Skip to main content

Part of the book series: Lecture Notes in Electrical Engineering ((LNEE,volume 556))

Abstract

Change detection (CD) from the Earth’s surface has developed into an important issue throughout the world. CD methods have found applicability in socio-economic assessments, environmental monitoring, exploring resources, etc., and till today, various numbers of CD methodologies utilising remotely sensed data have been developed. Researchers have categorised different CD techniques on the basis of distinct viewpoints. A common one is to associate different techniques in two categories pre-classification CD and post-classification CD. This paper examines the efficiency of post-classification, texture-based CD method. Changing conditions are investigated for the three cases of civic urbanisation, depleted lake’s water and surging rivers and lake. Changes in the image parameters are first analysed with first-order statistics, i.e. (non-zero ‘mean’ and ‘standard deviation’), and then changes in the visual characteristics are quantitatively measured through the grey level by second-order statistical parameters. Contrast, correlation, energy and homogeneity are the grey level co-occurrence matrix (GLCM) features which predict change in the ‘visual’ appearance of the texture. Texture gets converted from one form to another form represented by pre- and post-grey level image, respectively. Finally, we have established a novel changing ‘pattern’ of the texture from the aforesaid three cases.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Yuan D, Elvidge CD, Lunetta RS (1999) Survey of multispectral methods for land cover change analysis. Taylor Fr, Remote Sens Chang Detect 21–22

    Google Scholar 

  2. Hussain M, Chen D, Cheng A et al (2013) Change detection from remotely sensed image: from pixel based to object based approaches. ISPRS J Photogramm Remote Sens 80:91–106

    Article  Google Scholar 

  3. Alcantara-Ayala I (2002) Geomorphology, natural hazards, vulnerability and prevention of natural disasters in developing countries. Geomorphol 47(47):107–124

    Article  Google Scholar 

  4. Van Western C (2000) Remote sensing for natural disaster mangement. International archives of photogrammetry and remote sensing, vol XXXIII, no Part B7, pp 1609–1617

    Google Scholar 

  5. Heimlich RE, Barnard CH (1992) Agricultural adaptation to urbanization: farm types in northeast metropolitan areas. North East J Agric Resour Econ 19(2):50–60

    Google Scholar 

  6. Majumder B (2010) Landuse and landcover change detection study at Sukinda valley using remote sensing and GIS. Mining Engineering, National Institute of Technology, Rourkela

    Google Scholar 

  7. Chen X, Chen J, Shi Y, Yamaguchi Y (2012) An automated approach for updating land cover maps based on integrated change detection and classification methods. ISPRS J Photogramm Remote Sens 71:86–95

    Article  Google Scholar 

  8. Lu D, Mausel P, Brondízio E, Moran E (2004) Change detection techniques. Int J Remote Sens 25:2365–2401

    Article  Google Scholar 

  9. Singh A (1989) Review article digital change detection techniques using remotely-sensed data. Int J Remote Sens 10:989–1003

    Article  Google Scholar 

  10. Lu D, Mausel P, Batistella M (2005) Land-cover binary change detection methods for use in the moist tropical region of the Amazon: a comparative study. Int J Remote Sens 26:101–114

    Article  Google Scholar 

  11. Rignot EJM, Van zyl JJ (1993) Change detection techniques for ERS-1 SAR data. IEEE Trans Geosci Remote Sens 31:896–906

    Article  Google Scholar 

  12. Chen Z, Elvidge CD, Groeneveld DP (1999) Vegetation change detection using high spectral resolution vegetation indices. Environ Monit Methods Appl, pp 181–190. Taylor & Francis

    Google Scholar 

  13. Im J, Jensen JR (2005) A change detection model based on neighbourhood correlation image analysis and decision tree classification. Remote Sens Environ 99:326–340

    Article  Google Scholar 

  14. Lillesand TM, Kiefer RW, Chipman JW (2008) Remote sensing and image interpretation, 6th edn. Wiley, Hoboken, New Jersy

    Google Scholar 

  15. Mas JF (1999) Monitoring land-cover changes: a comparison of change detection techniques. Int J Remote Sens 20:139–152

    Article  Google Scholar 

  16. Huang C et al (2008) Use of a dark object concept and support vector machines to automate forest cover change analysis. Remote Sens Environ 112:970–985

    Article  Google Scholar 

  17. Smith A (2010) Image segmentation scale parameter optimization and land cover classification using the random forest algorithm. J Spat Sci 55:69–79

    Article  Google Scholar 

  18. Li D (2010) Remotely sensed images and GIS data fusion for automatic change detection. Int J Image Data Fusion 1:99–108

