Skip to main content

Equipment for Imaging and Mechanism of Radiation Protection

  • Chapter
  • First Online:
Nuclear Medicine in Oncology

Abstract

The use of positron-emitting radionuclide molecular imaging is important in the diagnosis and staging of malignant disease response and monitoring of treatment. In order to cope with emerging clinical needs, the imaging performance has been greatly improved recently. These developments are usually limited by the application of positron emission tomography (PET) physics; hence the primary goal in PET scanner designing is to improve spatial resolution, sensitivity, and the ratio of true coincidence count rate relative to the noise [1]. In addition to the photon counting-related statistical effects, scattered and random coincidence processes also contribute to background noise in PET. Recent advances in new models of scintillator and electronic equipment and statistically based algorithms of PET image reconstruction have greatly improved the clinical performance of PET [2, 3]. Nowadays, the new PET imaging technology is able to complete anatomically and functionally in a few minutes, which largely reduce the waiting time in clinic while maintaining a good imaging quality.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Kanno I, Miura S, Yamamoto S et al (1985) Design and evaluation of a positron emission tomography: HEADTOME III. J Comput Assist Tomogr 9(5):931–939

    CAS  PubMed  Google Scholar 

  2. Kwee TC, Torigian DA, Alavi A (2013) Overview of positron emission tomography, hybrid positron emission tomography instrumentation, and positron emission tomography quantification. J Thorac Imaging 28(1):4–10

    PubMed  Google Scholar 

  3. Berg E, Cherry SR (2018) Innovations in instrumentation for positron emission tomography. Semin Nucl Med 48(4):311–331

    PubMed  PubMed Central  Google Scholar 

  4. Volkow ND, Mullani NA, Bendriem B (1988) Positron emission tomography instrumentation: an overview. Am J Physiol Imaging 3(3):142–153

    CAS  PubMed  Google Scholar 

  5. Porenta G (1994) Positron emission tomography: physics, instrumentation, and image analysis. Wien Klin Wochenschr 106(15):466–477

    CAS  PubMed  Google Scholar 

  6. Budinger TF, Derenzo SE, Huesman RH (1984) Instrumentation for positron emission tomography. Ann Neurol 15(Suppl):S35–S43

    PubMed  Google Scholar 

  7. McLean FC (1963) The use of isotopes in orthopaedics. I. The atomic nucleus and isotopes. J Bone Joint Surg Am 45:1067–1072

    CAS  PubMed  Google Scholar 

  8. Gambini DJ. [Basic concepts of radiology physics]. J Radiol. 2010;91(11 Pt 2):1186–1188

    Google Scholar 

  9. Casey ME, Hoffman EJ (1986) Quantitation in positron emission computed tomography: 7. A technique to reduce noise in accidental coincidence measurements and coincidence efficiency calibration. J Comput Assist Tomogr 10(5):845–850

    CAS  PubMed  Google Scholar 

  10. Trebossen R, Comtat C, Brulon V et al (2009) Comparison of two commercial whole body PET systems based on LSO and BGO crystals respectively for brain imaging. Med Phys 36(4):1399–1409

    CAS  PubMed  Google Scholar 

  11. Matheoud R, Goertzen AL, Vigna L et al (2012) Five-year experience of quality control for a 3D LSO-based whole-body PET scanner: results and considerations. Phys Med 28(3):210–220

    CAS  PubMed  Google Scholar 

  12. Conti M, Eriksson L, Rothfuss H et al (2017) Characterization of (176)Lu background in LSO-based PET scanners. Phys Med Biol 62(9):3700–3711

    CAS  PubMed  Google Scholar 

  13. Shao L, Freifelder R, Karp JS (1994) Triple energy window scatter correction technique in PET. IEEE Trans Med Imaging 13(4):641–648

    CAS  PubMed  Google Scholar 

  14. Lupton LR, Keller NA (1983) Performance study of single-slice positron emission tomography scanners by Monte Carlo techniques. IEEE Trans Med Imaging 2(4):154–168

    CAS  PubMed  Google Scholar 

  15. Colsher JG (1980) Fully three-dimensional positron emission tomography. Phys Med Biol 25(1):103–115

    CAS  PubMed  Google Scholar 

  16. Daube-Witherspoon ME, Muehllehner G (1987) Treatment of axial data in three-dimensional PET. J Nucl Med 28(11):1717–1724

    CAS  PubMed  Google Scholar 

  17. Ollinger JM (1996) Model-based scatter correction for fully 3D PET. Phys Med Biol 41(1):153–176

    CAS  PubMed  Google Scholar 

  18. Derenzo SE (1980) Method for optimizing side shielding in positron-emission tomographs and for comparing detector materials. J Nucl Med 21(10):971–977

    CAS  PubMed  Google Scholar 

  19. Bergstrom M, Eriksson L, Bohm C et al (1983) Correction for scattered radiation in a ring detector positron camera by integral transformation of the projections. J Comput Assist Tomogr 7(1):42–50

    CAS  PubMed  Google Scholar 

  20. Kinahan PE, Townsend DW, Beyer T et al (1998) Attenuation correction for a combined 3D PET/CT scanner. Med Phys 25(10):2046–2053

    CAS  PubMed  Google Scholar 

  21. Oda K, Toyama H, Uemura K et al (2001) Comparison of parametric FBP and OS-EM reconstruction algorithm images for PET dynamic study. Ann Nucl Med 15(5):417–423

    CAS  PubMed  Google Scholar 

  22. Morey AM, Kadrmas DJ (2013) Effect of varying number of OSEM subsets on PET lesion detectability. J Nucl Med Technol 41(4):268–273

    PubMed  Google Scholar 

  23. Chism CB, Ravizzini GC, Macapinlac HA et al (2017) Quantitative comparison between regularized time-of-flight and OSEM PET reconstructions for small 18F-FDG-avid lesions. Nucl Med Commun 38(6):529–536

    PubMed  Google Scholar 

  24. Castro P, Huerga C, Chamorro P et al (2018) Characterization and simulation of noise in PET images reconstructed with OSEM: development of a method for the generation of synthetic images. Rev Esp Med Nucl Imagen Mol 37(4):229–236

    CAS  PubMed  Google Scholar 

  25. DeGrado TR, Turkington TG, Williams JJ et al (1994) Performance characteristics of a whole-body PET scanner. J Nucl Med 35(8):1398–1406

    CAS  PubMed  Google Scholar 

  26. Linet MS, Slovis TL, Miller DL et al (2012) Cancer risks associated with external radiation from diagnostic imaging procedures. CA Cancer J Clin 62(2):75–100

    PubMed  PubMed Central  Google Scholar 

  27. Andersson M, Johansson L, Minarik D, Leide-Svegborn S, Mattsson S (2014) Effective dose to adult patients from 338 radiopharmaceuticals estimated using ICRP biokinetic data, ICRP/ICRU computational reference phantoms and ICRP 2007 tissue weighting factors. EJNMMI Phys 1(1):9

    PubMed  PubMed Central  Google Scholar 

  28. ICRP (2008) Radiation dose to patients from radiopharmaceuticals. Addendum 3 to ICRP publication 53. ICRP publication 106. Approved by the commission in October 2007. Ann ICRP 38(1–2):1–197

    CAS  PubMed  Google Scholar 

  29. Kamiya K, Ozasa K, Akiba S et al (2015) Long-term effects of radiation exposure on health. Lancet 386(9992):469–478

    CAS  PubMed  Google Scholar 

  30. Calabrese EJ, O'Connor MK (2014) Estimating risk of low radiation doses—a critical review of the BEIR VII report and its use of the linear no-threshold (LNT) hypothesis. Radiat Res 182(5):463–474

