Skip to main content

Lactic Acid Bacteria and B Vitamins

  • Chapter
  • First Online:
Lactic Acid Bacteria

Abstract

Vitamin is one of the most significant micronutrients in all the biological metabolism progress. The 13 vitamins which are necessary to human bodies can be divided into lipid-soluble (vitamins A, D, E, K) and water-soluble (vitamin C and eight kinds of B vitamins). B vitamins contain thiamine (vitamin B1), riboflavin (vitamin B2), niacin (vitamin B3), pantothenic acid (vitamin B5), vitamin B6, biotin (vitamin B7 or vitamin H), folic acid (vitamin B9), and cobalamin (vitamin B12). Each B-type vitamin has different chemical properties, and its derivatives often participate in metabolism (such as energy production, red blood cell synthesis, etc.) as specific co-enzymes in physiological activities and play an important role in maintaining homeostasis (Table 3.1). B vitamins exist in various foods (Table 3.2) and easy to be destroyed by cooking and processing. Thus, the deficiency of B vitamins is the common problem influencing human health.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Alm L (1982) Effect of fermentation on B-vitamin content of milk in Sweden. J Dairy Sci 65(3):353–359

    Article  CAS  Google Scholar 

  • Bacher A, Eberhardt S, Fischer M et al (2000) Biosynthesis of vitamin B2 (riboflavin). Annu Rev Nutr 20(1):153–167

    Article  CAS  PubMed  Google Scholar 

  • Baines M, Kredan MB, Usher J et al (2007) The association of homocysteine and its determinants MTHFR genotype, folate, vitamin B12 and vitamin B6 with bone mineral density in postmenopausal British women. Bone 40(3):730–736

    Article  CAS  PubMed  Google Scholar 

  • Battersby AR (1994) How nature builds the pigments of life: the conquest of vitamin B12. Science 264(5165):1551–1557

    Article  CAS  PubMed  Google Scholar 

  • Blanche F, Cameron B, Crouzet J et al (1995) Vitamin B12: how the problem of its biosynthesis was solved. Angew Chem Int Ed 34(4):383–411

    Article  CAS  Google Scholar 

  • Blanck HM, Bowman BA, Serdula MK et al (2002) Angular stomatitis and riboflavin status among adolescent Bhutanese refugees living in southeastern Nepal. Am J Clin Nutr 76(2):430–435

    Article  CAS  PubMed  Google Scholar 

  • Burgess C, O’Connellmotherway M, Sybesma W et al (2004) Riboflavin production in Lactococcus lactis: potential for in situ production of vitamin-enriched foods. Appl Environ Microbiol 70(10):5769–5777

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Burgess CM, Smid EJ, Rutten G et al (2006) A general method for selection of riboflavin-overproducing food grade micro-organisms. Microb Cell Factories 5(2):24

    Article  CAS  Google Scholar 

  • Burgess CM, Smid EJ, van Sinderen D (2009) Bacterial vitamin B2, B11 and B12 overproduction: an overview. Int J Food Microbiol 133(1–2):1–7

    Article  CAS  PubMed  Google Scholar 

  • Champagne CP, Tompkins TA, Buckley ND et al (2010) Effect of fermentation by pure and mixed cultures of Streptococcus hermophilus and Lactobacillus helveticus on isoflavone and B-vitamin content of a fermented soy beverage. Food Microbiology 7(7):968–972

    Article  CAS  Google Scholar 

  • Claesson MJ, Li Y, Leahy S et al (2006) Multireplicon genome architecture of Lactobacillus salivarius. Proc Natl Acad Sci U S A 103(17):6718–6723

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Crittenden RG, Martinez NR, Playne MJ (2003) Synthesis and utilisation of folate by yoghurt starter cultures and probiotic bacteria. Int J Food Microbiol 80(3):217–222

    Article  CAS  PubMed  Google Scholar 

  • Czeizel AE, Dudas I (1992) Prevention of the first occurrence of neural-tube defects by periconceptional vitamin supplementation. N Engl J Med 327(26):1832–1835