    Article  Google Scholar 

  19. Bouziani M, Goïta K, He DC (2010) Automatic change detection of buildings in urban environment from very high spatial resolution images using existing geo database and prior knowledge. ISPRS J Photogramm Remote Sens 65:143–153

    Article  Google Scholar 

  20. Caridade CMR, Marçal ARS, Mendonça T (2008) The use of texture for image classification of black & white air photographs. Int J Remote Sens 29:593–607

    Article  Google Scholar 

  21. Chen G, Hay GJ, Carvalho LMT, Wulder MA (2012) Object-based change detection. Int J Remote Sens 33:4434–4457

    Article  Google Scholar 

  22. Dronova I, Gong P, Wang L (2011) Object-based analysis and change detection of major wetland cover types and their classification uncertainty during the low water period at Poyang Lake, China. Remote Sens Environ 115:3220–3236

    Article  Google Scholar 

  23. Villarreal NR (2016) Pixel based and object based classification methods for surveying wetland vegetation with a unmanned aerial system. Thesis, Texas State University, Texas

    Google Scholar 

  24. Tomowski D, Ehlers M, Klonus S (2011) Colour and texture based change detection for urban disaster analysis. In: Urban remote sensing event (JURSE) joint, pp 329–332

    Google Scholar 

  25. Zhou W, Troy A, Grove M. Object-based land-cover classification and change analysis in the baltimore metropolitan area using multitemporal high resolution remote sensing data. Sens 8:1613–1636

    Google Scholar 

  26. Hansen MC, Loveland TR (2012) A review of large area monitoring of land cover change using Landsat data. Remote Sens Environ 122:66–74

    Google Scholar 

  27. Xian G, Homer C (2009) Updating the 2001 national land cover database impervious surface products to 2006 using Landsat imagery change detection methods. Remote Sens Environ 114:1133–1147

    Google Scholar 

  28. Stow D, Hamada Y, Coulter L, Anguelova Z (2008) Monitoring shrubland habitat changes through object-based change identification with airborne multispectral imagery. Remote Sens Environ 112:1051–1061

    Article  Google Scholar 

  29. Duveiller G, Defourny P, Desclee B, Mayaux P (2008) Deforestation in Central Africa: estimates at regional, national and landscape levels by advanced processing of systematically-distributed Landsat extracts. Remote Sens Environ 112:1969–1981

    Google Scholar 

  30. Tardie PS, Congalton RG (2002) A change-detection analysis using remotely sensed data to assess the progression of development in Essex County Massachusetts from 1990 to 2001. In: ACSM/ASPRS annual conference, 30 June 2005

    Google Scholar 

  31. Stauffer ML, McKinney RL (1978) Landsat image differencing as an automated land cover change detection technique. Computer Sciences Corporation, National Aeronautics and Space Administration, Goddard Space Flight Center, Greenbelt, Maryland

    Google Scholar 

  32. Tomowski D, Klonus S, Ehlers M (2010) Change visualization through a texture based analysis approach for disaster applicatins. In: ISPRS TC VII Symposium-100 years ISPRS, vol XXXVII, part 7A, Vienna, Austria, 5–7 July 2010

    Google Scholar 

  33. Soh LK, Tsatsoulis C (1999) Texture analysis of SAR sea ice imagery using gray level co-occurence matrices. Trans Geosci Remote Sens 37(2)

    Google Scholar 

  34. Barldi A, Parmiggiani F (1995) An investigation of the textural characteristics associated with Gray level co occurence matrix statistical parameters. Trans Geosci Remote Sens 33(2):293–304

    Article  Google Scholar 

  35. Lendaris GG, Stanley GL (1978) Diffraction-pattern sampling for automatic pattern recognition. Proceeding IEEE 58(2):198–216

    Google Scholar 

  36. Rawat JS, Kumar M (2015) Monitoring land use/cover change using remote sensing and GIS techniques: a case study of Hawalbagh block, district Almora, Uttarakhand, India. Egypt J Remote Sens Space Sci 18:77–84

    Google Scholar 

  37. Roknia K, Ahmada A, Solaimanib K, Hazinica S (2014) A new approach for surface water change detection: Integration of pixel level image fusion and image classification techniques l. Int J Appl Earth Obs Geoinf 34:226–234

    Article  Google Scholar 

  38. Abd El-Kawy OR, Rod JK, Ismail HA, Suliman AS (2011) Land use and land cover change detection in the western Nile delta of Egypt using remote sensing data. Appl Geogr 31:483–494

    Google Scholar 

  39. Willis KS (2015) Remote sensing change detection for ecological monitoring in United States protected areas. Biol Cons 182:233–242

    Article  Google Scholar 

  40. Irons JR (2017, June) NASA Landsat science. https://landsat.gsfc.nasa.gov/about/history/

  41. Irons JR, Taylor MP, Rocchio L (2017, May) NASA Landsat science. landsat.gsfc.nasa.gov

  42. Wikipedia (2017, May) Wikipedia, The Free Encyclopedia. https://en.wikipedia.org/wiki/Landsat_6

  43. NASA Official: JR Iron (2017, July) Landsat science. https://landsat.gsfc.nasa.gov/landsat-9/

  44. Riebeek H (2013, June) NASA Landsat Science. landsat.gsfc.nasa.gov/historic-landsat-5-mission-ends

  45. USGC (2017, June) USGC Landsat missions. https://landsat.usgs.gov/landsat-5-history

  46. Wikipedia: The Free Encyclopedia (2017, May) Wikipedia. en.wikipedia.org/wiki/Landsat_8#cite_note-4

  47. USGS (2015, January) USGS. https://lta.cr.usgs.gov

  48. Roy DP, Wulder MA, Loveland TR, Woodcock CE (2014) Landsat-8: science and product vision for terrestrial global change research. Remote Sens Environ 145:154–172

    Article  Google Scholar 

  49. Masek JG (2001) Stability of boreal forest stands during recent climate change: evidence from Landsat satellite imagery. J Biogeogr 28:967–976

    Article  Google Scholar 

  50. Cohen WB, Goward SN (2004) Landsat’s role in ecological applications of remote sensing. Biosci 54(6):535–545

    Article  Google Scholar 

  51. Armston JD, Denham RJ, Danaher TJ, Scarth PF, Moffiet TN (2009) Prediction and validation of foliage projective cover from Landsat-5 TM and Landsat-7 ETM + imagery. J Appl Remote Sens 3(033540)

    Google Scholar 

  52. Ekercin S (2007) Coastline change assessment at the Aegean sea coasts in Turkey using multitemporal Landsat imagery. J Coastal Res 23(3):691–698

    Article  Google Scholar 

  53. Huang C, Goward SN, Masek JG, Gao F (2009) Development of time series stacks of Landsat images for reconstructing forest disturbance history. Int J Digit Earth 2(3):195–218

    Article  Google Scholar 

  54. Application of two regression-based methods to estimate the effects of partial harvest on forest structure using Landsat data. Remote Sens Environ 101:115–126 (2006)

    Google Scholar 

  55. Masek JG, Huang C, Wolfe R, Cohen W (2008) North American forest disturbance mapped from a decadal Landsat record. Remote Sens Environ 112:2914–2926

    Google Scholar 

  56. Rokni K, Ahmad A, Selamat A, Hazini S (2014) Water feature extraction and change detection using multitemporal landsat imagery. Remote Sens 6:4173–4189

    Article  Google Scholar 

  57. Fan F, Weng Q, Wang Y (2007) Land use and land cover change in Guangzhou, China, from 1998 to 2003, based on Landsat TM /ETM + imagery. Sens 7:1323–1342

    Article  Google Scholar 

  58. Watts JD, Lawrence RL, Miller PR, Montagne C (2009) Monitoring of cropland practices for carbon sequestration purposes in north central Montana by Landsat remote sensing. Remote Sens Environ 11:1843–1852

    Article  Google Scholar 

  59. Cleve C, Kelly M, Kearns FR, Moritz M (2008) Classification of the wildland–urban interface: a comparison of pixel and object based classifications using high-resolution aerial photography. Comput Environ Urban Syst 32:317–326

    Article  Google Scholar 

  60. Huang X, Zhang L, Lu Q (2014) A multi-index learning approach for classification of high-resolution remotely sensed images over urban areas. ISPRS J Photogramm Remote Sens 90:36–48

    Article  Google Scholar 

  61. Van de Wouwer G, Scheunders P, Van Dyck D (1999) Statistical texture characterization from discrete wavelet representations. Trans Image Process 8(4):592–598

    Article  Google Scholar 

  62. Julesz B (1981) Textons, the elements of texture perception, and their interactions. Nat 290:91–97

    Article  Google Scholar 

  63. Sebe N, Lew MS (2003) Robust computer vision: theory and applications, vol. 26. Springer Science + Business Media, Dordrechi

