Skip to main content

Mycorrhizosphere: Microbial Interactions for Sustainable Agricultural Production

  • Chapter
  • First Online:
Mycorrhizosphere and Pedogenesis

Abstract

Gradual adverse impact of high input fertiliser and pesticides on agro-ecosystem has tilted our focus towards sustainable agriculture which is rather eco-friendly and cost effective in nature. For achieving full potential in agricultural output, it is imperative to have a better understanding regarding soil microbial diversity and their interactions going on in rhizosphere and mycorrhizosphere. However, Mycorrhizosphere is like a perfect abode for tripartite interaction between plant, mycorrhiza and soil microbes, thereby acting like communication centre. Mycorrhizal fungi which is nearly an indispensable part of rhizosphere, has in it, immense potential for bringing sustainability and stability in crop production.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abbasi, H., Akhtar, A., & Sharf, R. (2015). Vesicular Arbuscular mycorrhizal (VAM) Fungi: A tool for sustainable Agriculture. American Journal of Plant Nutrition and Fertilization Technology, 5, 40–49.

    Article  Google Scholar 

  • Alban, R., Guerrero, R., & Toro, M. (2013). Interactions between a root knot nematode (Meloidogyne exigua) and Arbuscular Mycorrhizae in Coffee Plant Development (Coffea arabica). American Journal of Plant Sciences, 4(7B), 19–23.

    Article  Google Scholar 

  • Alsamowal, M. M., Hadad, M. A., & Sharif, Z. (2016). Response of sesame (Sesasum indicum L.) to Vesicular Arbuscular Mycorrhiza (VAM) and Mineral phosphorus Additions at different moisture regimes under greenhouse conditions in Sudan. International Journal of Scientific and Research Publications (IJSRP), 6(8), 82–83.

    Google Scholar 

  • Andrade, G., Mihara, K., Linderman, R., & Bethlenfalvay, G. J. (1997). Bacteria from rhizosphere and hyphosphere soils of different arbuscular-mycorrhizal fungi. Plant and Soil, 192, 71. https://doi.org/10.1023/A:1004249629643.

    Article  CAS  Google Scholar 

  • Andrade, G., Mihara, K., Linderman, R., & Bethlenfalvay, G. J. (1998). Bacterial associations with the mycorrhizosphere and hyphosphere of the arbuscular mycorrhizal fungus Glomus mosseae. Plant and Soil, 202, 79–87.

    Article  CAS  Google Scholar 

  • Andrade, M. M. M., Stamford, N. P., Santos, C. E. R. S., Freitas, A. D. S., Sousa, C. A., & Junior, M. A. L. (2013). Effects of biofertilizer with diazotrophic bacteria and mycorrhizal fungi in soil attribute, cowpea nodulation yield and nutrient uptake in field conditions. Scientia Horticulturae, 162, 374–379.

    Article  Google Scholar 

  • Anjos, E. C. T. D., Cavalcante, U. M. T., Gonçalves, D. M. C., Pedrosa, E. M. R., Santos, V. F. D., & Maia, L. C. (2010). Interactions between an Arbuscular mycorrhizal Fungus (Scutellospora heterogama) and the Root-knot nematode (Meloidogyne incognita) on Sweet passion fruit (Passiflora alata). Brazilian Archives of Biology and Technology, 53(4), 801–809.

    Article  Google Scholar 

  • Antoniolli, Z. I., Schachtman, D. P., Ophel, K. K., & Smith, S. E. (2000). Variation in rDNA its sequences in Glomus mosseae and Gigaspora margarita spores from a permanent pasture. Mycological Research, 104, 708–715.

    Article  CAS  Google Scholar 

  • Arabi, M. I. E., Ayoubi, S. K. Z., & Jawhar, M. (2013). Mycorrhizal application as a biocontrol agent against common root rot of barley. Research in Biotechnology, 4(4), 07–12.

    Google Scholar 

  • Arriola, L. L., Hausbeck, M. K., Rogers, J., & Safir, G. R. (2000). The effect of Trichoderma harzianum and Arbuscular mycorrhizae on Fusarium root rot in Asparagus. Hort Technology, 10(1), 141–144.

    Google Scholar 

  • Askar, A. A. A., & Rashad, Y. M. (2010). Arbuscular mycorrhizal fungi: A biocontrol agent against common bean Fusarium rot disease. Plant Pathology Journal, 9(1), 31–38.

    Article  Google Scholar 

  • Audet, P., & Charest, C. (2010). Determining the impact of the AM-Mycorrhizosphere on “Dwarf” sunflower Zn uptake and soil-Zn bioavailability. Journal of Botany, Article ID 268540, 1–11. https://doi.org/10.1155/2010/268540.

    Google Scholar 

  • Augé, R. M., Toler, H. D., & Saxton, A. M. (2015). Arbuscular mycorrhizal symbiosis alters stomatal conductance of host plants more under drought than under amply watered conditions: A meta-analysis. Mycorrhiza, 25, 13. https://doi.org/10.1007/s00572-014-0585-4.

    Article  PubMed  Google Scholar 

  • Azcon-Aguilar, C., & Barea, J. (1996). Arbuscular mycorrhizas and biological control of soil-borne plant pathogens – An overview of the mechanisms involved. Mycorrhiza, 6, 457–464. https://doi.org/10.1007/s005720050147.

