Skip to main content

Part of the book series: Springer Oceanography ((SPRINGEROCEAN))

  • 491 Accesses

Abstract

In this chapter, coastal geo-hazards are introduced and large research projects on this issue are summarized, the definition of sediment erosion and resuspension is given, finally, a literature review is given on the observational, experimental, and mathematical research advances regarding sediment erosion and resuspension. Consequently, the mainstream scientific question of this book is outlined. That is, the total book is targeted at improving the modeling effect of silty sediment erosion and resuspension, through considering wave-induced pore water pressure responses, that are poorly considered in popular sediment transport models.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Aberle J, Nikora V, Walters R (2004) Effects of bed material properties on cohesive sediment erosion. Mar Geol 207(1):83–93

    Article  Google Scholar 

  • Alishahi MR, Krone RB (1964) Suspension of cohesive sediment by wind-generated waves. University of California, Hydraulic Engineering Laboratory, Wave Research Projects, Institute of Engineering Research

    Google Scholar 

  • Ariathurai R, Arulanandan K (1986) An electrical method to measure in-situ sediment densities. In: Estuarine cohesive sediment dynamics. Springer, New York, NY, pp 206–218

    Google Scholar 

  • Baldock TE, Holmes P (1999) Seepage effects on sediment transport by waves and currents. In Coastal Engineering pp 3601–3614

    Google Scholar 

  • Brand A, Lacy JR, Hsu K et al (2010) Wind-enhanced resuspension in the shallow waters of South San Francisco Bay: mechanisms and potential implications for cohesive sediment transport. JGR: Oceans 115(C11)

    Google Scholar 

  • Cao D, Chiew YM (2014) Suction effects on sediment transport in closed-conduit flows. J Hydraul Eng 140(5):04014008

    Article  Google Scholar 

  • Carstens T, Brebner A, Kamphuis JW (1976) Seabed mobility under vertical pressure gradients. Proceeding of behaviour of offshore structures (Boss’ 76) 423–438

    Google Scholar 

  • Charles A (1999) Overview of its design and synthesis of its results. Mar Geol 15(4):3–12

    Google Scholar 

  • Chen GX, Liu XZ (2004) Study on dynamic pore water pressure in silty clay interbedded with fine sand of Nanjing. Chinese J Geotech Eng 01:79–82

    Google Scholar 

  • Chen SL, Zhang GA, Yang SL et al (2004) Temporal and spatial changes of suspended sediment concentration and resuspension in the Yangtze River Estuary and its adjacent waters. Acta Geogr Sin 59(2):260–266

    Google Scholar 

  • Cheng YZ, Jiang CB, Pan Y et al (2004) Effect of wave-induced seepage force on incipient sediment motion. Advanc Water Sci 59(2):260–266

    Google Scholar 

  • Chu ZX, Sun XG, Zhai SK et al (2006) Changing pattern of accretion/erosion of the modern Yellow River (Huanghe) subaerial delta, China: based on remote sensing images. Mar Geol 227(1):13–30

    Article  Google Scholar 

  • Clarke TL, Lesht B, Young RA et al (1982) Sediment resuspension by surface-wave action: an examination of possible mechanisms. Mar Geol 49(1–2):43–59

    Article  Google Scholar 

  • Clukey EC, Kulhawy FH, Liu PLF et al (1985) The impact of wave loads and pore-water pressure generation on initiation of sediment transport. Geo-Mar Lett 5(3):177–183

    Article  Google Scholar 

  • Dearnaley MP, Roberts W, Jones S et al (2002) Measurement and modeling of the properties of cohesive sediment deposits. In: Winterwerp JC, Kranenburg C (eds) Fine sediment dynamics in the marine environment. Elsevier Science, Armsterdam, pp 57–73

    Chapter  Google Scholar 

  • Dunn SL, Vun PL, Chan AHC et al (2006) Numerical modeling of wave-induced liquefaction around pipelines. J Waterway Port Coast Ocean Eng 132(4):276–288

    Article  Google Scholar 

  • Dyer KR (1986) Coastal and estuarine sediment dynamics. Wiley, Chichester

    Google Scholar 

  • Foda MA, Huang CM (2001) Fluidization model for cross-shore sediment transport by water waves. Ocean Wave Measure Anal 1356–1365

    Google Scholar 

  • Fox GA, Wilson GV, Simon A et al (2007) Measuring streambank erosion due to ground water seepage: correlation to bank pore water pressure, precipitation and stream stage. Earth Surf Proc Land 32(10):1558–1573

    Article  Google Scholar 

  • Ge J, Shen F, Guo W et al (2015) Estimation of critical shear stress for erosion in the Changjiang estuary: a synergy research of observation, GOCI sensing and modeling. J Geophys Res Oceans 120(12):8439–8465

    Article  Google Scholar 

  • Glenn SM, Grant WD (1987) A suspended sediment stratification correction for combined wave and current flows. J Geophys Res 92:8244–8264

    Article  Google Scholar 

  • Henry C, Minier JP (2014) Progress in particle resuspension from rough surfaces by turbulent flows. Prog Energy Combust Sci 45:1–53

    Article  Google Scholar 

  • Ishihara K, Towhata I (1983) Sand response to cyclic rotation of principal stress directions as induced by wave loads. Soils Found 23(4):11–26

    Article  Google Scholar 

  • Jeng DS (2013) Porous models for wave-seabed interactions. Springer

    Google Scholar 

  • Kesteren W, Kessel T (2002) Gas bubble nucleation and growth in cohesive sediments. Proc Marine Sci 5:329–341

    Article  Google Scholar 

  • Kirca VO, Sumer BM, Fredsøe J (2013) Residual liquefaction of seabed under standing waves. J Waterway Port Coastal Ocean Eng 139(6):489–501

    Article  Google Scholar 

  • Lambrechts J, Humphrey C, McKinna L et al (2010) Importance of wave-induced bed liquefaction in the fine sediment budget of Cleveland Bay, Great Barrier Reef. Estuar Coast Shelf Sci 89(2):154–162

    Article  Google Scholar 

  • Lavelle JW, Mofjeld HO, Baker ET (1984) An in situ erosion rate for a fine-grained marine sediment. J Geophys Res Oceans 89(C4):6543–6552

    Article  Google Scholar 

  • Lee GH, Dade WB, Friedrichs CT et al (2004) Examination of reference concentration under waves and currents on the inner shelf. J Geophys Res Oceans 109(C2)

    Google Scholar 

  • Li G, Zhuang K, Wei H (2000) Sedimentation in the Yellow River delta. Part III. Seabed erosion and diapirism in the abandoned subaqueous delta lobe. Marine Geol 168(1):129–144

    Google Scholar 

  • Li Y, Mehta AJ (1997) Mud fluidization by water waves. Cohes Sediments. Wiley, New York, pp 341–351

    Google Scholar 

  • Maa JPY, Sanford L, Halka JP (1998) Sediment resuspension characteristics in Baltimore harbor. Maryland Marine Geol 146(1):137–145

    Article  Google Scholar 

  • Mehta AJ, Hayter EJ, Parker WR et al (1989) Cohesive sediment transport. I: process description. J Hydraul Eng 115(8):1076–1093

    Google Scholar 

  • McDougal WG, Tsai YT, Liu PL et al (1989) Wave-induced pore water pressure accumulation in marine soils. J Offshore Mech Arct Eng 111(1):1–11

    Article  Google Scholar 

  • Merckelbach LM, Sills GC, Kranenburg C (2001) Laboratory experiments on consolidation and strength of bottom mud. In: McAnally WH, Mehta AJ (eds) Coastal and estuarine fine sediment processes. Proceedings in Marine Science 3 Amsterdam: Elsevier, pp 201–213

    Google Scholar 

  • Mimura N (1993) Rates of erosion and deposition of cohesive sediments under wave action. In: Mehta AJ (Ed) Nearshore and estuarine cohesive sediment transport, Washington: American Geophysical Union, Coastal and Estuarine Studies, pp 247–264

    Google Scholar 

  • Mohan R, Palermo M, Costello M et al (2011) Development of an in-Lieu Fee for sediment remediation in the Elizabeth river. In: Proceedings of the western Dredging association technical conference and Texas A&M University Dredging Seminar, Nashville, Tennessee, June 5–8

    Google Scholar 

  • Myrhaug D, Holmedal LE, Ong MC (2014) A rational approach to seepage flow effects on bottom friction beneath random waves. Appl Ocean Res 47:322–328

    Article  Google Scholar 

  • Nichols RJ, Sparks RSJ, Wilson CJN (1994) Experimental studies of the fluidization of layered sediments and the formation of fluid escape structures. Sedimentology 41(2):233–253

    Article  Google Scholar 

  • Nielsen P (1992) Coastal bottom boundary layers and sediment transport. World Scientif Advanc Series Ocean Eng 4:324

    Google Scholar 

  • Nielsen P (1997) Coastal groundwater dynamics Proc Coast Dynam ’97, Plymouth. ASCE, pp 546–555

    Google Scholar 

  • Nielsen P (1986) Suspended sediment concentrations under waves. Coastal Eng 10:23–31

    Article  Google Scholar 

  • Nouwakpo SK, Huang CH (2010) Pore water effects on soil erodibility and its implication in ephemeral gully erosion modeling. In: Joint federal interagency sedimentation and hydrologic modeling

    Google Scholar 

  • Obhrai C, Nielsen P, Vincent CE (2002) Influence of infiltration on suspended sediment under waves. Coast Eng 45(2):111–123

    Article  Google Scholar 

  • Prior DB, Yang ZS, Bornhold BD et al (1986) Active slope failure, sediment collapse, and silt flows on the modern subaqueous Huanghe (Yellow River) delta. Geo-Mar Lett 6(2):85–95

    Article  Google Scholar 

  • Qiao SQ, Shi XF, Zhu AM et al (2010) Distribution and transport of suspended sediments off the Yellow River (Huanghe) mouth and the nearby Bohai Sea. Estuar Coast Shelf Sci 86:337–344

    Article  Google Scholar 

  • Rodriguez HN, Mehta AJ (2000) Longshore transport of fine-grained sediment. Cont Shelf Res 20(12):1419–1432

    Article  Google Scholar 

  • Sanford LP, Maa JPY (2001) A unified erosion formulation for fine sediments. Mar Geol 179(1):9–23

    Article  Google Scholar 

  • Sassa S, Sekiguchi H (1999) Wave-induced liquefaction of beds of sand in a centrifuge. Geotechnique 49(5):621–638

    Article  Google Scholar 

  • Seed HB, Rahman MS (1978) Wave-induced pore pressure in relation to ocean floor stability of cohesionless soils. Mar Georesour Geotechnol 3(2):123–150

    Article  Google Scholar 

  • Sekiguchi H, Kita K, Okamoto O (1995) Response of poro-elastoplastic beds to standing waves. Soils Found 35(3):31–42

    Article  Google Scholar 

  • Sills GC (1997) Consolidation of cohesive sediments in settling columns. In: Burt N, Parker R, Watts J (eds) Cohesive sediments: 4th Nearshore and Estuarine Cohesive Sediment Transport Conference INTERCOH’94. Wiley, Chichester, pp 107–120

    Google Scholar 

  • Simon A, Collison AJ (2001) Pore-water pressure effects on the detachment of cohesive streambeds: seepage forces and matric suction. Earth Surf Proc Land 26(13):1421–1442

    Article  Google Scholar 

  • Smith AJ, Herne DE, Turner JV (2009) Wave effects on submarine groundwater seepage measurement. Adv Water Resour 32(6):820–833

    Article  Google Scholar 

  • Soulsby RL (1997) Dynamics of marine sands. Thomas Telford, London, p 429

    Google Scholar 

  • Sterpi D (2003) Effects of the erosion and transport of fine particles due to seepage flow. Int J Geomech 3(1):111–122

    Article  Google Scholar 

  • Sumer BM (2014) Liquefaction around marine structures: (With CD-ROM). World scientific

    Google Scholar 

  • Taki K (2000) Critical shear stress for cohesive sediment transport. Proc Marine Sci 3:53–61

    Article  Google Scholar 

  • Terzaghi K (1924) The theory of hydrodynamic stresses and its geotechnical applications. Proc Int Cong Appl Mech, Delft, pp 288–294

    Google Scholar 

  • Tolhurst TJ, Black KS, Shayler SA et al (1999) Measuring the in situ erosion shear stress of intertidal sediments with the Cohesive Strength Meter (CSM). Estuar Coast Shelf Sci 49(2):281–294

    Article  Google Scholar 

  • Tsai CP, Lee TL (1995) Standing wave induced pore pressures in a porous seabed. Ocean Eng 22(6):505–517

    Google Scholar 

  • Tzang SY, Ou SH, Hsu TW (2009) Laboratory flume studies on monochromatic wave-fine sandy bed interactions part 2. Sediment Suspens Coast Eng 56(3):230–243

    Article  Google Scholar 

  • Tzang SY, Ou SH (2006) Laboratory flume studies on monochromatic wave-fine sandy bed interactions: Part 1. Soil Fluidizat Coast Eng 53(11):965–982

    Article  Google Scholar 

  • Tzang SY (1992) Water wave-induced soil fluidization in a cohesionless fine-grained seabed, Ph.D. Dissertation. University of California, Berkeley, USA

    Google Scholar 

  • Tzang SY (1998) Unfluidized soil responses of a silty seabed to monochromatic waves. Coast Eng 35(4):283–301

    Article  Google Scholar 

  • Van Ledden M (2002) A process-based sand-mud model. In: Winterterp JC, Kranenburg C (Eds) Fine sediment dynamics in the marine environment, vol 5. Elsevier Science, pp 577–594

    Google Scholar 

  • Van Raaphorst W, Malschaert H, Van Haren H (1998) Tidal resuspension and deposition of particulate matter in the Oyster grounds, North Sea. J Mar Res 56(1):257–291

    Article  Google Scholar 

  • Verbeek H, Kuijper C, Cornelisse JM et al (1993) Deposition of graded natural muds in The Netherlands. Nearshore Estuarine Cohesive Sediment Trans: 185–204

    Google Scholar 

  • Wang H, Liu HJ, Zhang MS (2014) Pore pressure response of seabed in standing waves and its mechanism. Coast Eng 91:213–219

    Article  Google Scholar 

  • Wang HJ, Yang ZS, Li GX et al (2006) Wave climate modeling on the abandoned Huanghe (Yellow River) delta lobe and related deltaic erosion. J Coast Res 22(4):906–918

    Article  Google Scholar 

  • Wang HJ, Yang ZS, Li YH et al (2007) Dispersal pattern of suspended sediment in the shear frontal zone off the Huanghe (Yellow River) mouth. Cont Shelf Res 27:854–871

    Article  Google Scholar 

  • Winterwerp JC, Uittenbogaard RE, De Kok JM (2001) Rapid siltation from saturated mud suspensions. In: McAnally WH, Mehta AJ (eds) Coastal and Estuarine Fine Sediment Processes. Elsevier Science, Armsterdam, pp 125–146

    Google Scholar 

  • Wright LD, Wiseman WJ, Bornhold BD et al (1988) Marine dispersal and deposition of Yellow River silts by gravity-driven underflows. Nature 332(6165):629–632

    Article  Google Scholar 

  • Yamamoto T, Koning HL, Sellmeijer H et al (1978) On the response of a poro-elastic bed to water waves. J Fluid Mech 87(1):193–206

    Article  Google Scholar 

  • Yang SL (2003) Introduction to coastal environment and geomorphological process

    Google Scholar 

  • Yang WC (2003) Handbook of fluidization and fluid-particle systems. CRC Press

    Google Scholar 

  • Yang ZS, Ji YJ, Bi NS et al (2011) Sediment transport off the Huanghe (Yellow River) delta and in the adjacent Bohai Sea in winter and seasonal comparision. Estuar Coast Shelf Sci 93:173–181

    Article  Google Scholar 

  • Zen K, Yamazaki H (1990) Oscillatory pore pressure and liquefaction in seabed induced by ocean waves. Soils Found 30(4):147–161

    Article  Google Scholar 

  • Zhang M, Yu G, La Rovere A et al (2017) Erodibility of fluidized cohesive sediments in unidirectional open flows. Ocean Eng 130:523–530

    Article  Google Scholar 

  • Zhang Q (2016) Analysis of wave-induced silty seabed dynamic response. Ocean University of China

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yonggang Jia .

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Shanghai Jiao Tong University Press and Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Jia, Y., Liu, X., Zhang, S., Shan, H., Zheng, J. (2020). Introduction. In: Wave-Forced Sediment Erosion and Resuspension in the Yellow River Delta. Springer Oceanography. Springer, Singapore. https://doi.org/10.1007/978-981-13-7032-8_1

Download citation

Publish with us

Policies and ethics