    Google Scholar 

  64. Haralick RM (1979) Statistical and structural approaches to texture. IEEE 67(5)

    Google Scholar 

  65. Lillesand T, Kiefer RW, Chipman J (2015) Remote sensing and image interpretation, 7th edn. Wiley, United States of America

    Google Scholar 

  66. PCI, Using PCI software, 1997

    Google Scholar 

  67. Lu D, Weng Q (2007) A survey of image classification methods and techniques for improving classification performance. Int J Remote Sens 28(5):823–870

    Article  Google Scholar 

  68. Eastman JR (2003) Guide to GIS and image processing, vol 1. Clark Labs, Clark University, Worcester, MA, USA, 14, pp 239–247

    Google Scholar 

  69. Otukei JR, Blaschke T (2009) Land cover change assessment using decision trees, support vector machines and maximum likelihood classification algorithms. Int J Appl Earth Obs Geoinf 12(5):527–531

    Google Scholar 

  70. Dai X, Khorram S (1999) A feature-based image registration algorithm using improved chain-code representation combined with invariant moments. Trans Geo-Sci Remote Sens 37(5):2351–2362

    Article  Google Scholar 

  71. Hong Y, Hsu K-l, Sorooshian S, Gao X (2004) Precipitation estimation from remotely sensed imagery using an artificial neural network cloud classification system. J Appl Methodol 43:1834–1852

    Google Scholar 

  72. De Fries RS, Hansen M, Townshend JRG, Sohlberg R (1998) Global land cover classi®cations at 8 km spatial resolution: the use of training data derived from Landsat imagery in decision tree classifiers. Int J Remote Sens 19(16):3141–3168

    Article  Google Scholar 

  73. Melesse AM, Jordan JD (2002) A comparison of fuzzy vs. augmented-ISODATA classification algorithms for cloud-shadow discrimination from Landsat images. Photogramm Eng & Remote Sens 68(9):905–911

    Google Scholar 

  74. Kanungo T et al (2001) An efficient k-means clustering algorithm analysis and implementation. Trans Pattern Anal Mach Intell 24(7):881–892

    Article  Google Scholar 

  75. Hall-Beyer M (2008, August) The GLCM tutorial home page. http://www.fp.ucalgary.ca/mhallbey/

  76. Clausi DA (2001) An analysis of co-occurrence texture statistics as a function of grey level quantization. Can J Remote Sens 28(1):45–62

    Article  Google Scholar 

  77. Gadkari D (2000) Image quality analysis using GLCM. Thesis. College of Arts and Sciences, University of Central Florida, Orlando, Florida

    Google Scholar 

  78. Haralick RM, Shapiro LS (1991) Computer and robot vision, vol. I. Addison-Wesley

    Google Scholar 

  79. Iqbal J, Thomasson JA, Jenkins JN, Owens PR, Whisler FD (2005) Spatial variability analysis of soil physical properties of alluvial soils. Soil Water Manag Conserv 69

    Google Scholar 

  80. Myint SW (2002) Fractal approaches in texture analysis and classification of remotely sensed data: comparisons with spatial autocorrelation techniques and simple descriptive statistics. Int J Remote Sens 24(9)

    Google Scholar 

  81. Read JM (2003) Spatial analyses of logging impacts in Amazonia using remotely sensed data. Photogramm Eng Remote Sens 69(3):275–282

    Article  Google Scholar 

  82. Myint SW, Lam N (2005) A study of lacunarity-based texture analysis approaches to improve urban image classification. Comput, Environ Urban Syst 29:501–523

    Google Scholar 

  83. Unser M (1995) Texture classification and segmentation using wavelet frames. Trans Image Process 4(11)

    Google Scholar 

  84. Kemmouche A, Mering C, Sansal B, Dewolf Y (2004) Macro-texture mapping from satellite images by morphological granulometries: application to vegetation density mapping in arid and semi-arid areas. Int J Remote Sens 25(23):5319–5335

    Article  Google Scholar 

  85. Musci M, Feitosa RQ, Costa GAOP, Velloso MLF (2013) Assessment of binary coding techniques for texture characterization in remote sensing imagery. Geosci Remote Sens Lett 10(6)

    Google Scholar 

  86. Wang JR, O Neill PE, Jackson TJ, Engman ET (1982) A multi-frequency measurement of thermal microwave emission from soils: the effects of Soil texture and surface roughness. Goddard Space and Flight Centre, USDA Beltsville Agricultural Research Center, Maryland

    Google Scholar 

  87. Lambina EF, Turnerb BL, Geista HJ, Agbolac SB, Angelsend A (2001) The causes of land-use and land-cover change: moving beyond the myths. Glob Environ Chang 11:261–269

    Google Scholar 

  88. Julesz (1962) Visual pattern discription. IRE Trans Info Theory 8:84–92

    Google Scholar 

  89. Allen J, Simmon R, Scott M (2009, March) NASA earth observatory. https://earthobservatory.nasa.gov/IOTD//view.php?id=37228

  90. Scott M, Lindsey R (2010, February) NASA earth observatory. https://earthobservatory.nasa.gov/IOTD/view.php?id=42551&src=ve

  91. Voiland A (2015, September) NASA earth observatory. https://earthobservatory.nasa.gov/IOTD/view.php?id=86603

  92. Hansen K (2016, January) NASA earth observatory. https://earthobservatory.nasa.gov/NaturalHazards/view.php?id=87363

  93. Riebeek H (2009, June) NASA earth observatory. https://earthobservatory.nasa.gov/IOTD/view.php?id=38994&src=ve

  94. Carlowicz M (2014, August) NASA earth observatory. https://earthobservatory.nasa.gov/IOTD/view.php?id=84105&src=ve

  95. Voiland A (2015, November) NASA earth observatory. https://earthobservatory.nasa.gov/IOTD/view.php?id=87011

  96. Riebeek H (2009, May) NASA earth observatory. https://earthobservatory.nasa.gov/IOTD/view.php?id=38717&src=ve

  97. Riebeek H (2011, October) NASA earth observatory. https://earthobservatory.nasa.gov/IOTD/view.php?id=76212&eocn=image&eoci=related_image

  98. Hölbling D, Friedl B, Eisank C (2015) An object-based approach for semi-automated landslide change detection and attribution of changes to landslide classes in northern Taiwan. Springer: Earth Sci Inf 8:327–335

    Google Scholar 

  99. Li Q, Huang X, Wen D, Liu H (2017) Integrating multiple textural features for remote sensing image change detection. Photogramm Eng & Remote Sens 83(2):23–35

    Article  Google Scholar 

  100. Dou J et al (2015) Automatic case-based reasoning approach for landslide detection: integration of object-oriented image analysis and a Genetic Algorithm. MDPI: Remote Sens 7:4318–4342

    Google Scholar 

  101. Tan K, Jin X, Plaza A, Wang X, Xiao L (2016) Automatic change detection in high-resolution remote sensing images by using a multiple classifier system and spectral–spatial features. IEEE: J Sel Top Appl Obs Remote Sens 9(8):3439–3451

    Google Scholar 

  102. Montereale-Gavazzi G et al (2017) Seafloor change detection using multibeam echosounder backscatter: case study on the Belgian part of the North Sea. Mar Geophys Res 39:229–247

    Article  Google Scholar 

  103. Shirowzhana S, Trinder J (2017) Building classification from Lidar data for spatio-temporal assessment of 3D urban developments. Elsevier: Procedia Eng 180:1453–1461

    Google Scholar 

  104. Zhu J, Yanjun S, Guo Q, Harmon TC (2017) Unsupervised object-based differencing for land-cover change detection. Photogramm Eng & Remote Sens 83(3):225–236

    Article  Google Scholar 

  105. Dou J et al (2015) Automatic detection of sinkhole collapses at finer resolutions using a multi-component remote sensing approach. Springer: Nat Hazards 78(2):1021–1044

    Google Scholar 

  106. Feizizadeha B, Blaschkeb T, Tiedeb D, MHR Moghaddama (2017) Evaluating fuzzy operators of an object-based image analysis for detecting landslides and their changes. Elsevier: Geomorphol 293(2):240–254

    Google Scholar 

Download references

Acknowledgements

We would like to convey our sincere thanks to United States Geological Survey (U.S.G.S), NASA Earth Observatory and NASA Landsat Science for their valuable Landsat satellite images, data and guidance used in this research work. Authors also wish to express their deep gratitude to honourable reviewers for their useful and constructive suggestions in making this research more useful.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Amit Kumar Shakya .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Shakya, A.K., Ramola, A., Kandwal, A., Prakash, R. (2019). Change Over Time in Grey Levels of Multispectral Landsat 5TM/8OLI Satellite Images. In: Nath, V., Mandal, J. (eds) Proceedings of the Third International Conference on Microelectronics, Computing and Communication Systems. Lecture Notes in Electrical Engineering, vol 556. Springer, Singapore. https://doi.org/10.1007/978-981-13-7091-5_29

Download citation

  • DOI: https://doi.org/10.1007/978-981-13-7091-5_29

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-13-7090-8

  • Online ISBN: 978-981-13-7091-5

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics