Skip to main content

Modified Method for Orbit Relative Reachable Domain with State Uncertainties

  • Conference paper
  • First Online:
Cognitive Systems and Signal Processing (ICCSIP 2018)

Part of the book series: Communications in Computer and Information Science ((CCIS,volume 1005))

Included in the following conference series:

  • 1000 Accesses

Abstract

State uncertainties in a spacecraft’s relative motion lead to trajectory deviation. The volume that enclosing all the potential relative position due to initial state uncertainty can be geometrically described as the relative reachable domain (RRD). A general method is developed to determine the envelope of RRD in 3D space for arbitrary reference orbits. At any given time, the plane perpendicular to the instant nominal trajectory is defined as the reference plane. On each reference plane, the envelope of RRD is generated by a revolution of maximum position error vectors. Thus, the problem is transformed to a problem of solving a system of nonlinear equations. Comparison between the solved RRD and the results of Monte Carlo runs, which are propagated by nonlinear full dynamical model of relative motion and can be regarded as the true results, is presented as the numerical example to validate the effectiveness of the proposed method.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Rathgeber, W.: Europe’s way to space situational awareness. Technical report ESPI 10, ESPI European Space Policy Institute, January 2008

    Google Scholar 

  2. Wen, C., Gurfil, P.: Relative reachable domain for spacecraft with initial state uncertainties. J. Guid. Control Dyn. 39(3), 1–12 (2016)

    Article  Google Scholar 

  3. Patera, R.P.: General method for calculating spacecraft collision probability. J. Guid. Control Dyn. 24(4), 716–722 (2001). https://doi.org/10.2514/2.4771

    Article  Google Scholar 

  4. Richards, A., Schouwenaars, T., How, J.P., Feron, E.: Spacecraft trajectory planning with avoidance constraints using mixed-integer linear programming. J. Guid. Control Dyn. 25(4), 755–764 (2002). https://doi.org/10.2514/2.4656

    Article  Google Scholar 

  5. Alarcón-Rodríguez, J.R., Martínez-Fadrique, F.M., Klinkrad, H.: Development of a collision risk assessment tool. Adv. Space Res. 34(5), 1120–1124 (2004). https://doi.org/10.1016/j.asr.2003.01.015

    Article  Google Scholar 

  6. Alfano, S.: Review of conjunction probability method for short-term encounters. In: AAS/AIAA Space Flight Mechanics Meeting, Sedona, Arizona, United States (2007)

    Google Scholar 

  7. Chan, F.K.: Spacecraft Collision Probability, pp. 1–13. The Aerospace Press, EI Segundo (2008)

    Book  Google Scholar 

  8. Wen, C., Zhao, Y., Shi, P.: Precise determination of reachable domain for spacecraft with single impulse. J. Guid. Control Dyn. 37(6), 1767–1779 (2014). https://doi.org/10.2514/1.g000583

    Article  Google Scholar 

  9. Xue, D., Li, J., Baoyin, H.: Study on reachable domain for spacecraft trajectory with coplanar impulse applied. J. Astronaut. 30(1), 88–92 (2009)

    Google Scholar 

  10. Xue, D., Li, J., Jiang, F.: Reachable domain of a spacecraft with a coplanar impulse applied. Chin. J. Theor. Appl. Mech. 42(2), 337–342 (2010)

    Google Scholar 

  11. Xue, D., Li, J., Baoyin, H., Jiang, F.: Reachable domain for spacecraft with a single impulse. J. Guid. Control Dyn. 33(3), 934–942 (2010). https://doi.org/10.2514/1.43963

    Article  Google Scholar 

  12. Wen, C., Zhao, Y., Shi, P., Hao, Z.: Orbital accessibility problem for spacecraft with a single impulse. J. Guid. Control Dyn. 37(4), 1260–1271 (2014). https://doi.org/10.2514/1.62629

    Article  Google Scholar 

  13. Shishido, N., Tomlin, C.J.: Ellipsoidal approximations of reachable sets for linear games. In: Proceedings of the 39th IEEE Conference of Decision and Control, pp. 999–1004. IEEE (2000). https://doi.org/10.1109/cdc.2000.912904

  14. Kurzhanski, A.B., Varaiya, P.: On reachability under uncertainty. SIAM J. Control Optim. 41(1), 181–216 (2002). https://doi.org/10.1137/S0363012999361093

    Article  MathSciNet  MATH  Google Scholar 

  15. Daryin, A.N., Kurzhanski, A.B., Vostrikov, I.V.: Reachability approaches and ellipsoidal techniques for closed-loop control of oscillating systems under uncertainty. In: Proceedings of the 45th IEEE Conference on Decision and Control, pp. 6385–6390. IEEE (2006). https://doi.org/10.1109/cdc.2006.377784

  16. Kurzhanskiy, A.B., Varaiya, P.: Ellipsoidal technique for reachability analysis of discrete-time linear systems. IEEE Trans. Autom. Control 52(1), 26–38 (2007). https://doi.org/10.1109/tac.2006.887900

    Article  MathSciNet  MATH  Google Scholar 

  17. Holzinger, M.J., Scheeres, D.J.: Reachability results for nonlinear systems with ellipsoidal initial sets. IEEE Trans. Aerosp. Electron. Syst. 48(2), 1583–1600 (2012). https://doi.org/10.1109/taes.2012.6178080

    Article  Google Scholar 

  18. Shi, H., Zhao, Y., Shi, P., Wen, C., Zheng, H.: Determination of orbit reachable domain due to initial uncertainties. J. Astronaut. 37(4), 411–419 (2016)

    Google Scholar 

  19. Bryson, A.E., Ho, Y.C.: Applied Optimal Control: Optimization, Estimation, and Control, pp. 309–311. Hemisphere Publishing Corporation, Washington, D. C. (1975)

    Google Scholar 

  20. Mahalanobis, P.C.: On the generalized distance in statistics. Proc. Natl. Inst. Sci. (Calcutta) 2, 49–55 (1936)

    MATH  Google Scholar 

  21. Bapat, R.B.: Linear Algebra and Linear Models, 3rd edn. Springer, London (2012). https://doi.org/10.1007/978-1-4471-2739-0

    Book  MATH  Google Scholar 

  22. Vinh, N.X., Gilbert, E.G., Howe, R.M., Sheu, D., Lu, P.: Reachable domain for interception at hyperbolic speeds. Acta Astronaut. 35(1), 1–8 (1995). https://doi.org/10.1016/0094-5765(94)00132-6

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hao Shi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Shi, H., Tian, T., Zhao, X., Xiao, Y. (2019). Modified Method for Orbit Relative Reachable Domain with State Uncertainties. In: Sun, F., Liu, H., Hu, D. (eds) Cognitive Systems and Signal Processing. ICCSIP 2018. Communications in Computer and Information Science, vol 1005. Springer, Singapore. https://doi.org/10.1007/978-981-13-7983-3_35

Download citation

  • DOI: https://doi.org/10.1007/978-981-13-7983-3_35

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-13-7982-6

  • Online ISBN: 978-981-13-7983-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics