  Google Scholar 

  • Gallego-Bartolome, J., Minguet, E. G., Grau-Enguix, F., Abbas, M., Locascio, A., Thomas, S. G., Alabadí, D., & Blázquez, M. A. (2012). Molecular mechanism for the interaction between gibberellin and brassinosteroid signaling pathways in Arabidopsis. Proceedings of the National Academy of Science, 109, 13446–13451.

    Article  CAS  Google Scholar 

  • Gan, L., Wu, H., Wu, D., Zhang, Z., Guo, Z., Yang, N., Xia, K., Zhou, X., K, O., Matsuoka, M., Ng, D., & Zhu, C. (2015). Methyl jasmonate inhibits lamina joint inclination by repressing brassinosteroid biosynthesis and signaling in rice. Plant Science, 241, 238–245.

    Article  CAS  PubMed  Google Scholar 

  • Goda, H., Shimada, Y., Asami, T., Fujioka, S., & Yoshida, S. (2002). Microarray analysis of brassinosteroid-regulated genes in Arabidopsis. Plant Physiology, 130, 1319–1334.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Goda, H., Sawa, S., Asami, T., Fujioka, S., Shimada, Y., & Yoshida, S. (2004). Comprehensive comparison of auxin-regulated and brassinosteroid-regulated genes in Arabidopsis. Plant Physiology, 134, 1555–1573.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Goda, H., Sasaki, E., Akiyama, K., Maruyama-Nakashita, A., Nakabayashi, K., Li, W., Ogawa, M., Yamauchi, Y., Preston, J., Aoki, K., Kiba, T., Takatsuto, S., Fujioka, S., Asami, T., Nakano, T., Kato, H., Mizuno, T., Sakakibara, H., Yamaguchi, S., Nambara, E., Kamiya, Y., Takahashi, H., Hirai, M. Y., Sakurai, T., Shinozaki, K., Saito, K., Yoshida, S., & Shimada, Y. (2008). The AtGen express hormone and chemical treatment data set: Experimental design, data evaluation, model data analysis and data access. The Plant Journal, 55, 526–542.

    Article  CAS  PubMed  Google Scholar 

  • Gou, X., Yin, H., He, K., Du, J., Yi, J., Xu, S., Lin, H., Clouse, S. D., & Li, J. (2012). Genetic evidence for an indispensable role of Somatic embryogenesis receptor kinases in brassinosteroid signaling. PLoS Genetics, 8, e1002452.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gruszka, D. (2013). The brassinosteroid signaling pathway – New key players and interconnections with other signaling networks crucial for plant development and stress tolerance. International Journal of Molecular Sciences, 14, 8740–8774.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Gruszka, D., Szarejko, I., & Maluszynski, M. (2011a). Identification of barley DWARF gene involved in brassinosteroid synthesis. Plant Growth Regulation, 65, 343–358.

    Article  CAS  Google Scholar 

  • Gruszka, D., Szarejko, I., & Maluszynski, M. (2011b). New allele of HvBRI1 gene encoding brassinosteroid receptor in barley. Journal of Applied Genetics, 52, 257–268.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gruszka, D., Gorniak, M., Glodowska, E., Wierus, E., Oklestkova, J., Janeczko, A., Maluszynski, M., & Szarejko, I. (2016a). A reverse-genetics mutational analysis of the barley HvDWARF gene results in identification of a series of alleles and mutants with short stature of various degree and disturbance in BR biosynthesis allowing a new insight into the process. International Journal of Molecular Sciences, 17, 600.

    Article  PubMed Central  CAS  Google Scholar 

  • Gruszka, D., Janeczko, A., Dziurka, M., Pociecha, E., Oklestkova, J., & Szarejko, I. (2016b). Barley brassinosteroid mutants provide an insight into phytohormonal homeostasis in plant reaction to drought stress. Frontiers in Plant Science, 7, 1824.

    Article  PubMed  PubMed Central  Google Scholar 

  • Guan, C., Wang, X., Feng, J., Hong, S., Liang, Y., Ren, B., & Zuo, J. (2014). Cytokinin antagonizes abscisic acid-mediated inhibition of cotyledon greening by promoting the degradation of abscisic acid insensitive5 protein in Arabidopsis. Plant Physiology, 164, 1515–1526.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gudesblat, G. E., & Russinova, E. (2011). Plants grow on brassinosteroids. Current Opinion in Plant Biology, 14, 530–537.

    Article  CAS  PubMed  Google Scholar 

  • Guo, Z., Fujioka, S., Blancaflor, E. B., Miao, S., Gou, X., & Li, J. (2010). TCP1 modulates brassinosteroid biosynthesis by regulating the expression of the key biosynthetic gene DWARF4 in Arabidopsis thaliana. Plant Cell, 22, 1161–1173.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Guo, H., Li, L., Aluru, M., Aluru, S., & Yin, Y. (2013). Mechanisms and networks for brassinosteroid regulated gene expression. Current Opinion in Plant Biology, 16, 1–9.

    Article  CAS  Google Scholar 

  • Han, Y. J., Kim, Y. S., Hwang, O.-J., Roh, J., Ganguly, K., Kim, S.-K., Hwang, I., & Kim, J.-I. (2017). Overexpression of Arabidopsis thaliana brassinosteroid-related acyltransferase 1 gene induces brassinosteroid-deficient phenotypes in creeping bentgrass. PLoS One, 12, 0187378.

    Google Scholar 

  • Hansen, M., Chae, H., & Kieber, J. (2009). Regulation of ACS protein stability by cytokinin and brassinosteroid. The Plant Journal, 57, 606–614.

    Article  CAS  PubMed  Google Scholar 

  • Hartwig, T., Chuck, G. S., Fujioka, S., Klempien, A., Weizbauer, R., Potluri, D. P., Choe, S., Johal, G. S., & Schulz, B. (2011). Brassinosteroid control of sex determination in maize. Proceedings of the National Academy of Science, 108, 19814–19819.

    Article  CAS  Google Scholar 

  • Hategan, L., Godza, B., & Szekeres, M. (2011). Regulation of brassinosteroid metabolism. In S. Hayat & A. Ahmad (Eds.), Brassinosteroids: A class of plant hormone (pp. 57–81). Dordrecht: Springer.

    Chapter  Google Scholar 

  • Hategan, L., Godza, B., Kozma-Bognar, L., Bishop, G. J., & Szekeres, M. (2014). Differential expression of the brassinosteroid receptor-encoding BRI1 gene in Arabidopsis. Planta, 239, 989–1001.