    Article  CAS  PubMed  Google Scholar 

  • Danesh J, Lewington S (1998) Plasma homocysteine and coronary heart disease: systematic review of published epidemiological studies. J Cardiovasc Risk 5(4):229–232

    Article  CAS  PubMed  Google Scholar 

  • Daniel R, Bobik TA (1998) Biochemistry of coenzyme B12-dependent glycerol and diol dehydratases and organization of the encoding genes. FEMS Microbiol Rev 22(5):553–566

    Article  CAS  PubMed  Google Scholar 

  • Duthie SJ, Narayanan S, Brand GM et al (2002) Impact of folate deficiency on DNA stability. J Nutr 132(8):2444S–2449S

    Article  CAS  PubMed  Google Scholar 

  • Elmadfa I, Heinzle C, Majchrzak D et al (2001) Influence of a probiotic yoghurt on the status of vitamins B(1), B(2) and B(6)in the healthy adult human. Ann Nutr Metab 45(1):13–18

    Article  CAS  PubMed  Google Scholar 

  • Escalante-Semerena JC (2007) Conversion of cobinamide into adenosylcobamide in bacteria and archaea. J Bacteriol 189(13):4555–4560

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Fabian E, Majchrzak D, Dieminger B et al (2008) Influence of probiotic and conventional yoghurt on the status of vitamins B1, B2and B6 in young healthy women. Ann Nutr Metab 52(1):29–36

    Article  CAS  PubMed  Google Scholar 

  • Gangadharan D, Sivaramakrishnan S, Pandey A et al (2010) Folate-producing lactic acid bacteria from cow’s milk with probiotic characteristics. Int J Dairy Technol 63(3):339–348

    Article  CAS  Google Scholar 

  • Gibson GE, Blass JP (2007) Thiamine-dependent processes and treatment strategies in neurodegeneration. Antioxid Redox Signal 9(10):1605–1619

    Article  CAS  PubMed  Google Scholar 

  • Group M V S R (1991) Prevention of neural tube defects: results of the Medical Research Council Vitamin Study. Lancet 338(8760):131–137

    Article  Google Scholar 

  • Haas RH (1988) Thiamin and the brain. Annu Rev Nutr 8(1):483–515

    Article  CAS  PubMed  Google Scholar 

  • Hodgkin DC, Kamper J, Mackay M et al (1956) Structure of vitamin B12. Nature 178(4524):64–66

    Article  CAS  PubMed  Google Scholar 

  • Hou JW, Yu RC, Chou CC (2000) Changes in some components of soymilk during fermentation with bifidobacteria. Food Res Int 33(5):393–397

    Article  CAS  Google Scholar 

  • Hugenholtz J, Kleerebezem M (1999) Metabolic engineering of lactic acid bacteria: overview of the approaches and results of pathway rerouting involved in food fermentations. Curr Opin Biotechnol 10(5):492–497

    Article  CAS  PubMed  Google Scholar 

  • Hugenholtz J, Hunik J, Santos H et al (2002) Nutraceutical production by propionibacteria. Lait 82(1):103–112

    Article  CAS  Google Scholar 

  • Hugenschmidt S, Schwenninger SM, Gnehm N et al (2010) Screening of a natural biodiversity of lactic and propionic acid bacteria for folate and vitamin B12 production in supplemented whey permeate. Int Dairy J 20(12):852–857

    Article  CAS  Google Scholar 

  • Hümbelin M, Griesser V, Keller T et al (1999) GTP cyclohydrolase II and 3, 4-dihydroxy-2-butanone 4-phosphate synthase arerate-limiting enzymes in riboflavin synthesis of an industrial Bacillus subtilis strain used for riboflavin production. J Ind Microbiol Biotechnol 22(1):1–7

    Article  Google Scholar 

  • Jägerstad M, Jastrebova J, Svensson U (2004) Folates in fermented vegetables-a pilot study. LWT-Food Sci Technol 37(6):603–611

    Article  CAS  Google Scholar 

  • Jayashree S, Jayaraman K, Kalaichelvan G (2010) Isolation, screening and characterization of riboflavin producing lactic acid bacteria from Katpadi, Vellore district. Recent Res Sci Technol 2(1):83–88. 430–435

    Google Scholar 

  • Keuth S, Bisping B (1993) Formation of vitamins by pure cultures of tempe moulds and bacteria during the tempe solid substrate fermentation. J Appl Bacteriol 75(5):427–434

    Article  CAS  PubMed  Google Scholar 

  • Kiatpapan P, Hashimoto Y, Nakamura H et al (2000) Characterization of pRGO1, a plasmid from Propionibacterium acidipropionici, and its use for development of a host-vector system in propionibacteria. Appl Environ Microbiol 66(11):4688–4695

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kleerebezem M, Boekhorst J, Kranenburg RV et al (2003) Complete genome sequence of Lactobacillus plantarum WCFS1. Proc Natl Acad Sci U S A 100(4):1990–1995

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Koizumi S, Yonetani Y, Maruyama A et al (2000) Production of riboflavin by metabolically engineered Corynebacterium ammoniagenes. Appl Microbiol Biotechnol 53(6):674–679

    Article  CAS  PubMed  Google Scholar 

  • Konings EJ (2001) Folate intake of the Dutch population according to newly established liquid chromatography data for foods. Am J Clin Nutr 73(4):765–776

    Article  CAS  PubMed  Google Scholar 

  • Leblanc JG, Burgess C, Sesma F et al (2005) Ingestion of milk fermented by genetically modified Lactococcus lactis improves the riboflavin status of deficient rats. J Dairy Sci 88(10):3435–3442

    Article  CAS  PubMed  Google Scholar 

  • Leblanc JG, Rutten G, Bruinenberg P et al (2006) A novel dairy product fermented with Propionibacterium freudenreichii improves the riboflavin status of deficient rats. Nutrition 22(6):645–651

    Article  CAS  PubMed  Google Scholar 

  • Leblanc JG, Starrenburg M, Sybesma W et al (2010) Supplementation with engineered Lactococcus lactis improves the folate status in deficient rats. Nutrition 26(7–8):835–841

    Article  CAS  PubMed  Google Scholar 

  • Lin M, Young C (2000) Folate levels in cultures of lactic acid bacteria. Int Dairy J 10(5):409–413

    Article  CAS  Google Scholar 

  • Luchsinger JA, Tang MX, Miller J et al (2007) Relation of higher folate intake to lower risk of Alzheimer disease in the elderly. Arch Neurol 64(1):86–92

    Article  PubMed  Google Scholar 

  • Martens JH, Barg H, Warren MJ et al (2002) Microbial production of vitamin B12. Appl Microbiol Biotechnol 58(3):275–285

    Article  CAS  PubMed  Google Scholar 

  • Murdock FA, Fields ML (1984) B-vitamin content of natural lactic acid fermented cornmeal. J Food Sci 49(2):373–375

    Article  CAS  Google Scholar 

  • O’ Brien MM, Kiely M, Harrington KE et al (2001) The North/South Ireland food consumption survey: vitamin intakes in 18–64-year-old adults. Public Health Nutr 4(5A):1069–1079

    Article  Google Scholar 

  • Piao Y, Yamashita M, Kawaraichi N et al (2004) Production of vitamin B12 in genetically engineered Propionibacterium freudenreichii. J Biosci Bioeng 98(3):167–173

    Article  CAS  PubMed  Google Scholar 

  • Pompei A, Cordisco L, Amaretti A et al (2007) Administration of folate-producing bifidobacteria enhances folate status in Wistar rats. J Nutr 137(12):2742–2746

    Article  CAS  PubMed  Google Scholar 

  • Rao DR, Reddy AV, Pulusani SR et al (1984) Biosynthesis and utilization of folic acid and vitamin B12 by lactic cultures in skim milk. J Dairy Sci 67(6):1169–1174

    Article  CAS  Google Scholar 

  • Rodionov DA, Vitreschak AG, Mironov AA et al (2003) Comparative genomics of the vitamin B12 metabolism and regulation in prokaryotes. J Biol Chem 278(42):41148–41159

    Article  CAS  PubMed  Google Scholar 

  • Roth JR, Lawrence JG, Bobik TA (1996) Cobalamin(coenzyme B12): synthesis and biological significance. Annu Rev Microbiol 50(2):137–181

    Article  CAS  PubMed  Google Scholar 

  • Rucker RB, Suttie JW, Mccormick DB et al (2001) Handbook of vitamins, 3rd edn. CRC Press, Boca Raton

    Google Scholar 

  • Santos F, Vera JL, Lamosa P et al (2007) Pseudovitamin B (12) is the corrinoid produced by Lactobacillus reuteri CRL1098 under anaerobic conditions. FEBS Lett 581(25):4865–4870

    Article  CAS  PubMed  Google Scholar 

  • Santos F, Vera JL, Valdez G et al (2008) The complete coenzyme B12 biosynthesis gene cluster of Lactobacillus reuteri CRL1098. Microbiology 154(1):81–93

    Article  CAS  PubMed  Google Scholar 

  • Shahani KM, Chandan RC (1979) Nutritional and healthful aspects of cultured and culture-containing dairy foods. J Dairy Sci 62(10):1685–1694

    Article  CAS  PubMed  Google Scholar 

  • Smith AG, Croft MT, Moulin M et al (2007) Plants need their vitamins too. Curr Opin Plant Biol 10(3):266–275

    Article  CAS  PubMed  Google Scholar 

  • Stirban A, Negrean M, Stratmann B et al (2006) Benfotiamine prevents macro- and microvascular endothelial dysfunction and oxidative stress following a meal rich in advanced glycation end products in individuals with type 2 diabetes. Diabetes Care 29(9):2064–2071

    Article  CAS  PubMed  Google Scholar 

  • Sybesma WFH (2003) Metabolic engineering of folate production in lactic acid bacteria. Wageningen Universiteit, Wageningen

    Google Scholar 

  • Sybesma W, Starrenburg M, Kleerebezem M et al (2003) Increased production of folate by metabolic engineering of Lactococcus lactis. Appl Environ Microbiol 69(6):3069–3076

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sybesma W, Burgess C, Starrenburg M et al (2004) Multivitamin production in Lactococcus lactis using metabolic engineering. Metab Eng 6(2):109–115

    Article  CAS  PubMed  Google Scholar 

  • Valle MJD, Laiño JE, de Giori GS et al (2014) Riboflavin producing lactic acid bacteria as a biotechnological strategy to obtain bio-enriched soymilk. Food Res Int 62(8):1015–1019

    Article  CAS  Google Scholar 

  • Van de Guchte M, Penaud S, Grimaldi C et al (2006) The complete genome sequence of lactobacillus bulgaricus reveals extensive and ongoing reductive evolution. Proc Natl Acad Sci U S A 103:9274–9279

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Wegkamp A, Starrenburg M, Hugenholtz J et al (2004) Transformation of folate-consuming Lactobacillus gasseri into a folate producer. Appl Environ Microbiol 70(5):3146–3148

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wegkamp A, Van OW, Smid EJ et al (2007) Characterization of the role of para-aminobenzoic acid biosynthesis in folate production by Lactococcus lactis. Appl Environ Microbiol 73(8):2673–2681

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wilson J (1983) Disorders of vitamins: deficiency, excess and errors of metabolism. In: Harrison’s principles of internal medicine. McGraw-Hill Book Co, New York, pp 461–470

    Google Scholar 

  • Wouters JTM, Ayad EHE, Hugenholtz J et al (2002) Microbes from raw milk for fermented dairy products. Int Dairy J 12(1):91–109

    Article  CAS  Google Scholar 

  • Zhao N, Zhong C, Wang Y et al (2008) Impaired hippocampal neurogenesis is involved in cognitive dysfunction induced by thiamine deficiency at early pre-pathological lesion stage. Neurobiol Dis 29(2):176–185

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wanqiang Wu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Singapore Pte Ltd. and Science Press

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Wu, W., Zhang, B. (2019). Lactic Acid Bacteria and B Vitamins. In: Chen, W. (eds) Lactic Acid Bacteria. Springer, Singapore. https://doi.org/10.1007/978-981-13-7283-4_3

Download citation

Publish with us

Policies and ethics