    CAS  PubMed  Google Scholar 

  31. Andersson M, Eckerman K, Mattsson LJS (2017) Lifetime attributable risk as an alternative to effective dose to describe the risk of cancer for patients in diagnostic and therapeutic nuclear medicine. Phys Med Biol 62(24):9177–9188

    CAS  PubMed  Google Scholar 

  32. Health Physics Society. Radiation risk in perspective: position statement of the health physics society. http://hps.org/documents/radiationrisk.pdf

  33. Hendee WR, O’Connor MK (2012) Radiation risks of medical imaging: separating fact from fantasy. Radiology 264(2):312–321

    PubMed  Google Scholar 

  34. Gelfand MJ, Parisi MT, Treves ST et al (2011) Pediatric radiopharmaceutical administered doses: 2010 North American consensus guidelines. J Nucl Med 52(2):318–322

    PubMed  Google Scholar 

  35. Ayres KL, Spottswood SE, Delbeke D et al (2015) Dose optimization of the administered activity in pediatric bone scintigraphy: validation of the North American consensus guidelines. J Nucl Med 56(9):1391–1394

    CAS  PubMed  Google Scholar 

  36. Benson CB, Doubilet PM (2014) The history of imaging in obstetrics. Radiology 273(2S):S92–S110

    PubMed  Google Scholar 

  37. Lazarus E, Debenedectis C, North D, Spencer PK, Mayo-Smith WW (2009) Utilization of imaging in pregnant patients: 10-year review of 5270 examinations in 3285 patients—1997-2006. Radiology 251(2):517–524

    PubMed  Google Scholar 

  38. Williams PM, Fletcher S (2010) Health effects of prenatal radiation exposure. Am Fam Physician 82(5):488–493

    PubMed  Google Scholar 

  39. Wang PI, Chong ST, Kielar AZ et al (2012) Imaging of pregnant and lactating patients: part 1, evidence-based review and recommendations. Am J Roentgenol 198(4):778–784

    Google Scholar 

  40. Wang PI, Chong ST, Kielar AZ et al (2012) Imaging of pregnant and lactating patients: part 2, evidence-based review and recommendations. Am J Roentgenol 198(4):785–792

    Google Scholar 

  41. ICRP (2000) Pregnancy and medical radiation. Ann ICRP 30(1):iii–viii, 1–43

    Google Scholar 

  42. Committee on Obstetric Gynecology Committee Opinion No. 723 (2017) Guidelines for diagnostic imaging during pregnancy and lactation. Obstet Gynecol 130(4):e210–e216

    Google Scholar 

  43. Liepe K, Becker A (2016) Excretion of radionuclides in human breast milk after nuclear medicine examinations. Biokinetic and dosimetric data and recommendations on breastfeeding interruption. Eur J Nucl Med Mol Imaging 43(5):805–807

    CAS  PubMed  Google Scholar 

  44. Liu L, Liu B, Huang R, Kuang A (2017) Radiation protection and safety of nuclear medicine. Chin J Med Imaging Technol 33(12):102–106

    Google Scholar 

  45. ICRP (2004) Release of patients after therapy with unsealed radionuclides. Ann ICRP 34(2):v–vi, 1–79

    Google Scholar 

  46. IAEA (2009) Release of patients after radionuclide therapy. Safety report series no. 63. Vienna, Austria

    Google Scholar 

  47. Liu B, Peng W, Huang R et al (2014) Thyroid cancer: radiation safety precautions in 131I therapy based on actual biokinetic measurements. Radiology 273(1):211–219

    PubMed  Google Scholar 

  48. Liu B, Tian R, Peng W et al (2015) Radiation safety precautions in 131I therapy of Graves’ disease based on actual biokinetic measurements. J Clin Endocrinol Metab 100(8):2934–2941

    CAS  PubMed  Google Scholar 

  49. NRC (2008) New NRC guidance on release of patients after 131I treatment. J Nucl Med 49(7):16N

    Google Scholar 

  50. Sans-Merce M, Ruiz N, Barth I et al (2011) Recommendations to reduce hand exposure for standard nuclear medicine procedures. Radiat Meas 46(11):1330–1333

    CAS  Google Scholar 

  51. Leide-Svegborn S (2012) External radiation exposure of personnel in nuclear medicine from 18F, 99mTC and 131I with special reference to fingers, eyes and thyroid. Radiat Prot Dosim 149(2):196–206

    CAS  Google Scholar 

  52. Sans Merce M, Ruiz N, Barth I et al (2011) Extremity exposure in nuclear medicine: preliminary results of a European study. Radiat Prot Dosim 144(1–4):515–520

    CAS  Google Scholar 

  53. Kaljevic J, Stankovic K, Stankovic J, Ciraj-Bjelac O, Arandjic D (2016) Hand dose evaluation of occupationally exposed staff in nuclear medicine. Radiat Prot Dosim 170(1–4):292–296

    CAS  Google Scholar 

  54. Krajewska G, Pachocki KA (2013) Assessment of exposure of workers to ionizing radiation from radioiodine and technetium in nuclear medicine departmental facilities. Med Pr 64(5):625–630

    CAS  PubMed  Google Scholar 

  55. IAEA (2005) Applying radiation safety standards in nuclear medicine. IAEA safety report series no. 40. Vienna, Austria

    Google Scholar 

  56. Feuardent J, Scanff P, Crescini D, Rannou A (2013) Occupational external exposure to ionising radiation in France (2005-2011). Radiat Prot Dosim 157(4):610–618

    CAS  Google Scholar 

  57. Mattsson S (2013) Radiation protection in nuclear medicine. Springer, Berlin, pp 1–7

    Google Scholar 

  58. Rajaraman P, Doody MM, Yu CL et al (2016) Incidence and mortality risks for circulatory diseases in US radiologic technologists who worked with fluoroscopically guided interventional procedures, 1994-2008. Occup Environ Med 73(1):21–27

    PubMed  Google Scholar 

  59. Yoshinaga S, Mabuchi K, Sigurdson AJ, Doody MM, Ron E (2004) Cancer risks among radiologists and radiologic technologists: review of epidemiologic studies. Radiology 233(2):313–321

    PubMed  Google Scholar 

  60. Simon SL, Weinstock RM, Doody MM et al (2006) Estimating historical radiation doses to a cohort of U.S. radiologic technologists. Radiat Res 166(1):174–192

    CAS  PubMed  Google Scholar 

  61. Berrington de Gonzalez A, Ntowe E, Kitahara CM et al (2016) Long-term mortality in 43763 U.S. radiologists compared with 64 990 U.S. psychiatrists. Radiology 281(3):847–857

    PubMed  PubMed Central  Google Scholar 

  62. Linet MS, Kitahara CM, Ntowe E et al (2017) Mortality in U.S. physicians likely to perform fluoroscopy-guided interventional procedures compared with psychiatrists, 1979 to 2008. Radiology 284(2):482–494

    PubMed  PubMed Central  Google Scholar 

  63. Linet MS, Kim KP, Miller DL, Kleinerman RA, Simon SL, Berrington de Gonzalez A (2010) Historical review of occupational exposures and cancer risks in medical radiation workers. Radiat Res 74(6):793–808

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Singapore Pte Ltd. and Shanghai Jiao Tong University Press

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Li, R. et al. (2019). Equipment for Imaging and Mechanism of Radiation Protection. In: Huang, G. (eds) Nuclear Medicine in Oncology. Springer, Singapore. https://doi.org/10.1007/978-981-13-7458-6_19

Download citation

  • DOI: https://doi.org/10.1007/978-981-13-7458-6_19

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-13-7457-9

  • Online ISBN: 978-981-13-7458-6

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics