Skip to main content

Plant Metabolites as New Leads to Drug Discovery

  • Chapter
  • First Online:
Natural Bio-active Compounds

Abstract

Natural products and their related compounds have been dominating as therapeutic agents for ages. Among them, numerous plant metabolites have made their way as drugs or drug precursors, thereby making them a “biosynthetic laboratory.” These phytochemical compounds extracted from different sources serve a myriad of physiological effects, eventually giving them the therapeutic properties we seek. The preliminary studies on any novel plant-based drug compounds involve different approaches like traditional, random, ethnopharmacology, and zoo-pharmacognosy. Recent advancements in genomics and proteomics have also helped us to understand various proteins targeted by plant metabolites. Despite of all the setbacks in natural drug application, copious phytomedicines have already made their way into clinical trials for various diseases. This chapter attempts to elucidate several plant metabolites as drug molecules with a focus on their screening, based on druglikeness features and properties. This integrated approach would save cost and time and in parallel enhance the rate of a successful drug discovery.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abrecht S, Harrington P, Iding H, Karpf M, Trussardi R, Wirz B, Zutter U (2004) The synthetic development of the anti-influenza neuraminidase inhibitor oseltamivir phosphate (Tamiflu®): a challenge for synthesis & process research. Chimia 58:621–629

    Article  CAS  Google Scholar 

  • Akhtar MS, Swamy MK (2018) Anticancer plants: properties and application. Springer, Singapore

    Book  Google Scholar 

  • Alves-Silva JM, Romane A, Efferth T, Salgueiro L (2017) North African medicinal plants traditionally used in cancer therapy. Front Pharmacol 8:383

    Article  Google Scholar 

  • Bevan S (1999) Capsaicin and pain mechanisms. In: Brain SD, Moore PK (eds) Pain and neurogenic inflammation. Springer, Berlin, pp 61–80

    Chapter  Google Scholar 

  • Bilia AR, Gallori S, Vincieri FF (2002) St. John’s wort and depression: efficacy, safety and tolerability-an update. Life Sci 70:3077–3096

    Article  CAS  Google Scholar 

  • Bisset NG (1989) Arrow and dart poisons. J Ethnopharmacol 25:1–41

    Article  CAS  Google Scholar 

  • Borchardt JK (2002) The beginnings of drug therapy: ancient mesopotamian medicine. Drug News Perspect 15:187–192

    Article  Google Scholar 

  • Chernov L, Deyell RJ, Anantha M, Dos Santos N, Gilabert-Oriol R, Bally MB (2017) Optimization of liposomal topotecan for use in treating neuroblastoma. Cancer Med 6:1240–1254

    Article  CAS  Google Scholar 

  • Chua HC, Christensen ET, Hoestgaard-Jensen K, Hartiadi LY, Ramzan I, Jensen AA, Absalom NL, Chebib M (2016) Kavain, the major constituent of the anxiolytic kava extract, potentiates GABAA receptors: functional characteristics and molecular mechanism. PLoS One 11:e0157700

    Article  Google Scholar 

  • Cichewicz RH, Kouzi SA (2004) Chemistry, biological activity, and chemotherapeutic potential of betulinic acid for the prevention and treatment of cancer and HIV infection. Med Res Rev 24:90–114

    Article  CAS  Google Scholar 

  • Cragg GM, Newman DJ (2005) Biodiversity: a continuing source of novel drug leads. Pure Appl Chem 77:7–24

    Article  CAS  Google Scholar 

  • D’Arcy P, Griffin J (1995) Interactions with drugs used in the treatment of depressive illness. Adverse Drug React Toxicol Rev 14:211–231

    PubMed  Google Scholar 

  • Egan WJ, Merz KM, Baldwin JJ (2000) Prediction of drug absorption using multivariate statistics. J Med Chem 43:3867–3877

    Article  CAS  Google Scholar 

  • Enioutina EY, Salis ER, Job KM, Gubarev MI, Krepkova LV, Sherwin CM (2017) Herbal medicines: challenges in the modern world. Part 5. Status and current directions of complementary and alternative herbal medicine worldwide. Exp Rev Clin Pharmacol 10:327–338

    Article  CAS  Google Scholar 

  • Escamilla-García E, Alcázar-Pizaña A, Segoviano-Ramírez J, Angel-Mosqueda D, López-Lozano A, Cárdenas-Estrada E, La Garza-Ramos D, Márquez M (2017) Antimicrobial activity of a cationic guanidine compound against two pathogenic oral bacteria. Int J Microbiol 2017:5924717. https://doi.org/10.1155/2017/5924717

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fulda S, Debatin KM (2006) Resveratrol modulation of signal transduction in apoptosis and cell survival: a mini-review. Cancer Detect Prev 30:217–223

    Article  CAS  Google Scholar 

  • Ghose AK, Viswanadhan VN, Wendoloski JJ (1999) A knowledge-based approach in designing combinatorial or medicinal chemistry libraries for drug discovery. 1. A qualitative and quantitative characterization of known drug databases. J Comb Chem 1:55–68

    Article  CAS  Google Scholar 

  • Guo Z (2017) The modification of natural products for medical use. Acta Pharma Sinica B 7:119–136

    Article  Google Scholar 

  • Hall MG, Wilks MF, Provan WM, Eksborg S, Lumholtz B (2001) Pharmacokinetics and pharmacodynamics of NTBC (2-(2-nitro-4-fluoromethylbenzoyl)-1,3-cyclohexane- dione) and mesotrione, inhibitors of 4-hydroxyphenyl pyruvate dioxygenase (HPPD) following a single dose to healthy male volunteers. Br J Clin Pharmacol 52:169–177

    Article  CAS  Google Scholar 

  • Harborne A (1998) Phytochemical methods a guide to modern techniques of plant analysis. Springer, Dordrecht

    Google Scholar 

  • Hull CM, Warrilow AG, Rolley NJ, Price CL, Donnison IS, Kelly DE, Kelly SL (2017) Co-production of 11α-hydroxyprogesterone and ethanol using recombinant yeast expressing fungal steroid hydroxylases. Biotechnol Biofuels 10:226

    Article  Google Scholar 

  • Jung S, Kim MH, Park JH, Jeong Y, Ko KS (2017) Cellular antioxidant and anti-inflammatory effects of coffee extracts with different roasting levels. J Med Food 20:626–635

    Article  CAS  Google Scholar 

  • Kamsteeg M, Rutherford T, Sapi E, Hanczaruk B, Shahabi S, Flick M, Brown D, Mor G (2003) Phenoxodiol–an isoflavone analog–induces apoptosis in chemoresistant ovarian cancer cells. Oncogene 22:2611

    Article  CAS  Google Scholar 

  • Kapoor L (2017) Handbook of Ayurvedic medicinal plants: herbal reference library. Routledge, Abingdon

    Book  Google Scholar 

  • Katiyar C, Gupta A, Kanjilal S, Katiyar S (2012) Drug discovery from plant sources: an integrated approach. Ayu 33:10

    Article  Google Scholar 

  • Koehn FE, Carter GT (2005) The evolving role of natural products in drug discovery. Nat Rev Drug Disc 4:206

    Article  CAS  Google Scholar 

  • Krentz AJ, Bailey CJ (2005) Oral antidiabetic agents. Drugs 65:385–411

    Article  CAS  Google Scholar 

  • Lee KH, Xiao Z (2005) Podophyllotoxins and analogs. In: Cragg GM, Kingston DGI, Newman DJ (eds) Anticancer agents from natural products. CRC Press, Boca Raton, pp 71–88

    Google Scholar 

  • Lipinski CA, Lombardo F, Dominy BW, Feeney PJ (2001) Experimental and computational approaches to estimate solubility and permeability in drug discovery and development settings1. Adv Drug Del Rev 46:3–26

    Article  CAS  Google Scholar 

  • Maki C, Funakoshi-Tago M, Aoyagi R, Ueda F, Kimura M, Kobata K, Tago K, Tamura H (2017) Coffee extract inhibits adipogenesis in 3T3-L1 preadipocyes by interrupting insulin signaling through the downregulation of IRS1. PLoS One 12:e0173264

    Article  Google Scholar 

  • Mann J (2000) Murder, magic, and medicine. Oxford University Press, Oxford

    Google Scholar 

  • Mihalak KB, Carroll FI, Luetje CW (2006) Varenicline is a partial agonist at α4β2 and a full agonist at α7 neuronal nicotinic receptors. Mol Pharmacol 70:801–805

    Article  CAS  Google Scholar 

  • Muegge I, Heald SL, Brittelli D (2001) Simple selection criteria for drug-like chemical matter. J Med Chem 44:1841–1846

    Article  CAS  Google Scholar 

  • Nerurkar PV, Dragull K, Tang CS (2004) In vitro toxicity of kava alkaloid, pipermethystine, in HepG2 cells compared to kavalactones. Toxicol Sci 79:106–111

    Article  CAS  Google Scholar 

  • Nunn JF (2002) Ancient egyptian medicine. University of Oklahoma Press, Oklahoma

    Google Scholar 

  • Oguzkan SB, Karagul B, Uzun A, Guler OO, Ugras HI (2018) Pre-purification of an anticancer drug (paclitaxel) obtained from nut husks. Int J Pharmacol 14:76–82

    Article  CAS  Google Scholar 

  • Pinney KG, Jelinek C, Edvardsen K, Chaplin D, Pettit G (2005) The discovery and development of the combretastatins. In: Cragg GM, Kingston DGI, Newman DJ (eds) Anticancer agents from natural products. CRC Press, Boca Raton, pp 23–46

    Google Scholar 

  • Rahier NJ, Thomas CJ, Hecht SM (2005) Camptothecin and its analogs. In: Cragg GM, Kingston DGI, Newman DJ (eds) Anticancer agents from natural products. CRC Press, Boca Raton, pp 5–22

    Google Scholar 

  • Ravichandra V, Ramesh C, Swamy MK, Purushotham B, Rudramurthy GR (2018) Anticancer plants: chemistry, pharmacology, and potential applications. In: Akhtar MS, Swamy MK (eds) Anticancer plants: properties and application, vol 1. Springer Nature, Singapore, pp 485–515

    Chapter  Google Scholar 

  • Ritter S (2004) Green innovations. Chem Eng News 82:25–30

    Article  CAS  Google Scholar 

  • Rowe A, Ramzan I (2012) Are mould hepatotoxins responsible for kava hepatotoxicity. Phytother Res 26:1768–1770

    Article  CAS  Google Scholar 

  • Salim A, Chin YW, Douglas Kinghorn A (2008) Drug discovery from plants. In: Ramawat K, Merillon J (eds) Bioactive molecules and medicinal plants. Springer, Berlin, Heidelberg

    Google Scholar 

  • Sanagapalli S, Agnihotri K, Leong R, Corte CJ (2017) Antispasmodic drugs in colonoscopy: a review of their pharmacology, safety and efficacy in improving polyp detection and related outcomes. Ther Adv Gastroenterol 10:101–113

    Article  CAS  Google Scholar 

  • Shin JS, Ku KB, Jang Y, Yoon YS, Shin D, Kwon OS, Go YY, Kim SS, Bae MA, Kim M (2017) Comparison of anti-influenza virus activity and pharmacokinetics of oseltamivir free base and oseltamivir phosphate. J Microbiol 55:979–983

    Article  CAS  Google Scholar 

  • Slezakova S, Ruda-Kucerova J (2017) Anticancer activity of artemisinin and its derivatives. Anticancer Res 37:5995–6003

    CAS  PubMed  Google Scholar 

  • Smith KK, Dharmaratne HRW, Feltenstein MW, Broom SL, Roach JT, Nanayakkara ND, Khan IA, Sufka KJ (2001) Anxiolytic effects of kava extract and kavalactones in the chick social separation-stress paradigm. Psychopharmacology 155:86–90

    Article  CAS  Google Scholar 

  • Sneader W (1996) Drug prototypes and their exploitation. Wiley, Chichester

    Google Scholar 

  • Sneader W (2005) Drug discovery: a history. John Wiley and Sons, Chichester

    Book  Google Scholar 

  • Stermitz FR, Lorenz P, Tawara JN, Zenewicz LA, Lewis K (2000) Synergy in a medicinal plant: antimicrobial action of berberine potentiated by 5′-methoxyhydnocarpin, a multidrug pump inhibitor. Proc Natl Acad Sci U S A 97:1433–1437

    Article  CAS  Google Scholar 

  • Szallasi A, Appendino G (2004) Vanilloid receptor TRPV1 antagonists as the next generation of painkillers. Are we putting the cart before the horse. J Med Chem 47:2717–2723

    Article  CAS  Google Scholar 

  • Tabata H (2004) Paclitaxel production by plant-cell-culture technology. In: Zhong JJ (ed) Biomanufacturing. Advances in biochemical engineering, vol 87. Springer, Berlin/Heidelberg, pp 1–23

    Google Scholar 

  • Tariq A, Sadia S, Pan K, Ullah I, Mussarat S, Sun F, Abiodun OO, Batbaatar A, Li Z, Song D (2017) A systematic review on ethnomedicines of anti-cancer plants. Phytother Res 31:202–264

    Article  Google Scholar 

  • Tayyab Ansari M, Saeed Saify Z, Sultana N, Ahmad I, Saeed-Ul-Hassan S, Tariq I, Khanum M (2013) Malaria and artemisinin derivatives: an updated review. Mini Rev Med Chem 13:1879–1902

    Article  Google Scholar 

  • Tewari D, Mocan A, Parvanov ED, Sah AN, Nabavi SM, Huminiecki L, Ma ZF, Lee YY, Horbańczuk JO, Atanasov AG (2017) Ethnopharmacological approaches for therapy of jaundice: part II. Highly used plant species from Acanthaceae, Euphorbiaceae, Asteraceae, Combretaceae, and Fabaceae families. Front Pharmacol 8:519

    Article  Google Scholar 

  • Van Wyk B, Wink M (2015) Phytomedicines, herbal drugs and poisons. Kew Publishing/Cambridge University Press, Briza/Cambridge

    Google Scholar 

  • Veber DF, Johnson SR, Cheng H-Y, Smith BR, Ward KW, Kopple KD (2002) Molecular properties that influence the oral bioavailability of drug candidates. J Med Chem 45:2615–2623

    Article  CAS  Google Scholar 

  • Wall M (1960) Steroidal sapogenins and derived steroid hormones. Am Perfumer Aromat 76:63–73

    Google Scholar 

  • Wink M (2015) Modes of action of herbal medicines and plant secondary metabolites. Medicines 2:251–286

    Article  CAS  Google Scholar 

  • Yao H, Liu J, Xu S, Zhu Z, Xu J (2017) The structural modification of natural products for novel drug discovery. Expert Opin Drug Discovery 12:121–140

    Article  CAS  Google Scholar 

  • Yarnell A (2005) Organic chemistry-meeting delivers organic feast. Chem Eng News 83:22–23

    Article  Google Scholar 

  • Yeung Y-Y, Hong S, Corey EJ (2006) A short enantioselective pathway for the synthesis of the anti-influenza neuramidase inhibitor oseltamivir from 1, 3-butadiene and acrylic acid. J Am Chem Soc 128:6310–6311

    Article  CAS  Google Scholar 

  • Yogeeswari P, Sriram D (2005) Betulinic acid and its derivatives: a review on their biological properties. Curr Med Chem 12:657–666

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Prakash Saudagar .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Sasidharan, S., Saudagar, P. (2019). Plant Metabolites as New Leads to Drug Discovery. In: Swamy, M., Akhtar, M. (eds) Natural Bio-active Compounds. Springer, Singapore. https://doi.org/10.1007/978-981-13-7205-6_12

Download citation

Publish with us

Policies and ethics