Skip to main content

Part of the book series: Springer Series in Computational Mathematics ((SSCM,volume 53))

  • 917 Accesses

Abstract

Eigenvalue problems Au = λu with a self-adjoint operator A are ubiquitous in mathematical analysis and mathematical physics. A particularly rich field of application is formed by linear differential expressions which can be realized operator-theoretically by self-adjoint operators. Often such eigenvalue problems arise from wave- or Schrödinger-type equations after separation of the time variable, i.e. by a standing-wave ansatz. Possibly the most important physical application is quantum physics, but also other fields like electro-dynamics (including optics) or statistical mechanics are governed by partial differential operators and related eigenvalue problems.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 59.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 79.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 79.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Alefeld, G., Herzberger, J.: Introduction to Interval Computations. Computer Science and Applied Mathematics. Academic [Harcourt Brace Jovanovich, Publishers], New York (1983). Translated from the German by Jon Rokne

    Chapter  MATH  Google Scholar 

  2. Aronszajn, N.: Approximation eigenvalues of completely continuous symmetric ooperators. In: Proceedings of the Spectral Theory and Differential Problems, pp. 179–202 (1951)

    Google Scholar 

  3. Bazley, N.W., Fox, D.W.: A procedure for estimating eigenvalues. J. Math. Phys. 3, 469–471 (1962)

    Article  MathSciNet  MATH  Google Scholar 

  4. Bazley, N.W., Fox, D.W.: Comparison operators for lower bounds to eigenvalues. J. Reine Angew. Math. 223, 142–149 (1966)

    MathSciNet  MATH  Google Scholar 

  5. Beattie, C.: An extension of Aronszajn’s rule: slicing the spectrum for intermediate problems. SIAM J. Numer. Anal. 24(4), 828–843 (1987)

    Article  MathSciNet  MATH  Google Scholar 

  6. Beattie, C., Goerisch, F.: Methods for computing lower bounds to eigenvalues of self-adjoint operators. Numer. Math. 72(2), 143–172 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  7. Behnke, H.: Inclusion of eigenvalues of general eigenvalue problems for matrices. In: Scientific Computation with Automatic Result Verification (Karlsruhe, 1987). Volume 6 of Computing Supplementum, pp. 69–78. Springer, Vienna (1988)

    Google Scholar 

  8. Behnke, H., Goerisch, F.: Inclusions for eigenvalues of selfadjoint problems. In: Topics in Validated Computations, Oldenburg, 1993. Volume 5 of Studies in Computational Mathematics, pp. 277–322. North-Holland, Amsterdam (1994)

    Google Scholar 

  9. Behnke, H., Mertins, U., Plum, M., Wieners, C.: Eigenvalue inclusions via domain decomposition. Proc. R. Soc. Lond. A 456, 2717–2730 (2000)

    Article  MATH  Google Scholar 

  10. Berkowitz, J.: On the discreteness of spectra of singular Sturm-Liouville problems. Commun. Pure Appl. Math. 12, 523–542 (1959)

    Article  MathSciNet  MATH  Google Scholar 

  11. Birkhoff, G., de Boor, C., Swartz, B., Wendroff, B.: Rayleigh-Ritz approximation by piecewise cubic polynomials. SIAM J. Numer. Anal. 3, 188–203 (1966)

    Article  MathSciNet  MATH  Google Scholar 

  12. Birman, M.S., Solomjak, M.Z.: Spectral Theory of Selfadjoint Operators in Hilbert Space. Mathematics and Its Applications (Soviet Series). D. Reidel Publishing Co., Dordrecht (1987). Translated from the 1980 Russian original by S. Khrushchëv and V. Peller

    Google Scholar 

  13. Chatelin, F.: Spectral Approximation of Linear Operators. Volume 65 of Classics in Applied Mathematics. Society for Industrial and Applied Mathematics (SIAM), Philadelphia (2011). With a foreword by P. Henrici, With solutions to exercises by Mario Ahués, Reprint of the 1983 original [MR0716134]

    Google Scholar 

  14. Davies, E.B.: A hierarchical method for obtaining eigenvalue enclosures. Math. Comput. 69(232), 1435–1455 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  15. Davies, E.B., Parnovski, L.: Trapped modes in acoustic waveguides. Quart. J. Mech. Appl. Math. 51(3), 477–492 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  16. Davies, E.B., Plum, M.: Spectral pollution. IMA J. Numer. Anal. 24(3), 417–438 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  17. Evans, D.V., Linton, C.M.: Trapped modes in open channels. J. Fluid Mech. 225, 153–175 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  18. Goerisch, F.: Ein Stufenverfahren zur Berechnung von Eigenwertschranken. In Numerische Behandlung von Eigenwertaufgaben (eds. J. Albrecht, L. Collatz, W. Velte). Internationale Schriftenreiche Numerische Mathematik, 83, 104–114 (1987)

    MathSciNet  Google Scholar 

  19. Hammer, R., Hocks, M., Kulisch, U., Ratz, D.: Numerical Toolbox for Verified Computing. I. Volume 21 of Springer Series in Computational Mathematics. Springer, Berlin (1993). Basic numerical problems, theory, algorithms, and Pascal-XSC programs, with separately available computer disks

    Google Scholar 

  20. Kato, T.: On the upper and lower bounds of eigenvalues. J. Phys. Soc. Japan 4, 334–339 (1949)

    Article  MathSciNet  Google Scholar 

  21. Kikuchi, F., Liu, X.: Determination of the Babuska-Aziz constant for the linear triangular finite element. Japan J. Indust. Appl. Math. 23(1), 75–82 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  22. Kikuchi, F., Liu, X.: Estimation of interpolation error constants for the P 0 and P 1 triangular finite elements. Comput. Methods Appl. Mech. Eng. 196(37–40), 3750–3758 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  23. Klatte, R., Kulisch, U., Lawo, C., Rausch, M., Wiethoff, A.: C-XSC-A C++ Library for Extended Scientific Computing. Springer, Berlin (1993)

    MATH  Google Scholar 

  24. Lehmann, N.J.: Optimale Eigenwerteinschließungen. Numer. Math. 5, 246–272 (1963)

    Article  Google Scholar 

  25. Liu, X.: A framework of verified eigenvalue bounds for self-adjoint differential operators. Appl. Math. Comput. 267, 341–355 (2015)

    MathSciNet  MATH  Google Scholar 

  26. Liu, X., Oishi, S.: Verified eigenvalue evaluation for the Laplacian over polygonal domains of arbitrary shape. SIAM J. Numer. Anal. 51(3), 1634–1654 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  27. Maehly, H.J.: Ein neues Variationsverfahren zur genäherten Berechnung der Eigenwerte hermitescher Operatoren. Helvetica Phys. Acta 25, 547–568 (1952)

    MathSciNet  MATH  Google Scholar 

  28. Nagatou, K., Plum, M., Nakao, M.T.: Eigenvalue excluding for perturbed-periodic one-dimensional Schrödinger operators. Proc. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci. 468(2138), 545–562 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  29. Plum, M.: Eigenvalue inclusions for second-order ordinary differential operators by a numerical homotopy method. Z. Angew. Math. Phys. 41(2), 205–226 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  30. Plum, M.: Bounds for eigenvalues of second-order elliptic differential operators. Z. Angew. Math. Phys. 42(6), 848–863 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  31. Plum, M.: Guaranteed numerical bounds for eigenvalues. In: Spectral Theory and Computational Methods of Sturm-Liouville Problems, Knoxville, 1996. Volume 191 of Lecture Notes in Pure and Applied Mathematics, pp. 313–332. Dekker, New York (1997)

    Google Scholar 

  32. Rektorys, K.: Variational Methods in Mathematics, Science and Engineering, 2nd edn. D. Reidel Publishing Co., Dordrecht/Boston (1980). Translated from the Czech by Michael Basch

    MATH  Google Scholar 

  33. Riesz, F., Sz.-Nagy, B.: Leçons d’analyse fonctionnelle. Gauthier-Villars, Editeur-Imprimeur-Libraire, Paris; Akadémiai Kiadó, Budapest (1965). Quatrième édition. Académie des Sciences de Hongrie

    Google Scholar 

  34. Rump, S.M.: Intlab-interval laboratory, a matlab toolbox for verified computations, version 4.2.1. (2002)

    Google Scholar 

  35. Schmüdgen, K.: Unbounded Self-adjoint Operators on Hilbert Space. Volume 265 of Graduate Texts in Mathematics. Springer, Dordrecht (2012)

    Google Scholar 

  36. Weinberger, H.F.: Variational Methods for Eigenvalue Approximation. Society for Industrial and Applied Mathematics, Philadelphia (1974). Based on a Series of Lectures Presented at the NSF-CBMS Regional Conference on Approximation of Eigenvalues of Differential Operators, Vanderbilt University, Nashville, 26–30 June 1972, Conference Board of the Mathematical Sciences Regional Conference Series in Applied Mathematics, No. 15

    Google Scholar 

  37. Weinstein, A.: On the Sturm-Liouville theory and the eigenvalues of intermediate problems. Numer. Math. 5, 238–245 (1963)

    Article  MathSciNet  MATH  Google Scholar 

  38. Weinstein, A., Stenger, W.: Methods of Intermediate Problems for Eigenvalues. Theory and Ramifications. Volume 89 of Mathematics in Science and Engineering. Academic Press, New York/London (1972)

    Google Scholar 

  39. Wieners, C.: Bounds for the N lowest eigenvalues of fourth-order boundary value problems. Computing 59(1), 29–41 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  40. You, C., Liu, X., Xie, H., Plum, M.: High-precision guaranteed eigenvalue bounds for the Steklov eigenvalue problem (In preparation)

    Google Scholar 

  41. Zimmermann, S., Mertins, U.: Variational bounds to eigenvalues of self-adjoint eigenvalue problems with arbitrary spectrum. Z. Anal. Anwendungen 14(2), 327–345 (1995)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Nakao, M.T., Plum, M., Watanabe, Y. (2019). Eigenvalue Bounds for Self-Adjoint Eigenvalue Problems. In: Numerical Verification Methods and Computer-Assisted Proofs for Partial Differential Equations. Springer Series in Computational Mathematics, vol 53. Springer, Singapore. https://doi.org/10.1007/978-981-13-7669-6_10

Download citation

Publish with us

Policies and ethics