    Article  CAS  PubMed  Google Scholar 

  • He, Z., Wang, Z.-Y., Li, J., Zhu, Q., Lamb, C., Ronald, P., & Chory, J. (2000). Perception of brassinosteroids by the extracellular domain of the receptor kinase BRI1. Science, 288, 2360–2363.

    Article  CAS  PubMed  Google Scholar 

  • He, J.-X., Gendron, J. M., Sun, Y., Gampala, S. S., Gendron, N., Sun, C. Q., & Wang, Z. Y. (2005). BZR1 is a transcriptional repressor with dual roles in brassinosteroid homeostasis and growth responses. Science, 307, 1634–1638.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hecht, V., Vielle-Calzada, J.-P., Hartog, M. V., Schmidt, E. D. L., Boutilier, K., Grossniklaus, U., & de Vries, S. C. (2001). The Arabidopsis SOMATIC EMBRYOGENESIS RECEPTOR KINASE1 gene is expressed in developing ovules and embryos and enhances embryogenic competence in culture. Plant Physiology, 127, 803–816.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hong, Z., Ueguchi-Tanaka, M., Shimizu-Sato, S., Inukai, Y., Fujioka, S., Shimada, Y., Takatsuto, S., Agetsuma, M., Yoshida, S., Watanabe, Y., Uozu, S., Kitano, H., Ashikari, M., & Matsuoka, M. (2002). Loss-of-function of a rice brassinosteroid biosynthetic enzyme, C-6 oxidase, prevents the organized arrangement and polar elongation of cells in the leaves and stem. The Plant Journal, 32, 495–508.

    Article  CAS  PubMed  Google Scholar 

  • Hong, Z., Ueguchi-Tanaka, M., Umemura, K., Uozu, S., Fujioka, S., Takatsuto, S., Yoshida, S., Ashikari, M., Kitano, H., & Matsuoka, M. (2003). A rice brassinosteroid-deficient mutant, ebisu dwarf (d2), is caused by a loss of function of a new member of cytochrome P450. Plant Cell, 15, 2900–2910.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hothorn, M., Belkhadir, Y., Dreux, M., Dabi, T., Noel, J. P., Wilson, I. A., & Chory, J. (2011). Structural basis of steroid hormone perception by the receptor kinase BRI1. Nature, 474, 467–471.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hu, Y., & Yu, D. (2014). Brassinosteroid Insensitive2 interacts with Abscisic acid Insensitive5 to mediate the antagonism of brassinosteroids to abscisic acid during seed germination in Arabidopsis. Plant Cell, 26, 4394–4408.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Huq, E., & Quail, P. H. (2002). PIF4, a phytochrome-interacting bHLH factor, functions as a negative regulator of phytochrome B signaling in Arabidopsis. The EMBO Journal, 21, 2441–2450.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Husselstein, T., Schaller, H., Gachotte, D., & Benveniste, P. (1999). Δ7- sterol C-5 desaturase: Molecular characterization and functional expression of wild-type and mutant alleles. Plant Molecular Biology, 39, 891–906.

    Article  CAS  PubMed  Google Scholar 

  • Jager, C. E., Symons, G. M., Nomura, T., Yamada, Y., Smith, J. J., Yamaguchi, S., Kamiya, Y., Weller, J. L., Yokota, T., & Reid, J. B. (2007). Characterization of two brassinosteroid C-6 oxidase genes in pea. Plant Physiology, 143, 1894–1904.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jaillais, Y., Belkhadir, Y., Balsemao-Pires, E., Dangl, J. L., & Chory, J. (2011). Extracellular leucine- rich repeats as a platform for receptor/coreceptor complex formation. Proceedings of the National Academy of Science, 108, 8503–8507.

    Article  CAS  Google Scholar 

  • Jasinski, S., Piazza, P., Craft, J., Hay, A., Woolley, L., Rieu, I., Phillips, A., Hedden, P., & Tsiantis, M. (2005). KNOX action in Arabidopsis is mediated by coordinate regulation of cytokinin and gibberellin activities. Current Biology, 15, 1560–1565.

    Article  CAS  PubMed  Google Scholar 

  • Jiang, J., Zhang, C., & Wang, X. (2013). Ligand perception, activation, and early signaling of plant steroid receptor Brassinosteroid Insensitive 1. Journal of Integrative Plant Biology, 9999, 1–14.

    Google Scholar 

  • Jing, Y., Zhang, D., Wang, X., Tang, W., Wang, W., Huai, J., Xu, G., Chen, D., Li, Y., & Lin, R. (2013). Arabidopsis chromatin remodeling factor PICKLE interacts with transcription factor HY5 to regulate hypocotyl cell elongation. Plant Cell, 25, 242–256.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kang, J.-G., Yun, J., Kim, D.-H., Chung, K.-S., Fujioka, S., Kim, J.-I., Dae, H.-W., Yoshida, S., Takatsuto, S., Song, P.-S., & Park, C.-M. (2001). Light and brassinosteroid signals are integrated via a dark-induced small G protein in etiolated seedling growth. Cell, 105, 625–636.

    Article  CAS  PubMed  Google Scholar 

  • Kauschmann, A., Jessop, A., Koncz, C., Szekeres, M., Willmitzer, L., & Altmann, T. (1996). Genetic evidence for an essential role of brassinosteroids in plant development. The Plant Journal, 9, 701–713.

    Article  CAS  Google Scholar 

  • Kim, T. W., & Wang, Z. Y. (2010). Brassinosteroid signal transduction from receptor kinases to transcription factors. Annual Review of Plant Biology, 61, 681–704.

    Article  CAS  PubMed  Google Scholar 

  • Kim, G. T., Tsukaya, H., & Uchimiya, H. (1998). The ROTUNDIFOLIA3 gene of Arabidopsis thaliana encodes a new member of the cytochrome P450 family that is required for the regulated polar elongation of leaf cells. Genes & Development, 12, 2381–2391.

    Article  CAS  Google Scholar 

  • Kim, T.-W., Chang, S. C., Lee, J. S., Hwang, B., Takatsuto, S., Yokota, T., & Kim, S.-K. (2004). Cytochrome P450-catalyzed brassinosteroid pathway activation through synthesis of castasterone and brassinolide in Phaseolus vulgaris. Phytochemistry, 65, 679–689.

    Article  CAS  PubMed  Google Scholar 

  • Kim, T.-W., Hwang, J.-Y., Kim, Y.-S., Joo, S.-H., Chang, S. C., Lee, J. S., Takatsuto, S., & Kim, S.-K. (2005a). Arabidopsis CYP85A2, a cytochrome P450, mediates the Baeyer-Villiger oxidation of castasterone to brassinolide in brassinosteroid biosynthesis. Plant Cell, 17, 2397–2412.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kim, G. T., Fujioka, S., Kozuka, T., Tax, F. E., Takatsuto, S., Yoshida, S., & Tsukaya, H. (2005b). CYP90C1 and CYP90D1 are involved in different steps in the brassinosteroid biosynthesis pathway in Arabidopsis thaliana. The Plant Journal, 41, 710–721.

    Article  CAS  PubMed  Google Scholar 

  • Kim, H. B., Kwon, M., Ryu, H., Fujioka, S., Takatsuto, S., Yoshida, S., An, C. S., Lee, I., Hwang, I., & Choe, S. (2006). The regulation of DWARF4 expression is likely a critical mechanism in maintaining the homeostasis of bioactive brassinosteroids in Arabidopsis. Plant Physiology, 140, 548–557.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kim, B. K., Fujioka, S., Takatsuto, S., Tsujimoto, M., & Choe, S. (2008). Castasterone is a likely end product of brassinosteroid biosynthetic pathway in rice. Biochemical and Biophysical Research Communications, 374, 614–619.

    Article  CAS  PubMed  Google Scholar 

  • Kim, T. W., Guan, S., Sun, Y., Deng, Z., Tang, W., Shang, J. X., Sun, Y., Burlingame, A. L., & Wang, Z. Y. (2009). Brassinosteroid signal transduction from cell-surface receptor kinases to nuclear transcription factors. Nature Cell Biology, 11, 1254–1260.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kim, T. W., Guan, S., Burlingame, A. S., & Wang, Z. Y. (2011). The CDG1 kinase mediates brassinosteroid signal transduction from BRI1 receptor kinase to BSU1 phosphatase and GSK3-like kinase BIN2. Molecular Cell, 43, 561–571.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kinoshita, T., Caño-Delgado, A. I., Seto, H., Hiranuma, S., Fujioka, S., Yoshida, S., & Chory, J. (2005). Binding of brassinosteroids to the extracellular domain of plant receptor kinase BRI1. Nature, 433, 167–171.

    Article  CAS  PubMed  Google Scholar 

  • Kitanaga, Y., Jian, C., Hasegawa, M., Yazaki, J., Kishimoto, N., Kikuchi, S., Nakamura, H., Ichikawa, H., Asami, T., Yoshida, S., Yamaguchi, I., & Suzuki, Y. (2006). Sequential regulation of gibberellin, brassinosteroid, and jasmonic acid biosynthesis occurs in rice coleoptiles to control the transcript levels of anti-microbial thionin genes. Bioscience, Biotechnology, and Biochemistry, 70, 2410–2419.

    Article  CAS  PubMed  Google Scholar 

  • Klahre, U., Noguchi, T., Fujioka, S., Takatsuto, S., Yokota, T., Nomura, T., Yoshida, S., & Chua, N. H. (1998). The Arabidopsis DIMINUTO/DWARF1 gene encodes a protein involved in steroid synthesis. Plant Cell, 10, 1677–1690.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Koh, S., Lee, S.-C., Kim, M.-K., Koh, J. H., Lee, S., An, G., Choe, S., & Kim, S.-R. (2007). T-DNA tagged knockout mutation of rice OsGSK1, an orthologue of Arabidopsis BIN2, with enhanced tolerance to various abiotic stresses. Plant Molecular Biology, 65, 453–466.

    Article  CAS  PubMed  Google Scholar 

  • Koka, C. V., Cerny, R. E., Gardner, R. G., Noguchi, T., Fujioka, S., Takatsuto, S., Yoshida, S., & Clouse, S. D. (2000). A putative role for the tomato genes DUMPY and CURL-3 in brassinosteroid biosynthesis and response. Plant Physiology, 122, 85–98.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kwon, M., Fujioka, S., Jeon, J. H., Kim, H. B., Takatsuto, S., Oshida, S., An, C. S., & Choe, S. (2005). A double mutant for the CYP85A1 and CYP85A2 genes of Arabidopsis exhibits a brassinosteroid dwarf phenotype. J. Plant Biol., 48, 237–244.

    Article  CAS  Google Scholar 

  • Lanza, M., Garcia-Ponce, B., Castrillo, G., Catarecha, P., Sauer, M., Rodriguez-Serrano, M., Paez-Garcia, A., Sanchez-Bermejo, E., TC, M., Leo del Puerto, Y., Sandalio, L. M., Paz-Ares, J., & Leyva, A. (2012). Role of actin cytoskeleton in brassinosteroid signaling and in its integration with the auxin response in plants. Developmental Cell, 22, 1275–1285.

    Article  CAS  PubMed  Google Scholar 

  • Li, J. (2003). Brassinosteroids signal through two receptor-like kinases. Current Opinion in Plant Biology, 6, 494–499.

    Article  CAS  PubMed  Google Scholar 

  • Li, J., & Chory, J. (1997). A putative leucine-rich repeat receptor kinase involved in brassinosteroid signal transduction. Cell, 90, 929–938.

    Article  CAS  PubMed  Google Scholar 

  • Li, J., & Jin, H. (2006). Regulation of brassinosteroid signaling. Trends in Plant Science, 12, 37–41.

    Article  CAS  PubMed  Google Scholar 

  • Li, J., Nagpal, P., Vitart, V., McMorris, T. C., & Chory, J. (1996). A role for brassinosteroids in light-dependent development of Arabidopsis. Science, 272, 398–401.

    Article  CAS  PubMed  Google Scholar 

  • Li, D., Wang, L., Wang, M., Xu, Y.-Y., Luo, W., Liu, Y.-J., Xu, Z.-H., Li, J., & Chong, K. (2009). Engineering OsBAK1 gene as a molecular tool to improve rice architecture for high yield. Plant Biotechnology Journal, 7, 791–806.

    Article  CAS  PubMed  Google Scholar 

  • Li, L., Ye, H., Guo, H., & Yin, Y. (2010). Arabidopsis IWS1 interacts with transcription factor BES1 and is involved in plant steroid hormone brassinosteroid regulated gene expression. Proceedings of the National Academy of Science, 107, 3918–3923.

    Article  CAS  Google Scholar 

  • Li, Q.-F., Xiong, M., Xu, P., Huang, L.-C., Zhang, C.-Q., & Liu, Q.-Q. (2016). Dissection of brassinosteroid-regulated proteins in rice embryos during germination by quantitative proteomics. Scientific Reports, 6, 34583.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lindsey, K., Pullen, M. L., & Topping, J. F. (2003). Importance of plant sterols in pattern formation and hormone signaling. Trends in Plant Science, 8, 521–525.

    Article  CAS  PubMed  Google Scholar 

  • Lisso, J., Altmann, T., & Müssig, C. (2006). Metabolic changes in fruits of the tomato d x mutant. Phytochemistry, 67, 2232–2238.

    Article  CAS  PubMed  Google Scholar 

  • Luo, M., Xiao, Y., Li, X., Lu, X., Deng, W., Li, D., Hou, L., Hu, M., Li, Y., & Pei, Y. (2007). GhDET2, a steroid 5α-reductase, plays an important role in cotton fiber cell initiation and elongation. The Plant Journal, 51, 419–430.

    Article  CAS  PubMed  Google Scholar 

  • Maharjan, P. M., & Choe, S. (2011). High temperature stimulates DWARF4 (DWF4) expression to increase hypocotyl elongation in Arabidopsis. Journal of Plant Biology, 54, 425–429.

    Article  CAS  Google Scholar 

  • Makarevitch, I., Thompson, A., Muehlbauer, G. J., & Springer, N. M. (2012). Brd1 gene in maize encodes a brassinosteroid C-6 oxidase. PLoS One, 7, e30798.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mockaitis, K., & Estelle, M. (2004). Integrating transcriptional controls for plant cell expansion. Genome Biology, 5, 245.

    Article  PubMed  PubMed Central  Google Scholar 

  • Montoya, T., Nomura, T., Farrar, K., Kaneta, T., Yokota, T., & Bishop, G. J. (2002). Cloning the tomato Curl3 gene highlights the putative dual role of the leucine-rich repeat receptor kinase tBRI1/SR160 in plant steroid hormone and peptide hormone signaling. Plant Cell, 14, 3163–3176.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Montoya, T., Nomura, T., Yokota, T., Farrar, K., Harrison, K., Jones, J. G. D., Kaneta, T., Kamiya, Y., Szekeres, M., & Bishop, G. J. (2005). Patterns of Dwarf expression and brassinosteroid accumulation in tomato reveal the importance of brassinosteroid synthesis during fruit development. The Plant Journal, 42, 262–269.

    Article  CAS  PubMed  Google Scholar 

  • Mori, M., Nomura, T., Ooka, H., Ishizaka, M., Yokota, T., Sugimoto, K., Okabe, K., Kajiwara, H., Satoh, K., Yamamoto, K., Hirochika, H., & Kikuchi, S. (2002). Isolation and characterization of a rice dwarf mutant with a defect in brassinosteroid biosynthesis. Plant Physiology, 130, 1152–1161.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Morinaka, Y., Sakamoto, T., Inukai, Y., Agetsuma, M., Kitano, H., Ashikari, M., & Matsuoka, M. (2006). Morphological alteration caused by brassinosteroid insensitivity increases the biomass and grain production in rice. Plant Physiology, 141, 924–931.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mouchel, C. F., Osmont, K. S., & Hardtke, C. S. (2006). BRX mediates feedback between brassinosteroid levels and auxin signalling in root growth. Nature, 443, 458–461.

    Article  CAS  PubMed  Google Scholar 

  • Müssig, C., Biesgen, C., Lisso, J., Uwer, U., Weiler, E. W., & Altmann, T. (2000). A novel stress-inducible 12-oxophytodienoate reductase from Arabidopsis thaliana provides a potential link between brassinosteroid-action and jasmonic-acid synthesis. Journal of Plant Physiology, 157, 143–152.

    Article  Google Scholar 

  • Muto, H., Yabe, N., Asami, T., Hasunuma, K., & Yamamoto, K. T. (2004). Overexpression of constitutive differential growth1 gene, which encodes a RLCKVII-subfamily protein kinase, causes abnormal differential and elongation growth after organ differentiation in Arabidopsis. Plant Physiology, 136, 3124–3133.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nakamura, A., Higuchi, K., Goda, H., Fujiwara, M. T., Sawa, S., Koshiba, T., Shimada, Y., & Yoshida, S. (2003). Brassinolide induces IAA5, IAA19, and DR5, a synthetic auxin response element in Arabidopsis, implying a cross talk point of brassinosteroid and auxin signaling. Plant Physiology, 133, 1843–1853.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nakamura, M., Satoh, T., Tanaka, S.-I., Mochizuki, N., Yokota, T., & Nagatani, A. (2005). Activation of the cytochrome P450 gene, CYP72C1, reduces the levels of active brassinosteroids in vivo. Journal of Experimental Botany, 56, 833–840.

    Article  CAS  PubMed  Google Scholar 

  • Nakamura, A., Fujioka, S., Sunohara, H., Kamiya, N., Hong, Z., Inukai, Y., Miura, K., Takatsuto, S., Yoshida, S., Ueguchi-Tanaka, M., Hasegawa, Y., Kitano, H., & Matsuoka, M. (2006). The role of OsBRI1 and its homologous genes, OsBRL1 and OsBRL3, in rice. Plant Physiology, 140, 580–590.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nam, K. H., & Li, J. (2004). The Arabidopsis transthyretin-like protein is a potential substrate of BRASSINOSTEROID-INSENSITIVE1. Plant Cell, 16, 2406–2417.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Neff, M. M., Nguyen, S. M., Malancharuvil, E. J., Fujioka, S., Noguchi, T., Seto, H., Tsubuki, M., Honda, T., Takatsuto, S., Yoshida, S., & Chory, J. (1999). BAS1: A gene regulating brassinosteroid levels and light responsiveness in Arabidopsis. Proceedings of the National Academy of Science, 96, 15316–15323.

    Article  CAS  Google Scholar 

  • Nelson, D. R., Schuler, M. A., Paquette, S. M., Werck-Reichhart, D., & Bak, S. (2004). Comparative genomics of rice and Arabidopsis. Analysis of 727 cytochrome P450 genes and pseudogenes from a monocot and a dicot. Plant Physiology, 135, 756–772.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nemhauser, J. L., Mockler, T. C., & Chory, J. (2004). Interdependency of brassinosteroid and auxin signaling in Arabidopsis. PLoS Biology, 2, 1460–1471.

    Article  CAS  Google Scholar 

  • Noguchi, T., Fujioka, S., Takatsuto, S., Sakurai, A., Yoshida, S., Li, J., & Chory, J. (1999). Arabidopsis det2 is defective in the conversion of (24R)-24-methylcholest-4-en-3-one to (24R)-24-methyl-5α-cholestan-3-one in brassinosteroid biosynthesis. Plant Physiology, 120, 833–839.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nomura, T., & Bishop, G. J. (2006). Cytochrome P450s in plant steroid hormone synthesis and metabolism. Phytochemistry Reviews, 5, 421–432.

    Article  CAS  Google Scholar 

  • Nomura, T., Nakayama, M., Reid, J. B., Takeuchi, Y., & Yokota, T. (1997). Blockage of brassinosteroid biosynthesis and sensitivity causes dwarfism in garden pea. Plant Physiology, 113, 31–37.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nomura, T., Kitasaka, Y., Takatsuto, S., Reid, J. B., Fukami, M., & Yokota, T. (1999). Brassinosteroid/sterol synthesis and plant growth as affected by lka and lkb mutations of pea. Plant Physiology, 119, 1517–1526.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nomura, T., Sato, T., Bishop, G. J., Kamiya, Y., Takatsuto, S., & Yokota, T. (2001). Accumulation of 6-deoxocathasterone and 6-deoxocastasterone in Arabidopsis, pea and tomato is suggestive of common rate-limiting steps in brassinosteroid biosynthesis. Phytochemistry, 57, 171–178.

    Article  CAS  PubMed  Google Scholar 

  • Nomura, T., Bishop, G. J., Kaneta, T., Reid, J. B., Chory, J., & Yokota, T. (2003). The LKA gene is a BRASSINOSTEROID INSENSITIVE1 homolog of pea. The Plant Journal, 36, 291–300.

    Article  CAS  PubMed  Google Scholar 

  • Nomura, T., Jager, C. E., Kitasaka, Y., Takeuchi, K., Fukami, M., Yoneyama, K., Matsushita, Y., Nyunoya, H., Takatsuto, S., Fujioka, S., Smith, J. J., Kerckhoffs, L. H. J., Reid, J. B., & Yokota, T. (2004). Brassinosteroid deficiency due to truncated steroid 5α-reductase causes dwarfism in the lk mutant of pea. Plant Physiology, 135, 2220–2229.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nomura, T., Kushiro, T., Yokota, T., Kamiya, Y., Bishop, G. J., & Yamaguchi, S. (2005). The last reaction producing brassinolide is catalyzed by cytochrome P-450s, CYP85A3 in tomato and CYP85A2 in Arabidopsis. The Journal of Biological Chemistry, 280, 17873–17879.

    Article  CAS  PubMed  Google Scholar 

  • Nomura, T., Ueno, M., Yamada, Y., Takatsuto, S., Takeuchi, Y., & Yokota, T. (2007). Roles of brassinosteroids and related mRNAs in pea seed growth and germination. Plant Physiology, 143, 1680–1688.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Northey, J. G. B., Liang, S., Jamshed, M., Deb, S., Foo, E., Reid, J. B., McCourt, P., & Samuel, M. A. (2016). Farnesylation mediates brassinosteroid biosynthesis to regulate abscisic acid responses. Nature Plants, 2, 16114.

    Article  CAS  PubMed  Google Scholar 

  • Oh, E., Zhu, J. Y., & Wang, Z. Y. (2012a). Interaction between BZR1 and PIF4 integrates brassinosteroid and environmental responses. Nature Cell Biology, 14, 802–809.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Oh, M. H., Kim, H. S., Wu, X., Clouse, S. D., Zielinski, R. E., & Huber, S. C. (2012b). Calcium/calmodulin inhibition of the Arabidopsis BRASSINOSTEROID-INSENSITIVE 1 receptor kinase provides a possible link between calcium and brassinosteroid signalling. The Biochemical Journal, 443, 515–523.

    Article  CAS  PubMed  Google Scholar 

  • Oh, E., Zhu, J.Y., Bai, M.Y., Arenhart, R.A., Sun, Y., Wang, Z.Y. (2014). Cell elongation is regulated through a central circuit of interacting transcription factors in the Arabidopsis hypocotyl. eLife 3. https://doi.org/10.7554/eLife.03031.

  • Ohnishi, T., Szatmari, A. M., Watanabe, B., Fujita, S., Bancos, S., Koncz, C., Lafos, M., Shibata, K., Yokota, T., Sakata, K., Szekeres, M., & Mizutani, M. (2006). C-23 hydroxylation by Arabidopsis CYP90C1 and CYP90D1 reveals a novel shortcut in brassinosteroid biosynthesis. Plant Cell, 18, 3275–3288.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ohnishi, T., Godza, B., Watanabe, B., Fujioka, S., Hategan, L., Ide, K., Shibata, K., Yokota, T., Szekeres, M., & Mizutani, M. (2012). CYP90A1/CPD, a brassinosteroid biosynthetic cytochrome P450 of Arabidopsis, catalyzes C-3 oxidation. The Journal of Biological Chemistry, 287, 31551–31560.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Peleg, Z., Reguera, M., Tumimbang, E., Walia, H., & Blumwald, E. (2011). Cytokinin-mediated source/sink modifications improve drought tolerance and increase grain yield in rice under water stress. Plant Biotechnology Journal, 9, 747–758.

    Article  CAS  PubMed  Google Scholar 

  • Perruc, E., Kinoshita, N., & Lopez-Molina, L. (2007). The role of chromatin-remodeling factor PKL in balancing osmotic stress responses during Arabidopsis seed germination. The Plant Journal, 52, 927–936.

    Article  CAS  PubMed  Google Scholar 

  • Poppenberger, B., Rozhon, W., Khan, M., Husar, S., Adam, G., Luschnig, C., Fujioka, S., & Sieberer, T. (2011). CESTA, a positive regulator of brassinosteroid biosynthesis. The EMBO Journal, 30, 1149–1161.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Qian, W., Wu, C., Fu, Y., Hu, G., He, Z., & Liu, W. (2017). Novel rice mutants overexpressing the brassinosteroid catabolic gene CYP734A4. Plant Molecular Biology, 93, 197–208.

    Article  CAS  PubMed  Google Scholar 

  • Rajjou, L., Duval, M., Gallardo, K., Catusse, J., Bally, J., Job, C., & Job, D. (2012). Seed germination and vigor. Annual Review of Plant Biology, 63, 507–533.

    Article  CAS  PubMed  Google Scholar 

  • Roh, H., Jeong, C. W., Fujioka, S., Kim, Y. K., Lee, S., & Ahn, J. H. (2012). Genetic evidence for the reduction of brassinosteroid level by a BAHD acyltransferase-like protein in Arabidopsis. Plant Physiology, 159, 696–709.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ryu, H., & Hwang, I. (2013). Brassinosteroids in plant developmental signaling networks. J. Plant Biol., 56, 267–273.

    Article  CAS  Google Scholar 

  • Ryu, H., Cho, H., Bae, W., & Hwang, I. (2014). Control of early seedling development by BES1/TPL/HDA19-mediated epigenetic regulation of ABI3. Nature Communications, 5, 4138.

    Article  CAS  PubMed  Google Scholar 

  • Sakamoto, T., Kamiya, N., Ueguchi-Tanaka, M., Iwahori, S., & Matsuoka, M. (2001). KNOX homeodomain protein directly suppresses the expression of a gibberellin biosynthetic gene in the tobacco shoot apical meristem. Genes & Development, 15, 581–590.

    Article  CAS  Google Scholar 

  • Sakamoto, T., Morinaka, Y., Ohnishi, T., Sunohara, H., Fujioka, S., Ueguchi-Tanaka, M., Mizutani, M., Sakata, K., Takatsuto, S., Yoshida, S., Tanaka, H., Kitano, H., & Matsuoka, M. (2006). Erect leaves caused by brassinosteroid deficiency increase biomass production and grain yield in rice. Nature Biotechnology, 24, 105–109.

    Article  CAS  PubMed  Google Scholar 

  • Sakamoto, T., Morinaka, Y., Inukai, Y., Kitano, H., & Fujioka, S. (2013). Auxin signal transcription factor regulates expression of brassinosteroid receptor gene in rice. The Plant Journal, 73, 676–688.

    Article  CAS  PubMed  Google Scholar 

  • Sankar, M., Osmont, K. S., Rolcik, J., Gujas, B., Tarkowska, D., Strnad, M., Xenarios, I., & Hardtke, C. S. (2011). A qualitative continuous model of cellular auxin and brassinosteroid signaling and their crosstalk. Bioinformatics, 27, 1404–1412.

    Article  CAS  PubMed  Google Scholar 

  • Scacchi, E., Osmont, K. S., Beuchat, J., Salinas, P., Navarrete-Gómez, M., Trigueros, M., Ferrándiz, C., & Hardtke, C. S. (2009). Dynamic, auxin-responsive plasma membrane-to-nucleus movement of Arabidopsis BRX. Development, 136, 2059–2067.

    Article  CAS  PubMed  Google Scholar 

  • Schaller, H. (2003). The role of sterols in plant growth and development. Progress in Lipid Research, 42, 163–175.

    Article  CAS  PubMed  Google Scholar 

  • Schneider, K., Breuer, C., Kawamura, A., Jikumaru, Y., Hanada, A., Fujioka, S., Ichikawa, T., Kondou, Y., Matsui, M., Kamiya, Y., Yamaguchi, S., & Sugimoto, K. (2012). Arabidopsis PIZZA has the capacity to acylate brassinosteroids. PLoS One, 7, e46805.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schwechheimer, C. (2008). Understanding gibberellic acid signaling – Are we there yet? Current Opinion in Plant Biology, 11, 9–15.

    Article  CAS  PubMed  Google Scholar 

  • She, J., Han, Z., Kim, T. W., Wang, J., Cheng, W., Chang, J., Shi, S., Yang, M., Wang, Z. Y., & Chai, J. (2011). Structural insight into brassinosteroid perception by BRI1. Nature, 474, 472–476.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shen, Y., Khanna, R., Carle, C. M., & Quail, P. H. (2007). Phytochrome induces rapid PIF5 phosphorylation and degradation in response to red-light activation. Plant Physiology, 145, 1043–1051.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shi, Y.-H., Zhu, S.-W., Mao, X.-Z., Feng, J.-X., Qin, Y.-M., Zhang, L., Cheng, J., Wei, L.-P., Wang, Z.-Y., & Zhu, Y.-X. (2006). Transcriptome profiling, molecular, biological and physiological studies reveal a major role for ethylene in cotton fiber cell elongation. Plant Cell, 18, 651–664.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shimada, Y., Fujioka, S., Miyauchi, N., Kushiro, M., Takatsuto, S., Nomura, T., Yokota, T., Kamiya, Y., Bishop, G. J., & Yoshida, S. (2001). Brassinosteroid-6-oxidases from Arabidopsis and tomato catalyze multiple C-6 oxidation in brassinosteroid biosynthesis. Plant Physiology, 126, 770–779.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Song, L., Shi, Q. M., Yang, X. H., Xu, Z. H., & Hue, H. W. (2009). Membrane steroid-binding protein 1 (MSBP1) negatively regulates brassinosteroid signaling by enhancing the endocytosis of BAK1. Cell Research, 19, 864–876.

    Article  CAS  PubMed  Google Scholar 

  • Steber, C. M., & McCourt, P. (2001). A role for brassinosteroids in germination in Arabidopsis. Plant Physiology, 125, 763–769.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sui, P., Jin, J., Ye, S., Mu, C., Gao, J., Feng, H., Shen, W. H., Yu, Y., & Dong, A. (2012). H3K36 methylation is critical for brassinosteroid-regulated plant growth and development in rice. The Plant Journal, 70, 340–347.

    Article  CAS  PubMed  Google Scholar 

  • Sun, T. P. (2010). Gibberellin-GID1-DELLA: A pivotal regulatory module for plant growth and development. Plant Physiology, 154, 567–570.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sun, Y., Fan, X. Y., Cao, D. M., Tang, W., He, K., Zhu, J. Y., He, J. X., Bai, M. Y., Zhu, S., Oh, E., Patil, S., Kim, T. W., Ji, H., Wong, W. H., Rhee, S. Y., & Wang, Z. Y. (2010). Integration of brassinosteroid signal transduction with the transcription network for plant growth regulation in Arabidopsis. Developmental Cell, 19, 765–777.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Szekeres, M., Nemeth, K., Koncz-Kalman, Z., Mathur, J., Kauschmann, A., Altmann, T., Redei, G. P., Nagy, F., Schell, J., & Koncz, C. (1996). Brassinosteroids rescue the deficiency of CYP90, a cytochrome P450, controlling cell elongation and de-etiolation in Arabidopsis. Cell, 85, 171–182.

    Article  CAS  PubMed  Google Scholar 

  • Takahashi, T., Gasch, A., Nishizawa, N., & Chua, N. H. (1995). The DIMINUTO gene of Arabidopsis is involved in regulating cell elongation. Genes & Development, 9, 97–107.

    Article  CAS  Google Scholar 

  • Tanabe, S., Ashikari, M., Fujioka, S., Takatsuto, S., Yoshida, S., Yano, M., Yoshimura, A., Kitano, H., Matsuoka, M., Fujisawa, Y., Kato, H., & Iwasaki, Y. (2005). A novel cytochrome P450 is implicated in brassinosteroid biosynthesis via the characterization of a rice dwarf mutant, dwarf11, with reduced seed length. Plant Cell, 17, 776–790.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tanaka, A., Nakagawa, H., Tomita, C., Shimatani, Z., Ohtake, M., Nomura, T., Jiang, C.-J., Dubouzet, J. G., Kikuchi, S., Sekimoto, H., Yokota, T., Asami, T., Kamakura, T., & Mori, M. (2009). BRASSINOSTEROID UPREGULATED1, encoding a helix-loop-helix protein, is a novel gene involved in brassinosteroid signaling and controls bending of the lamina joint in rice. Plant Physiology, 151, 669–680.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tang, W., Kim, T. W., Oses-Prieto, J. A., Sun, Y., Deng, Z., Zhu, S., Wang, R., Burlingame, A. L., & Wang, Z. Y. (2008). BSKs mediate signal transduction from the receptor kinase BRI1 in Arabidopsis. Science, 321, 557–560.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tsuda, K., Kurata, N., Ohyanagi, H., & Hake, S. (2014). Genome-wide study of KNOX regulatory network reveals brassinosteroid catabolic genes important for shoot meristem function in rice. Plant Cell, 26, 3488–3350.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tsuge, T., Tsukaya, H., & Uchimiya, H. (1996). Two independent and polarized processes of cell elongation regulate leaf blade expansion in Arabidopsis thaliana (L.) Heynh. Development, 122, 1589–1600.

    CAS  PubMed  Google Scholar 

  • Turk, E. M., Fujioka, S., Seto, H., Shimada, Y., Takatsuto, S., Yoshida, S., Denzel, M. A., Torres, Q. I., & Neff, M. M. (2003). CYP72B1 inactivates brassinosteroid hormones: And intersection between photomorphogenesis and plant steroid signal transduction. Plant Physiology, 133, 1643–1653.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Van Esse, W., Westphal, A. H., Preethi, R., Albrecht, C., van Veen, B., Borst, J. W., & de Vries, S. C. (2011). Quantification of the BRI1 receptor in planta. Plant Physiology, 156, 1691–1700.

    Article  CAS  Google Scholar 

  • Vert, G., Walcher, C. L., Chory, J., & Nemhauser, J. L. (2008). Integration of auxin and brassinosteroid pathways by Auxin Response Factor 2. Proceedings of the National Academy of Sciences, 105, 9829–9834.

    Article  CAS  Google Scholar 

  • Vriet, C., Russinova, E., & Reuzeau, C. (2012). Boosting crop yields with plant steroids. Plant Cell, 24, 842–857.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Vukasinonic, N., & Russinova, E. (2018). BRexit: Possible brassinosteroid export and transport routes. Trends in Plant Science, 23, 285–292.

    Article  CAS  Google Scholar 

  • Wang, Z.-Y., Seto, H., Fujioka, S., Yoshida, S., & Chory, J. (2001). BRI1 is a critical component of a plasma-membrane receptor for plant steroids. Nature, 410, 380–383.

    Article  CAS  PubMed  Google Scholar 

  • Wang, Z.-Y., Nakano, T., Gendron, J. M., He, J., Chen, M., Vafeados, D., Yang, Y., Fujioka, S., Yoshida, S., Asami, T., & Chory, J. (2002). Nuclear-localized BZR1 mediates brassinosteroid-induced growth and feedback suppression of brassinosteroid biosynthesis. Developmental Cell, 2, 505–513.

    Article  CAS  PubMed  Google Scholar 

  • Wang, H., Nagegowda, D. A., Rawat, R., Bouvier-Nave, P., Guo, D., & Bach, T. J. (2012a). Overexpression of Brassica juncea wild-type and mutant HMG-CoA synthase 1 in Arabidopsis up-regulates genes in sterol biosynthesis and enhances sterol production and stress tolerance. Plant Biotechnology Journal, 10, 31–42.

    Article  PubMed  CAS  Google Scholar 

  • Wang, Z.-Y., Bai, M.-Y., Oh, E., & Zhu, J.-Y. (2012b). Brassinosteroid signaling network and regulation of photomorphogenesis. Annual Review of Genetics, 46, 699–722.

    Article  CAS  Google Scholar 

  • Wang, H., Tang, J., Liu, J., Hu, J., Liu, J., Chen, Y., Cai, Z., & Wang, X. (2018). Abscisic acid signaling inhibits brassinosteroid signaling through dampening the dephosphorylation of BIN2 by ABI1 and ABI2. Molecular Plant, 11, 315–325.

    Article  CAS  PubMed  Google Scholar 

  • Wei, Z., Yuan, T., Tarkowska, D., Kim, J., Nam, H. G., Novak, O., He, K., Guo, X., & Li, J. (2017). Brassinosteroid biosynthesis is modulated via a transcription factor cascade of COG1, PIF4, and PIF5. Plant Physiology, 174, 1260–1273.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Witthöft, J., & Harter, K. (2011). Latest news on Arabidopsis brassinosteroid perception and signaling. Frontiers in Plant Science, 2, 58.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Wu, G., Wang, X. L., Li, X. B., Kamiya, Y. J., Otegui, M. S., & Chory, J. (2011). Methylation of a phosphatase specifies dephosphorylation and degradation of activated brassinosteroid receptors. Science Signaling, 4, 29.

    Article  CAS  Google Scholar 

  • Xue, L. W., Du, J. B., Yang, H., Xu, F., Yuan, S., & Lin, H. H. (2009). Brassinosteroids counteract abscisic acid in germination and growth of Arabidopsis. Zeitschrift fur Naturforschung C. Journal of Biosciences, 64, 225–230.

    CAS  PubMed  Google Scholar 

  • Yamamuro, C., Ihara, Y., Wu, X., Noguchi, T., Fujioka, S., Takatsuto, S., Ashikari, M., Kitano, H., & Matsuoka, M. (2000). Loss of function of a rice brassinosteroid insensitive1 homolog prevents internode elongation and bending of the lamina joint. Plant Cell, 12, 1591–1605.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yang, X. H., Xu, Z. H., & Xue, H. W. (2005). Arabidopsis membrane steroid-binding protein1 is involved in inhibition of cell elongation. Plant Cell, 17, 116–131.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yang, D. L., Yao, J., Mei, C.-S., Tong, X.-H., Zeng, L. J., Li, Q., Xiao, L. T., Sun, T. P., Li, J., Deng, X. W., Lee, C. M., Thomashow, M. F., Yang, Y., He, Z., & He, S. Y. (2012). Plant hormone jasmonate prioritizes defense over growth by interfering with gibberellin signaling cascade. Proceedings of the National Academy of Sciences, 109, 1192–1200.

    Article  Google Scholar 

  • Ye, H., Li, L., & Yin, Y. (2011). Recent advances in the regulation of brassinosteroid signaling and biosynthesis pathways. Journal of Integrative Plant Biology, 53, 455–468.

    Article  CAS  PubMed  Google Scholar 

  • Ye, H., Li, L., Guo, H., & Yin, Y. (2012). MYBL2 is a substrate of GSK3-like kinase BIN2 and acts as a corepressor of BES1 in brassinosteroid signaling pathway in Arabidopsis. Proceedings of the National Academy of Science, 109, 20142–20147.

    Article  CAS  Google Scholar 

  • Yin, Y., Vafeados, D., Tao, Y., Yoshida, S., Asami, T., & Chory, J. (2005). A new class of transcription factors mediates brassinosteroid-regulated gene expression in Arabidopsis. Cell, 120, 249–259.

    Article  CAS  PubMed  Google Scholar 

  • Youn, J. H., Kim, M. K., Kim, E.-J., Son, S.-H., Lee, J. E., Jang, M.-S., Kim, T.-W., & Kim, S.-K. (2016). ARF7 increases the endogenous contents of castasterone through suppression of BAS1 expression in Arabidopsis thaliana. Phytochemistry, 122, 34–44.

    Article  CAS  PubMed  Google Scholar 

  • Youn, J. H., Kim, T.-W., Joo, S.-H., Son, S.-H., Roh, J., Kim, S., Kim, T.-W., & Kim, S.-K. (2018). Function and molecular regulation of DWARF1 as a C-24 reductase in brassinosteroid biosynthesis in Arabidopsis. Journal of Experimental Botany, 69, 1873–1886.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yu, X. F., Li, L., Zola, J., Aluru, M., Ye, H. X., Foudree, A., Guo, H. Q., Anderson, S., Aluru, S., Liu, P., Rodermel, S., & Yin, Y. H. (2011). A brassinosteroid transcriptional network revealed by genome-wide identification of BESI target genes in Arabidopsis thaliana. The Plant Journal, 65, 634–646.

    Article  CAS  PubMed  Google Scholar 

  • Yuan, T., Fujioka, S., Takatsuto, S., Matsumoto, S., Gou, X., He, K., Russell, S. D., & Li, J. (2007). BEN1, a gene encoding a dihydroflavonol 4-reductase (DFR)-like protein, regulates the levels of brassinosteroids in Arabidopsis thaliana. The Plant Journal, 51, 220–233.

    Article  CAS  PubMed  Google Scholar 

  • Zhang, Z., & Xu, L. (2018). Arabidopsis BRASSINOSTEROID INACTIVATOR2 is a typical BAHD acyltransferase involved in brassinosteroid homeostasis. Journal of Experimental Botany, 69, 1925–1941.

    Article  CAS  PubMed  Google Scholar 

  • Zhang, H., Rider, S. D., Henderson, J. T., Fountain, M., Chuang, K., Kandachar, V., Simons, A., Edenberg, H. J., Romero-Severson, J., Muir, W. M., & Ogas, J. (2008). The CHD3 remodeler PICKLE promotes trimethylation of histone H3 lysine 27. The Journal of Biological Chemistry, 283, 22637–22648.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang, L.-Y., Bai, M.-Y., Wu, J., Zhu, J.-Y., Wang, H., Zhang, Z., Wang, W., Sun, Y., Zhao, J., Sun, X., Yang, H., Xu, Y., Kim, S.-H., Fujioka, S., Lin, W.-H., Chong, K., Lu, T., & Wang, Z.-Y. (2009a). Antagonistic HLH/bHLH transcription factors mediate brassinosteroid regulation of cell elongation and plant development in rice and Arabidopsis. Plant Cell, 21, 3767–3780.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang, S., Cai, Z., & Wang, X. (2009b). The primary signaling outputs of brassinosteroids are regulated by abscisic acid signaling. Proceedings of the National Academy of Sciences, 106, 4543–4548.

    Article  CAS  Google Scholar 

  • Zhang, S., Wei, Y., Lu, Y., & Wang, X. (2009c). Mechanisms of brassinosteroids interacting with multiple hormones. Plant Signaling & Behavior, 4, 1117–1120.

    Article  CAS  Google Scholar 

  • Zhang, C., Bai, M. Y., & Chong, K. (2014a). Brassinosteroid-mediated regulation of agronomic traits in rice. Plant Cell Reports, 33, 683–696.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang, D., Jing, Y., Jiang, Z., & Lin, R. (2014b). The chromatin-remodeling factor PICKLE integrates brassinosteroid and gibberellin signaling during skotomorphogenic growth in Arabidopsis. Plant Cell, 26, 2472–2485.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhao, B., & Li, J. (2012). Regulation of brassinosteroid biosynthesis and inactivation. Journal of Integrative Plant Biology, 54, 746–759.

    Article  CAS  PubMed  Google Scholar 

  • Zhao, Y., Qi, Z., & Berkowitz, G. A. (2013). Teaching an old hormone new tricks: Cytosolic Ca2+ elevation involvement in plant brassinosteroid signal transduction cascades. Plant Physiology, 163, 555–565.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhou, X. Y., Song, L., & Xue, H. W. (2013). Brassinosteroids regulate the differential growth of Arabidopsis hypocotyls through auxin signaling components IAA19 and ARF7. Molecular Plant, 6, 887–904.

    Article  CAS  PubMed  Google Scholar 

  • Zhu, W., Wang, H., Fujioka, S., Zhou, T., Tian, H., Tian, W., & Wang, X. (2013a). Homeostasis of brassinosteroids regulated by DRL1, a putative acyltransferase in Arabidopsis. Molecular Plant, 6, 546–558.

    Article  CAS  PubMed  Google Scholar 

  • Zhu, J.-Y., Sae-Seaw, J., & Wang, Z.-Y. (2013b). Brassinosteroid signalling. Development, 140, 1615–1620.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Damian Gruszka .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Gruszka, D. (2019). Genetic and Molecular Bases of Brassinosteroid Metabolism and Interactions with Other Phytohormones. In: Hayat, S., Yusuf, M., Bhardwaj, R., Bajguz, A. (eds) Brassinosteroids: Plant Growth and Development. Springer, Singapore. https://doi.org/10.1007/978-981-13-6058-9_8

Download citation

Publish with us

Policies and ethics