    Article  Google Scholar 

  • Azcon-Aguilar, C., & Barea, J. M. (2015). Nutrient cycling in the mycorrhizosphere. Journal of Soil Science and Plant Nutrition, 15(2), 372–396.

    CAS  Google Scholar 

  • Bago, B., Bentivenga, S. P., Brenec, V., Dodd, J. C., Piche, Y., & Simon, L. (1998). Molecular analysis of Gigaspora, Glomales, Gigasporaceae. The New Phytologist, 139, 581–588.

    Article  CAS  Google Scholar 

  • Bagyaraj, D. J. (2014). Mycorrhizal fungi. Proceedings of the Indian National Science Academy, 80(2), 415–428.

    Article  Google Scholar 

  • Bagyaraj, D. J., Sharma, M. P., & Maiti, D. (2015). Phosphorus nutrition of crops through arbuscular mycorrhizal fungi. Current Science, 108(7), 1288–1293.

    CAS  Google Scholar 

  • Balaes, T., & Catalin, T. (2011). Interrelations between the mycorrhizal systems and soil organisms. Journal of Plant Development, 18, 55–69.

    Google Scholar 

  • Banuelos, J., Alarcón, A., Larsen, J., Cruz-Sánchez, S., & Trejo, D. (2014). Interactions between arbuscular mycorrhizal fungi and Meloidogyne incognita in the ornamental plant Impatiens balsamina. Journal of Soil Science and Plant Nutrition, 14(1), 63–74. https://doi.org/10.4067/S0718-95162014005000005.

    Article  CAS  Google Scholar 

  • Barea, J. M., Azcón, R., & Azcón-Aguilar, C. (2002). Mycorrhizosphere interactions to improve plant fitness and soil quality. Antonie Van Leeuwenhoek, 81, 343. https://doi.org/10.1023/A:1020588701325.

    Article  CAS  PubMed  Google Scholar 

  • Bellgard, S. E., & Williams, S. E. (2011). Response of mycorrhizal diversity to current climatic changes. Diversity, 3, 8–90.

    Article  CAS  Google Scholar 

  • Berruti, A., Lumini, E., Balestrini, R., & Bianciotto, V. (2016). Arbuscular mycorrhizal fungi as natural biofertilizers: Let’s benefit from past successes. Frontiers in Microbiology, 6(1559), 1–13. https://doi.org/10.3389/fmicb.2015.01559.

    Article  Google Scholar 

  • Bethlenfalvay, G. J., Mihara, K., Schreiner, R. P., & McDaniel, H. (1996). Mycorrhizae, biocides and biocontrol. 1. Herbicide – Mycorrhiza interaction in soybean and cocklebur treated with bentazon. Applied Soil Ecology, 3, 197–204.

    Article  Google Scholar 

  • Bharti, N., & Kumar, A. (2016). Response of mycorrhiza on physiological and biochemical parameters of black gram Vigna mungo (l.) hepper. IJPRBS, 5(2), 143–157.

    CAS  Google Scholar 

  • Bianciotto, V., & Bonfante, P. (2002). Arbuscular mycorrhizal fungi: A specialised niche for rhizospheric and endocellular bacteria. Antonie Van Leeuwenhoek, 81, 365. https://doi.org/10.1023/A:1020544919072.

    Article  CAS  PubMed  Google Scholar 

  • Bianciotto, V., Perotto, S., Ruiz-Lozano, J. M., & Bonfante, P. (2002). Arbuscular mycorrhizal fungi and soil bacteria: From cellular investigations to biotechnological perspectives. In S. Gianinazzi, H. Schüepp, J. M. Barea, & K. Haselwandter (Eds.), Mycorrhizal technology in agriculture. Basel: Birkhäuser.

    Google Scholar 

  • Birhane, E., Sterck, F. J., Fetene, M., et al. (2012). Arbuscular mycorrhizal fungi enhance photosynthesis, water use efficiency, and growth of frankincense seedlings under pulsed water availability conditions. Oecologia, 169, 895–904.

    Article  PubMed  PubMed Central  Google Scholar 

  • Brundrett, M. C. (2009). Mycorrhizal associations and other means of nutrition of vascular plants: Understanding the global diversity of host plants by resolving conflicting information and developing reliable means of diagnosis. Plant and Soil, 320, 37. https://doi.org/10.1007/s11104-008-9877-9.

    Article  CAS  Google Scholar 

  • Caron, M. (2009). Potential use of mycorrhizae in control of soil-borne diseases. Canadian Journal of Plant Pathology, 11(2), 177–179. https://doi.org/10.1080/07060668909501135.

    Article  Google Scholar 

  • Cekic, O. F., Unyayar, S., & Ortas, I. (2012). Effects of arbuscular mycorrhizal inoculation on biochemical parameters in Capsicum annuum grown under long term salt stress. Turkish Journal of Botany, 36, 63–72.

    CAS  Google Scholar 

  • Churchland, C., & Grayston, S. J. (2014). Specificity of plant-microbe interactions in the tree mycorrhizosphere biome and consequences for soil C cycling. Frontiers in Microbiology, 5(261), 1–20.

    Google Scholar 

  • Clapp, J. P., Fitter, A. H., & Young, J. P. W. (1999). Ribosomal small subunit sequence variation within spores of an arbuscular mycorrhizal fungus Scutellospora sp. Molecular Ecology, 8, 915–921.

    Article  CAS  PubMed  Google Scholar 

  • Cordier, C., Gianinazzi, S., & Gianinazzi-Pearson, V. (1996). Colonisation patterns of root tissues by Phytophthora nicotianae var. parasitica related to reduced disease in mycorrhizal tomato. Plant and Soil, 185(2), 223–232.

    Article  CAS  Google Scholar 

  • Croll, D., et al. (2009). Nonself vegetative fusion and genetic exchange in the arbuscular mycorrhizal fungus Glomus intraradices. New Phytologist, 181, 924–937.

    Article  CAS  PubMed  Google Scholar 

  • Crossay, T., Antheaume, C., Redecker, D., Bon, L., Chedri, N., Richert, C., Guentas, L., Cavaloc, Y., & Amir, H. (2017). New method for the identification of arbuscular mycorrhizal fungi by proteomic-based biotyping of spores using MALDI-TOF-MS. Scientific Reports, 7, 14306. https://doi.org/10.1038/s41598-017-14487-6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Daniell, T. J., Husband, R., Fitter, A. H., & Young, J. P. W. (2001). Molecular diversity of arbuscular mycorrhizal fungi colonising arable crops. FEMS Microbiology Ecology, 36, 203–209.

    Article  CAS  PubMed  Google Scholar 

  • Dar, M. H., & Reshi, Z. A. (2017). Vesicular Arbuscular Mycorrhizal (VAM) Fungi- as a major biocontrol agent in modern sustainable agriculture system. Russian Agricultural Sciences, 43(2), 138–143.

    Article  Google Scholar 

  • de la Pena, E., Rodriguez-Echeverria, S., van der Putten, W. H., Freitas, H., & Moens, M. (2006). Mechanism of control of root-feeding nematodes by mycorrhizal fungi in the dune grass Ammophila arenaria. New Phytologist, 169, 829–840.

    Article  PubMed  Google Scholar 

  • Di Bonito, R., Elliott, M. L., & Des Jardin, E. A. (1995). Detection of an arbuscular mycorrhizal fungus in roots of different plant species with the PCR. Applied and Environmental Microbiology, 61, 2809–2810.

    PubMed  PubMed Central  Google Scholar 

  • Duponnois, R., Galiana, A., & Prin, Y. (2008). The Mycorrhizosphere effect: A multitrophic interaction complex improves mycorrhizal symbiosis and plant growth. In Z. A. Siddiqui, M. S. Akhtar, & K. Futai (Eds.), Mycorrhizae: Sustainable agriculture and forestry. Dordrecht: Springer.

    Google Scholar 

  • Edwards, S. G., Fitter, A. H., & Young, J. P. W. (1997). Quantification of an arbuscular mycorrhizal fungus, Glomus mosseae within plant roots by competitive polymerase chain reaction. Mycological Research, 10, 1440–1444.

    Article  Google Scholar 

  • Farahani, A., et al. (2008). Effects of arbuscular mycorrhizal fungi, different levels of phosphorus and drought stress on water use efficiency, relative water content and proline accumulation rate of Coriander (Coriandrum sativum L.). Journal of Medicinal Plant Research, 2(6), 125–131.

    Google Scholar 

  • Fitter, A. H., & Garbaye, J. (1994). Interactions between mycorrhizal fungi and other soil organisms. Plant Soil, 159, 123–132. https://doi.org/10.1007/BF00000101.

    Article  Google Scholar 

  • Fracchia, S., Mujica, M., García-Romera, I., et al. (1998). Interactions between Glomus mosseae and arbuscular mycorrhizal sporocarp-associated saprophytic fungi. Plant and Soil, 200, 131. https://doi.org/10.1023/A:1004349426315.

    Article  CAS  Google Scholar 

  • Frey, P., Frey-Klett, P., Garbaye, J., Berge, O., & Heulin, T. (1997). Metabolic and genotypic fingerprinting of fluorescent pseudomonads associated with the douglas Fir-Laccaria bicolor Mycorrhizosphere. Applied and Environmental Microbiology, 63(5), 1852–1860.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Frey-Klett, P., Chavatte, M., Clausse, M. L., Courrier, S., Le Roux, C., Raaijmakers, J., Martinotti, M. G., Pierrat, J. C., & Garbaye, J. (2005). Ectomycorrhizal symbiosis affects functional diversity of rhizosphere fluorescent pseudomonads. New Phytologist, 165, 317–328.

    Article  PubMed  Google Scholar 

  • Gahan, J., & Schmalenberger, A. (2014). The role of bacteria and mycorrhiza in plant sulfur supply. Frontiers in Plant Science, 5(723), 1–7.

    Google Scholar 

  • Gamper, H., Walker, C., & Schüßler, A. (2009). Diversispora celata sp. nov.: Molecular ecology and phylotaxonomy of an inconspicuous arbuscular mycorrhizal fungus. New Phytologist, 182, 495–506.

    Article  CAS  PubMed  Google Scholar 

  • Gardes, M., White, T. J., Fortin, J. A., Bruns, T. D., & Taylor, J. W. (1991). Identification of indigenous and introduced symbiotic fungi in endomycorrhizae by amplification of nuclear and mitochondrial ribosomal DNA. Canadian Journal of Botany, 69, 180.

    Article  CAS  Google Scholar 

  • Gautier, M., et al. (2014). Matrix-assisted laser desorption ionization time-of-fight mass spectrometry: Revolutionizing clinical laboratory diagnosis of mould infections. Clinical Microbiology and Infection, 20, 1366–1371.

    Article  CAS  PubMed  Google Scholar 

  • Ghahfarokhy, M. R., Goltapeh, E. M., Purjam, E., Pakdaman, B. S., Modarres Sanavy, S. A. M., & Varma, A. (2011). Potential of mycorrhiza-like fungi and Trichoderma species in biocontrol of take-all disease of wheat under greenhouse condition. Journal of Agricultural Technology, 7, 185–195.

    Google Scholar 

  • Giovannetti, M., Sbrana, C., Strani, P., Agnolucci, M., Rinaudo, V., & Avio, L. (2003). Genetic diversity of isolates of Glomus mosseae from different geographic areas detected by vegetative compatibility testing and biochemical and molecular analysis. Applied and Environmental Microbiology, 69, 615–624.

    Article  CAS  Google Scholar 

  • Green, H., Larsen, J., Olsson, P. A., Jensen, D. F., & Jakobsen, I. (1999). Suppression of the biocontrol agent Trichoderma harzianum by Mycelium of the Arbuscular mycorrhizal fungus Glomus intraradices in Root-free soil. Applied and Environmental Microbiology, 65(4), 1428–1434.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Hao, Z., Fayolle, L., van Tuinen, D., Chatagnier, O., Li, X., Gianinazzi, S., & Gianinazzi-Pearson, V. (2012). Local and systemic mycorrhiza-induced protection against the ectoparasitic nematode Xiphinema index involves priming of defence gene responses in grapevine. Journal of Experimental Botany, 63(10), 3657–3672.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hartmann, A., Rothballer, M., & Schmid, M. (2007). Lorenz Hiltner, a pioneer in rhizosphere microbial ecology and soil bacteriology research. Plant and Soil, 312, 7–14.

    Article  CAS  Google Scholar 

  • Hijri, M., & Sanders, I. R. (2005). Low gene copy number shows that arbuscular mycorrhizal fungi inherit genetically diferent nuclei. Nature, 433, 160–163.

    Article  CAS  PubMed  Google Scholar 

  • Hodge, A. (2014). Chapter two – interactions between Arbuscular mycorrhizal fungi and organic material substrates. In S. Sariaslani & G. M. Gadd (Eds.), Advances in applied microbiology (Vol. 89, pp. 47–99). Saint Louis: Academic.

    Google Scholar 

  • Hodge, A., Campbell, C. D., & Fitter, A. H. (2001). An arbuscular mycorrhizal fungus accelerates decomposition and acquires nitrogen directly from organic material. Nature, 297–299. ISSN 1476-4687.

    Google Scholar 

  • Jacquot, E., Van Tuinen, D., Gianinazzi, S., & Gianinazzi Pearson, V. (2000). Monitoring species of arbuscular mycorrhizal fungi in planta and in soil by nested PCR: Amplification to the study of the impact of sewage sludge. Plant and Soil, 226, 179–188.

    Article  CAS  Google Scholar 

  • Jaderlund, L., Arthurson, V., Granhall, U., & Jansson, J. K. (2008). Specific interactions between arbuscular mycorrhizal fungi and plant growth-promoting bacteria: As revealed by different combinations. FEMS Microbiology Letters, 287, 174–180.

    Article  PubMed  CAS  Google Scholar 

  • Jha, S. K., & Kumar, N. (2011). Potential of mycorrhizal fungi in Ecosystem: A Review. International Journal of Research in Botany, 1(1), 1–7.

    Google Scholar 

  • Jung, S. C., Martinez-Medina, A., Lopez-Raez, J. A., & Pozo, M. J. (2012). Mycorrhiza-induced resistance and priming of plant defenses. Journal of Chemical Ecology, 38, 651–664. https://doi.org/10.1007/s10886-012-0134-6.

    Article  CAS  PubMed  Google Scholar 

  • Kahneh, E., Ramezan Pour, H., Haghparast, M., & Shirinfekr, A. (2006). Effects of Arbuscular mycorrhizal fungi and phosphorus supplement on Leaf P, Zn, Cu and Fe concentrations of tea seedlings. Caspian Journal of Environmental Sciences, 4(1), 53–58.

    Google Scholar 

  • Kamal, R., Gusain, Y. S., & Kumar, V. (2014). Interaction and symbiosis of AM fungi, actinomycetes and plant growth promoting Rhizobacteria with plants: Strategies for the improvement of plants health and defense system. International Journal of Current Microbiology and Applied Sciences, 3(7), 564–585.

    Google Scholar 

  • Kjφller, R., & Rosendahl, S. (2000). Detection of arbuscular mycorrhizal fungi (Glomales) in roots by nested PCR and SSCP (single stranded conformation polymorphism). Plant and Soil, 226, 189–196.

    Article  Google Scholar 

  • Kjφller, R., & Rosendahl, S. (2003). Molecular diversity of Glomalean (arbuscular mycorrhizal) fungi determined as distinct Glomus specific DNA sequences from roots of field-grown peas. Mycological Research, 105, 1027–1032.

    Article  Google Scholar 

  • Kohn, L. M. (1992). Developing new characters for fungal systematics: An experimental approach for determining the rank of resolution. Mycologia, 84, 139.

    Article  Google Scholar 

  • Krüger, M., Krüger, C., Walker, C., Stockinger, H., & Schüßler, A. (2012). Phylogenetic reference data for systematics and phylotaxonomy of arbuscular mycorrhizal fungi from phylum to species level. New Phytologist, 193, 970–984.

    Article  PubMed  Google Scholar 

  • Lanfranco, L., Delpero, M., & Bonfante, P. (1999). Intrasporal variability of ribosomal sequences in the endomycorrhizal fungus Gigaspora margarita. Molecular Ecology, 8, 37–45.

    Article  CAS  PubMed  Google Scholar 

  • Larsen, J., Cornejo, P., & Barea, J. M. (2009). Interactions between the arbuscular mycorrhizal fungus Glomus intraradices and the plant growth promoting rhizobacteria Paenibacillus polymyxa and P. macerans in the mycorrhizosphere of Cucumis sativus. Soil Biology and Biochemistry, 41(2), 286–292.

    Article  CAS  Google Scholar 

  • Lax, P., Becerra, A. G., Soteras, F., Cabello, M., & Doucet, M. E. (2011). Effect of the arbuscular mycorrhizal fungus Glomus intraradices on the false Root-knot nematode Nacobbus aberrans in tomato plants. Biology and Fertility of Soils, 47, 591–597.

    Article  Google Scholar 

  • Lee, J., Lee, S., & Young, J. P. W. (2008). Improved PCR primers for the detection and identification of arbuscular mycorrhizal fungi. FEMS Microbiology Ecology, 65, 339–349.

    Article  CAS  PubMed  Google Scholar 

  • Lehmann, A., & Rillig, M. (2015). Arbuscular mycorrhizal contribution to copper, manganese and iron nutrient concentrations in crops – A meta-analysis. Soil Biology and Biochemistry, 81, 147–158. https://doi.org/10.1016/j.soilbio.2014.11.013.

    Article  CAS  Google Scholar 

  • Leta, A., & Selvaraj, T. (2013). Evaluation of Arbuscular mycorrhizal fungi and Trichoderma species for the control of onion white rot (Sclerotium cepivorum Berk). Journal of Plant Pathology & Microbiology, 4(1), 1–6. https://doi.org/10.4172/2157-7471.1000159.

    Article  Google Scholar 

  • Li, H., Nishida, I., Shu, H., Yang, G., Yang, Y., Ye, B., & Zheng, C. (2006). Colonization by the arbuscular mycorrhizal fungus Glomus versiforme induces a defense response against the Root-knot nematode Meloidogyne incognita in the grapevine (Vitis amurensis Rupr.), which includes transcriptional activation of the class III chitinase gene VCH3. Plant & Cell Physiology, 47(1), 154–163.

    Article  CAS  Google Scholar 

  • Linderman, R. G. (1988). Mycorrhizal interaction with the rhizosphere microflora: The Mycorrhizosphere Effect. Phytopathology, 78, 366–371.

    Google Scholar 

  • Lioussanne, L. (2013). The role of the arbuscular mycorrhiza-associated rhizobacteria in the biocontrol of soilborne phytopathogens: A review. Spanish Journal of Agricultural Research, 8(S1), 51–61.

    Article  Google Scholar 

  • Mansfeld-Giese, K., Larsen, J., & Bodker, L. (2002). Bacterial populations associated with mycelium of the arbuscular mycorrhizal fungus Glomus intraradices. FEMS Microbiology Ecology, 41, 133–140.

    Article  CAS  PubMed  Google Scholar 

  • Marro, N., Lax, P., Cabello, M., Doucet, M. E., & Becerra, A. G. (2014). Use of the arbuscular mycorrhizal fungus Glomus intraradices as biological control agent of the nematode Nacobbus aberrans parasitizing tomato. Brazilian Archives of Biology and Technology, 57(5), 668–674. https://doi.org/10.1590/S1516-8913201402200.

    Article  Google Scholar 

  • Martin, F., et al. (2008). Te long hard road to a completed Glomus intraradices genome. New Phytologist, 180, 747–750.

    Article  CAS  PubMed  Google Scholar 

  • Matsumoto, L. S., Martines, A. M., Avanzi, M. A., et al. (2005). Interactions among functional groups in the cycling of, carbon, nitrogen and phosphorus in the rhizosphere of three successional species of tropical woody trees. Applied Soil Ecology, 28(1), 57–65.

    Article  Google Scholar 

  • Mendes, R., Garbeva, P., & Raaijmakers, J. M. (2013). The rhizosphere microbiome: Significance of plant beneficial, plant pathogenic, and human pathogenic microorganisms. FEMS Microbiology Reviews, 37(5), 634–663.

    Article  CAS  PubMed  Google Scholar 

  • Miransari, M. (2011). Interactions between arbuscular mycorrhizal fungi and soil bacteria. Applied Microbiology and Biotechnology, 89, 917. https://doi.org/10.1007/s00253-010-3004-6.

    Article  CAS  PubMed  Google Scholar 

  • Mirzakhani, M., Ardakani, M. R., Band, A. A., Rad, A. H. S., & Rejali, F. (2009). Effects of dual inoculation of azotobacter and mycorrhiza with nitrogen and phosphorus fertilizer rates on grain yield and some of characteristics of spring safflower. International Journal of Civil and Environmental Engineering, 1(1), 39–43.

    Google Scholar 

  • Mobasser, H. R., & Moradgholi, A. (2012). Mycorrhizal bio-fertilizer applications on yield seed corn varieties in Iran. Annals of Biological Research, 3(2), 1109–1116.

    Google Scholar 

  • Muhsen, T. A. A., Al-Attabi, M. S. Y., & Ali, B. Z. (2015). Effect of arbuscular mycorrhizal fungi as a biocontrol agent and organic matter against fusarium wilt in tomato. Journal of Genetic and Environmental Resources Conservation, 3(3), 237–245.

    Google Scholar 

  • Naghashzadeh, M. (2014). Response of relative water content and cell membrane stability to mycorrhizal biofertilizer in maize. Electronic Journal of Biology, 10(3), 68–72.

    Google Scholar 

  • Nurbaity, A., Sofyan, E. T., & Hamdani, J. S. (2016). Application of Glomus sp. and Pseudomonas diminuta reduce the use of chemical fertilizers in production of potato grown on different soil types. IOP Conference Series: Earth and Environmental Science, 41, 012004. https://doi.org/10.1088/1755-1315/41/1/012004.

    Article  Google Scholar 

  • Odeyemi, I., Afolami, S., & Sosanya, O. (2010). Effect of Glomus mosseae (Arbuscular Mycorrhizal Fungus) On host – parasite relationship of Meloidogyne incognita (Southern Root-knot nematode) on four improved Cowpea varieties. Journal of Plant Protection Research, 50(3), 321–325.

    Article  Google Scholar 

  • Orona-Castro, F., Lozano-Contreras, M., Tucuch-Cauich, M., Grageda-Cabrera, O., Medina-Mendez, J., Díaz-Franco, A., Ruiz-Sánchez, E., & Soto-Rocha, J. (2013). Response of rice cultivation to biofertilizers in Campeche, Mexico. Agricultural Sciences, 4, 715–720. https://doi.org/10.4236/as.2013.412097.

    Article  Google Scholar 

  • Osillos, P. L., & Nagpal, A. L. (2014). The effects of Arbuscular Mycorrhizal Fungi (AMF) as biofertilizer on the growth, yield and nutrient uptake of tomato (Lycopersicon esculentum Mill). International Journal of Scientific and Engineering Research, 3(11), 49–65.

    Google Scholar 

  • Ozgonen, H., Akgul, D. S., & Erkilic, A. (2010). The effects of arbuscular mycorrhizal fungi on yield and stem rot caused by Sclerotium rolfsii Sacc. in peanut. African Journal of Agricultural Research, 5(2), 128–132.

    Google Scholar 

  • Paulilz, T. C., & Lindennan, R. G. (1991). Mycorrhizal inieractions wilh soil organisms. In D. K. Aurora, B. Rai, K. G. Mukerji, & G. Knudsen (Eds.), Handbook of applied mycology. Vol. 1: Soils and plants (pp. 77–129). New York: Marcel Dekker.

    Google Scholar 

  • Pinochet, J., Calvet, C., Camprubí, A., & Fernández, C. (1996). Interactions between migratory endoparasitic nematodes and arbuscular mycorrhizal fungi in perennial crops: A review. Plant and Soil, 185(2), 183–190.

    Article  CAS  Google Scholar 

  • Priyadharsini, P., Rojamala, K., Ravi, R. K., Muthuraja, R., Nagaraj, K., & Muthukumar, T. (2016). Mycorrhizosphere: The extended rhizosphere and its significance. In D. Choudhary, A. Varma, & N. Tuteja (Eds.), Plant-microbe interaction: An approach to sustainable agriculture. Singapore: Springer.

    Google Scholar 

  • Rambelli, A. (1973). The rhizosphere of mycorrhizae. In A. C. Marks & T. T. Kozlowski (Eds.), Ectomycorrhizae: Their ecology and physiology (pp. 229–249). London: Academic.

    Google Scholar 

  • Redecker, D. (2002). Molecular identification and phylogeny of arbuscular mycorrhizal fungi. Plant and Soil, 244, 67–73.

    Article  CAS  Google Scholar 

  • Redecker, D., Thierfelder, H., Walker, C., & Werner, D. (1997). Restriction analysis of PCR-amplified internal transcribed spacer of ribosomal DNA as a tool for species identification in different genera of the order Glomales. Applied and Environmental Microbiology, 63, 1756–1761.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Renker, C., Heinrichs, J., Kaldorf, M., & Buscot, F. (2003). Combining nested PCR and restriction digest of the internal transcribed spacer region to characterize arbuscular mycorrhizal fungi on roots from the field. Mycorrhiza, 13, 191–198.

    Article  CAS  PubMed  Google Scholar 

  • Rigamonte, T. A., Pylro, V. S., & Duarte, G. F. (2010). The role of mycorrhization helper bacteria in the establishment and action of ectomycorrhizae associations. Brazilian Journal of Microbiology, 41, 832–840.

    Article  PubMed  PubMed Central  Google Scholar 

  • Sadhana, B. (2014). Arbuscular mycorrhizal fungi (AMF) as a biofertilizer – A review. International Journal of Current Microbiology and Applied Sciences, 3(4), 384–400.

    Google Scholar 

  • Salih, S. H., Hamd, S. A. M., & Dagash, Y. M. I. (2015). The Effects of rhizobium, mycorrhizal inoculations and Diammonium Phosphate (DAP) on nodulation, growth, and yield of soybean. Universal Journal of Agricultural Research, 3(1), 11–14.

    Article  Google Scholar 

  • Schouteden, N., Waele, D. D., Panis, B., & Vos, C. M. (2015). Arbuscular mycorrhizal fungi for the biocontrol of plant-parasitic nematodes: A review of the mechanisms involved. Frontiers in Microbiology, 6(1280), 1–12.

    Google Scholar 

  • Schreiner, R. P., & Bethlenfalvay, G. J. (1995). Mycorrhizal interactions in sustainable agriculture. Critical Reviews in Biotechnology, 15(3/4), 271–285.

    Article  Google Scholar 

  • Schubler, A., Schwarzott, D., & Walker, C. (2001). A new fungal phylum, the Glomeromycota: Phylogeny and evolution. Mycological Research, 105(12), 1413–1421.

    Article  Google Scholar 

  • Sharma, I. P., & Sharma, A. K. (2015). Root–knot Nematodes (Meloidogyne incognita) suppression through Pre-colonized Arbuscular Mycorrhiza (Glomus intraradices) in Tomato-PT3. Science in Agriculture, 12(1), 52–57.

    CAS  Google Scholar 

  • Sheng, M., Tang, M., Chen, H., et al. (2008). Influence of arbuscular mycorrhizae on photosynthesis and water status of maize plants under salt stress. Mycorrhiza, 18, 287. https://doi.org/10.1007/s00572-008-0180-7.

    Article  CAS  PubMed  Google Scholar 

  • Shreenivasa, K. R., Krishnappa, K., & Ravichandra, N. G. (2007). Interaction effects of Arbuscular mycorrhizal fungus Glomus fasciculatum and Root –knot nematode, Meloidogyne incognita on growth and phosphorous uptake of tomato. Karnataka Journal of Agricultural Sciences, 20(1), 57–61.

    Google Scholar 

  • Simon, L., Lalonde, M., & Bruns, T. D. (1992a). Specific amplification of 18S fungal ribosomal genes from vesicular-arbuscular endomycorrhizal fungi colonizing roots. Applied and Environmental Microbiology, 58, 291–295.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Simon, L., Levesque, R. C., & Lalonde, M. (1992b). Identification of endomycorrhizal fungi colonizing roots by fluorescent single-strand conformation polymorphism–polymerase chain reaction. Applied and Environmental Microbiology, 59, 4211–4215.

    Google Scholar 

  • Singh, S. R., Singh, U., Chaubey, A. K., & Bhat, M. I. (2010). Mycorrhizal fungi For sustainable agriculture-a review. Agricultural Reviews, 31(2), 93–104.

    Google Scholar 

  • Siviero, M. A., Motta, A. M., Lima, D. S., Birolli, R. R., Huh, S. Y., Santinoni, I. A., Murate, L. S., Castro, C. M. A., Miyauchi, M. Y. H., Zangaro, W., Nogueira, M. A., & Andrade, G. (2008). Interaction among N-fixing bacteria and AM fungi in Amazonian legume tree (Schizolobium amazonicum) in field conditions. Applied Soil Ecology, 39, 144–152.

    Article  Google Scholar 

  • Staddon, P., Heinemeyer, A., & Fitter, A. (2002). Mycorrhizas and global environmental change: Research at different scales. Plant and Soil, 244(1/2), 253–261.

    Article  CAS  Google Scholar 

  • Subhashini, D. V. (2016). Effect of NPK fertilizers and Co-inoculation with phosphate-solubilizing Arbuscular mycorrhizal fungus and potassium-mobilizing bacteria on growth, yield, nutrient acquisition, and quality of tobacco (Nicotiana tabacum L.). Communications in Soil Science and Plant Analysis, 47(3), 328–337. https://doi.org/10.1080/00103624.2015.1123724.

    Article  CAS  Google Scholar 

  • Svenningsen, N. B., Watts-Williams, S. J., Joner, E. J., Battini, F., Efthymiou, A., Cruz-Paredes, C., Nybroe, O., & Jakobsen, I. (2018). Suppression of the activity of arbuscular mycorrhizal fungi by the soil microbiota. The ISME Journal, 12, 1–12.

    Article  CAS  Google Scholar 

  • Syafruddin, S., Syakur, S., & Arabia, T. (2016). Propagation techniques of mycorrhizal bio-fertilizer with different types of mycorrhiza inoculant and host plant in Entisol Aceh. International Journal of Agricultural Research, 11, 69–76.

    Article  CAS  Google Scholar 

  • Tahat, M. M., Kamaruzaman, S., & Othman, R. (2010). Mycorrhizal fungi as a biocontrol agent. Plant Pathology Journal, 9(4), 198–207.

    Article  Google Scholar 

  • Tamayo, E., Gómez-Gallego, T., Azcón-Aguilar, C., & Ferrol, N. (2014). Genome-wide analysis of copper, iron and zinc transporters in the arbuscular mycorrhizal fungus Rhizophagus irregularis. Frontiers in Plant Science, 5(547), 1–13.

    Google Scholar 

  • Thamsurakul, S., & Charoensook, S. (2006, October 16–20). Mycorrhizal fungi as biofertilizer for fruit tree production in Thailand. Paper presented at international workshop on sustained management of the soil-Rhizosphere system for efficient crop production and fertilizer use.

    Google Scholar 

  • Tian, C., He, X., Zhong, Y., et al. (2003). Effect of inoculation with ecto- and arbuscular mycorrhizae and Rhizobium on the growth and nitrogen fixation by black locust, Robinia pseudoacacia. New Forests, 25, 125.

    Article  Google Scholar 

  • Timonen, S., & Marschner, P. (2006). Mycorrhizosphere concept. In K. G. Mukerji, C. Manoharachary, & J. Singh (Eds.), Microbial activity in the rhizoshere (Soil biology) (Vol. 7). Berlin/Heidelberg: Springer.

    Chapter  Google Scholar 

  • Tobar, R. M., Azcon-Aguilar, C., Sanjuan, J., & Barea, J. M. (1996). Impact of a genetically modified Rhizobium strain with improved nodulation competitiveness on the early stages of arbuscular mycorrhiza formation. Applied Soil Ecology, 4, 15–21.

    Article  Google Scholar 

  • Tran, A., Alby, K., Kerr, A., Jones, M., & Gilligan, P. H. (2015). Cost savings realized by implementation of routine microbiological identification by matrix-assisted laser desorption ionization–time of flight mass spectrometry. Journal of Clinical Microbiology, 53, 2473–2479.

    Article  PubMed  PubMed Central  Google Scholar 

  • Uroz, S., Calvaruso, C., Turpault, M. P., Pierrat, J. C., Mustin, C., & Frey-Klett, P. (2007). Effect of the mycorrhizosphere on the genotypic and metabolic diversity of the bacterial communities involved in mineral weathering in a forest soil. Applied and Environmental Microbiology, 73(9), 3019–3027. https://doi.org/10.1128/AEM.00121-07.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Veerabhadraswamy, A. L., & Garampalli, R. H. (2011). Effect of Arbuscular mycorrhizal fungi in the management of black bundle disease of maize caused by Cephalosporium acremonium. Science Research Reporter, 1(2), 96–100.

    Google Scholar 

  • Walker, C., Vestberg, M., Demircik, F., Stockinger, H., Saito, M., Sawaki, H., Nishmura, I., & Schüßler, A. (2007). Molecular phylogeny and new taxa in the Archaeosporales (Glomeromycota): Ambispora fennica gen. sp nov., Ambisporaceae fam. nov., and emendation of Archaeospora and Archaeosporaceae. Mycological Research, 111, 137–153.

    Article  PubMed  Google Scholar 

  • Waschkies, C., Schropp, A., & Marschner, H. (1994). Relations between grapevine replant disease and root colonization of grapevine (Vitis sp.) by fluorescent pseudomonads and endomycorrhizal fungi. Plant and Soil, 162(2), 219–227.

    Article  Google Scholar 

  • White, T. J., Bruns, T., Lee, S., & Taylor, J. (1990). Amplification and direct sequencing of ribosomal RNA genes for phylogenetics. In M. A. Innis, D. H. Gelfand, J. J. Sninsky, & T. J. White (Eds.), PCR protocol – A guide to methods and applications (p. 315). New York: Academic.

    Google Scholar 

  • Wyss, P., & Bonfante, P. (1993). Amplification of genomic DNA of arbuscular mycorrhizal (AM) fungi by PCR using short arbitrary primers. Mycological Research, 97, 1351–1357.

    Article  CAS  Google Scholar 

  • Xavier, L. J. C., & Boyetchko, S. M. (2004). Arbuscular mycorrhizal fungi in plant disease control. In D. K. Arora (Ed.), Fungal biotechnology in agricultural, food, and environmental applications (pp. 183–194). New York: Dekker.

    Google Scholar 

  • Zhang, L. D., Zhang, J. L., Christie, P., & Li, X. L. (2008). Pre-inoculation with arbuscular mycorrhizal fungi suppresses root knot nematode (Meloidogyne incognita) on cucumber (Cucumis sativus). Biology and Fertility of Soils, 45(2), 205–211. https://doi.org/10.1007/s00374-008-0329-8.

    Article  CAS  Google Scholar 

  • Zhu, Y.-G., & Miller, R. M. (2003). Carbon cycling by arbuscular mycorrhizal fungi in soil–plant systems. Trends in Plant Science, 8(9), 407–409.

    Article  CAS  PubMed  Google Scholar 

  • Zhu, Y. G., Smith, A. F., & Smith, S. E. (2003). Phosphorus efficiencies and responses of barley (Hordeum vulgare L.) to arbuscular mycorrhizal fungi grown in highly calcareous soil. Mycorrhiza, 13, 93. https://doi.org/10.1007/s00572-002-0205-6.

    Article  CAS  PubMed  Google Scholar 

  • Ziedan, E., Elewa, I., Mostafa, M., et al. (2011). Application of mycorrhizae for controlling root diseases of sesame. Journal of Plant Protection Research, 51(4), 355–361.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Dash, B., Soni, R., Kumar, V., Suyal, D.C., Dash, D., Goel, R. (2019). Mycorrhizosphere: Microbial Interactions for Sustainable Agricultural Production. In: Varma, A., Choudhary, D. (eds) Mycorrhizosphere and Pedogenesis. Springer, Singapore. https://doi.org/10.1007/978-981-13-6480-8_18

Download citation

Publish with us

Policies and ethics