Skip to main content

An Online Self Recurrent Direct Adaptive Neuro-Fuzzy Wavelet Based Control of Photovoltaic Systems

  • Chapter
  • First Online:
Solar Photovoltaic Power Plants

Part of the book series: Power Systems ((POWSYS))

  • 1271 Accesses

Abstract

Solar through photovoltaic is an inexhaustible energy source which contributes to enhance the sustainability of the society. Though, photovoltaic systems experience some fundamental problems such as low conversion efficiency particularly during high weather variations and the high nonlinearity between the photovoltaic output power and current. These problems involve in photovoltaic systems need the use of advanced intelligent control methods. This book chapter develops a new direct adaptive maximum power point tracking control for photovoltaic systems. The new proposed technique integrates a Chebyshev wavelet in the consequent part of existing neuro-fuzzy structure. The parameters of the proposed controller are tuned adaptively online using backpropagation algorithm. The performance of the proposed method is tested under high uncertainties appearing from solar irradiance, temperature and fluctuations in load. Finally, simulation results are provided to show that the proposed control method is better than other existing methods in terms of efficiency, load tracking and output power.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Putri RI, Wibowo S, Rifa’i M (2015) Maximum power point tracking for photovoltaic using incremental conductance method. Energy Procedia 68:22–30. https://doi.org/10.1016/j.egypro.2015.03.228

    Article  Google Scholar 

  2. Sera D, Mathe L, Kerekes T, Spataru SV, Teodorescu R (2013) On the perturb-and-observe and incremental conductance MPPT methods for PV systems. IEEE J Photovolt 3(3):1070–1078. https://doi.org/10.1109/JPHOTOV.2013.2261118

    Article  Google Scholar 

  3. Kjær SB (2012) Evaluation of the hill climbing and the incremental conductance maximum power point trackers for photovoltaic power systems. IEEE Trans Energy Convers 27(4):922–929. https://doi.org/10.1109/TEC.2012.2218816

    Article  Google Scholar 

  4. Ishaque K, Salam Z, Lauss G (2014) The performance of perturb and observe and incremental conductance maximum power point tracking method under dynamic weather conditions. Appl Energy 119:228–236. https://doi.org/10.1016/j.apenergy.2013.12.054

    Article  Google Scholar 

  5. Tey KS, Mekhilef S (2014) Modified incremental conductance algorithm for photovoltaic system under partial shading conditions and load variation. IEEE Trans Ind Electron 61(10):5384–5392. https://doi.org/10.1109/TIE.2014.2304921

    Article  Google Scholar 

  6. Alik R, Jusoh A (2017) Modified perturb and observe (P&O) with checking algorithm under various solar irradiation. Sol Energy 148:128–139. https://doi.org/10.1016/j.solener.2017.03.064

    Article  Google Scholar 

  7. Libo W, Zhengming Z, Jianzheng L (2007) A single-stage three-phase grid-connected photovoltaic system with modified MPPT method and reactive power compensation. IEEE Trans Energy Convers 22(4):881–886. https://doi.org/10.1109/TEC.2007.895461

    Article  Google Scholar 

  8. Chu C-C, Chen C-L (2009) Robust maximum power point tracking method for photovoltaic cells: a sliding mode control approach. Sol Energy 83(8):1370–1378. https://doi.org/10.1016/j.solener.2009.03.005

    Article  Google Scholar 

  9. Lalili D, Mellit A, Lourci N, Medjahed B, Berkouk EM (2011) Input output feedback linearization control and variable step size MPPT algorithm of a grid-connected photovoltaic inverter. Renew Energy 36(12):3282–3291. https://doi.org/10.1016/j.renene.2011.04.027

    Article  Google Scholar 

  10. Esram T, Kimball JW, Krein PT, Chapman PL, Midya P (2006) Dynamic maximum power point tracking of photovoltaic arrays using ripple correlation control. IEEE Trans Power Electron 21(5):1282–1291. https://doi.org/10.1109/TPEL.2006.880242

    Article  Google Scholar 

  11. Shah I, ur Rehman F (2017) Smooth higher-order sliding mode control of a class of underactuated mechanical systems. Arab J Sci Eng 42(12):5147–5164. https://doi.org/10.1007/s13369-017-2617-9

    Article  MathSciNet  Google Scholar 

  12. Alajmi BN, Ahmed KH, Finney SJ, Williams BW (2011) Fuzzy-logic-control approach of a modified hill-climbing method for maximum power point in microgrid standalone photovoltaic system. IEEE Trans Power Electron 26(4):1022–1030. https://doi.org/10.1109/TPEL.2010.2090903

    Article  Google Scholar 

  13. Shaiek Y, Smida MB, Sakly A, Mimouni MF (2013) Comparison between conventional methods and GA approach for maximum power point tracking of shaded solar PV generators. Sol Energy 90:107–122. https://doi.org/10.1016/j.solener.2013.01.005

    Article  Google Scholar 

  14. Ahmed J, Salam Z (2014) A maximum power point tracking (MPPT) for PV system using cuckoo search with partial shading capability. Appl Energy 119:118–130. https://doi.org/10.1016/j.apenergy.2013.12.062

    Article  Google Scholar 

  15. Titri S, Larbes C, Toumi KY, Benatchba K (2017) A new MPPT controller based on the ant colony optimization algorithm for photovoltaic systems under partial shading conditions. Appl Soft Comput 58:465–479. https://doi.org/10.1016/j.asoc.2017.05.017

    Article  Google Scholar 

  16. Ishaque K, Salam Z, Shamsudin A, Amjad M (2012) A direct control based maximum power point tracking method for photovoltaic system under partial shading conditions using particle swarm optimization algorithm. Appl Energy 99:414–422. https://doi.org/10.1016/j.apenergy.2012.05.026

    Article  Google Scholar 

  17. Hassan SZ, Li H, Kamal T, Nadarajah M, Mehmood F (2016) Fuzzy embedded MPPT modeling and control of PV system in a hybrid power system. In: 2016 international conference on emerging technologies (ICET). IEEE, pp. 1–6. https://doi.org/10.1109/ICET.2016.7813236

  18. Rahmani B, Li W (2017) A current-based fuzzy controller for MPPT of grid-connected PV systems. J Renew Sustain Energy 9(2):23503. https://doi.org/10.1063/1.4977826

    Article  Google Scholar 

  19. Khaldi N, Mahmoudi H, Zazi M, Barradi Y (2014) The MPPT control of PV system by using neural networks based on Newton Raphson method. In: 2014 international renewable and sustainable energy conference (IRSEC). IEEE, pp. 19–24. https://doi.org/10.1109/IRSEC.2014.7059894

  20. Sedaghati F, Nahavandi A, Badamchizadeh MA, Ghaemi S, Abedinpour Fallah M (2012) PV maximum power-point tracking by using artificial neural network. Math Probl Eng 2012:1–10. https://doi.org/10.1155/2012/506709

    Article  Google Scholar 

  21. Vazquez JR, Martin AD, Herrera RS (2013) Neuro-Fuzzy control of a grid-connected photovoltaic system with power quality improvement. In: 2013 IEEE EUROCON. IEEE, pp. 850–857. https://doi.org/10.1109/EUROCON.2013.6625082

  22. Chen SX, Gooi HB, Wang MQ (2013) Solar radiation forecast based on fuzzy logic and neural networks. Renew Energy 60:195–201. https://doi.org/10.1016/j.renene.2013.05.011

    Article  Google Scholar 

  23. Kamal T, Karabacak M, Hassan SZ, Li H, Fernandez LM (2018) A robust online adaptive B-spline MPPT control of three-phase grid-coupled photovoltaic systems under real partial shading condition. IEEE Trans Energy Convers, p. 1. https://doi.org/10.1109/TEC.2018.2878358

  24. Hassan SZ, Li H, Kamal T, Arifoǧlu U, Mumtaz S, Khan L (2017) Neuro-fuzzy wavelet based adaptive MPPT algorithm for photovoltaic systems. Energies 10(3):394 . https://doi.org/10.3390/en10030394

    Article  Google Scholar 

  25. Abiyev RH, Kaynak O (2008) Identification and control of dynamic plants using fuzzy wavelet neural networks. In: 2008 IEEE international symposium on intelligent control. IEEE, pp. 1295–1301

    Google Scholar 

  26. Badar R, Khan L (2013) Hybrid neuro-fuzzy legendre-based adaptive control algorithm for static synchronous series compensator. Electr Power Compon Syst 41(9):845–867. https://doi.org/10.1080/15325008.2013.792882

    Article  Google Scholar 

  27. Mukerjee AK, Dasgupta N (2007) DC power supply used as photovoltaic simulator for testing MPPT algorithms. Renew Energy 32(4):587–592. https://doi.org/10.1016/j.renene.2006.02.010

    Article  Google Scholar 

  28. Pakistan (2018) Pakistan meteorological department solar radiation data

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Syed Zulqadar Hassan .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Hassan, S.Z., Kamal, T., Mumtaz, S., Khan, L. (2019). An Online Self Recurrent Direct Adaptive Neuro-Fuzzy Wavelet Based Control of Photovoltaic Systems. In: Precup, RE., Kamal, T., Zulqadar Hassan, S. (eds) Solar Photovoltaic Power Plants. Power Systems. Springer, Singapore. https://doi.org/10.1007/978-981-13-6151-7_11

Download citation

  • DOI: https://doi.org/10.1007/978-981-13-6151-7_11

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-13-6150-0

  • Online ISBN: 978-981-13-6151-7

  • eBook Packages: EnergyEnergy (R0)

Publish with us

Policies and ethics