Skip to main content

Principles and Implications of Various Genome Enrichment Approaches for Targeted Sequencing of Plant Genomes

  • Chapter
  • First Online:
Plant Biotechnology: Progress in Genomic Era

Abstract

The higher eukaryotic organisms harbor huge amounts of DNA in their cells that are generally very complex and dynamic in nature. Strategies of sequencing of higher plants have undergone revolutionary changes concurrent with the development of different and newer chemistries. After the advent of NGS technlogies, the approaches to decipher higher plant genomes have evolved in a precise manner to unlock the genetic potential in a targeted manner. Target enrichment refers to the techniques aiming to reduce genome complexity and enrich for specific subset of the genome for sequencing purposes, to deduce a more meaningful and comprehensive data in a fraction of time, cost and effort. Based on the enrichment mode, these approaches and their modifications are classified as PCR-, hybridization-, Restriction enzyme- based and Enrichment for expressed genomic sequences. Since targeted enrichment techniques confers most of the benefits as those of WGS, these are especially useful for target or trait specific studies and are bound to grow for their diverse applications in both reference and non-model crop species.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 229.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 299.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 299.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Ali, O. A., Rourke, S. M. O., Amish, S. J., et al. (2016). RAD capture (rapture): Flexible and efficient sequence-based genotyping. Genetics, 202, 389–400.

    Article  CAS  PubMed  Google Scholar 

  • Allen, A. M., Barker, G. L. A., Wilkinson, P., et al. (2013). Discovery and development of exome-based, co-dominant single nucleotide polymorphism markers in hexaploid wheat (Triticum aestivum L.). Plant Biotechnology Journal, 11, 279–295.

    Article  CAS  PubMed  Google Scholar 

  • Andolfatto, P. D., Davison, D., Erezyilmaz, D., et al. (2011). Multiplexed shotgun genotyping for rapid and effi cient genetic mapping. Genome Research, 21, 610–617.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Arai-kichise, Y., Shiwa, Y., Nagasaki, H., et al. (2011). Discovery of genome-wide DNA polymorphisms in a landrace cultivar of japonica rice by whole-genome sequencing. Plant and Cell Physiology, 52, 274–282.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Arruda, M. P., Lipka, A. E., Brown, P. J., et al. (2016). Comparing genomic selection and marker-assisted selection for Fusarium head blight resistance in wheat (Triticum aestivum). Molecular Breeding, 36, 1–11.

    Article  CAS  Google Scholar 

  • Ashrafi, H., Hulse, A. M., & Hoegenauer, K., et al. (2012). Comparison and evaluation of cotton SNPs developed by Transcriptome, genome reduction on restriction site conservation and RAD-based sequencing. ICGI Research conference, Raleigh, North Carolina, USA, October 11, 2012.

    Google Scholar 

  • Baird, N. A., Etter, P. D., Atwood, T. S., et al. (2008). Rapid SNP discovery and genetic mapping using sequenced RAD markers. PLoS One, 3, e3376.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bashiardes, S., Veile, R., Helms, C., et al. (2005). Direct genomic selection. Nature Methods, 2, 63–69.

    Article  CAS  PubMed  Google Scholar 

  • Bedell, J. A., Budiman, M. A., Nunberg, A., et al. (2005). Sorghum genome sequencing by methylation filtration. PLoS Biology, 3, 0103–0115.

    Article  Google Scholar 

  • Bevan, M. W., Uauy, C., Wulff, B. B. H., et al. (2017). Genomic innovation for crop improvement. Nature, 543, 346–354.

    Article  CAS  PubMed  Google Scholar 

  • Bhat, J. A., Ali, S., Salgotra, R. K., et al. (2016). Genomic selection in the era of next generation sequencing for complex traits in plant breeding. Frontiers in Genetics, 7, 221. https://doi.org/10.3389/fgene.2016.00221.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bolon, Y. T., Huan, W. J., Xu, W. W., et al. (2011). Phenotypic and genomic analyses of a fast neutron mutant population resource in soybean. Plant Physiology, 156, 240–253.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Brassac, J., & Blattner, F. R. (2015). Species level phylogeny and polyploidy relationships in Hordeum (Poaceae) inferred by next-generation sequencing and In-Silico cloning of multiple nuclear loci. Systematic Biology, 64, 792–808.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bundock, P. C., Casu, R. E., & Henry, R. J. (2012). Enrichment of genomic DNA for polymorphism detection in a non-model highly polyploid crop plant. Plant Biotechnology Journal, 10, 657–667.

    Article  CAS  PubMed  Google Scholar 

  • Byers, R. L., Harker, D. B., & Yourstone, S. M. (2012). Development and mapping of SNP assays in allotetraploid cotton. Theoretical and Applied Genetics, 124, 1201–1214.

    Article  CAS  PubMed  Google Scholar 

  • Chalhoub, B., et al. (2014). Early allopolyploid evolution in the post-Neolithic Brassica napus oilseed genome. Science, 345, 950–953.

    Article  CAS  PubMed  Google Scholar 

  • Chen, X., Li, X., Zhang, B., et al. (2013). Detection and genotyping of restriction fragment associated polymorphisms in polyploid crops with a pseudo-reference sequence: A case study in allotetraploid Brassica napus. BMC Genomics, 14, 346.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chen, X., Ge, X., Wang, J., et al. (2015). Genome-wide DNA methylation profiling by modified reduced representation bisulfite sequencing in Brassica rapa suggests that epigenetic modifications play a key role in polyploid genome evolution. Frontiers in Plant Science, 6, 836. https://doi.org/10.3389/fpls.2015.00836.

    Article  PubMed  PubMed Central  Google Scholar 

  • Chutimanitsakun, Y., Nipper, R. W., Cuesta-Marcos, A., et al. (2011). Construction and application for QTL analysis of a Restriction Site Associated DNA (RAD) linkage map in barley. BMC Genomics, 12, 4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Clark, S. J., Statham, A., Stirzaker, C., et al. (2006). DNA methylation: Bisulphite modification and analysis. Nature Protocols, 1, 2353–2364.

    Article  CAS  PubMed  Google Scholar 

  • Cokus, S. J., Feng, S., Zhang, X., et al. (2008). Shotgun bisul-phite sequencing of the Arabidopsis genome reveals DNA methylation patterning. Nature, 452, 215–219.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Comer, J. R., Zomlefer, W. B., Barrett, C. F., et al. (2015). Resolving relationships within the palm subfamily Arecoideae (Arecaceae) using plastid sequences derived from next-generation sequencing. American Journal of Botany, 102, 888–899.

    Article  CAS  PubMed  Google Scholar 

  • Cronn, R., Liston, A., Parks, M., et al. (2008). Multiplex sequencing of plant chloroplast genomes using solexa sequencing-by-synthesis technology. Nucleic Acids Research, 36, e122.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dasgupta, M. G., Dharanishanthi, V., Agarwal, I., et al. (2015). Development of genetic markers in Eucalyptus species by target enrichment and exome sequencing. PLoS One, 10, 1–30.

    Google Scholar 

  • Davik, J., Sargent, D. J., Brurberg, M. B., et al. (2015). A ddRAD based linkage map of the cultivated strawberry, Fragaria xananassa. PLoS One, 10, e0137746.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • de Sousa, F., Bertrand, Y. J. K., Nylinder, S., et al. (2014). Phylogenetic properties of 50 nuclear loci in medicago (Leguminosae) generated using multiplexed sequence capture and next-generation sequencing. PLoS One, 9, e109704.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Delker, C., & Quint, M. (2011). Expression level polymorphisms: Heritable traits shaping natural variation. Trends in Plant Science, 16, 481–488.

    CAS  PubMed  Google Scholar 

  • Durstewitz, G., Polley, A., Plieske, J., et al. (2010). SNP discovery by amplicon sequencing and multiplex SNP genotyping in the allopolyploid species Brassica napus. Genome, 53, 948–956.

    Article  CAS  PubMed  Google Scholar 

  • Egan, A. N., Schlueter, J., & Spooner, D. M. (2012). Applications of next-generation sequencing in plant biology. American Journal of Botany, 99, 175–185.

    Article  CAS  PubMed  Google Scholar 

  • Elshire, R. J., Glaubitz, J. C., Sun, Q., et al. (2011). A robust, simple genotyping-by-sequencing (GBS) approach for high diversity species. PLoS One, 6, e19379.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Filichkin, S. A., Priest, H. D., Givan, S. A., et al. (2009). Genome-wide mapping of alternative splicing in Arabidopsis thaliana. Genome Research, 20, 45–58.

    Article  CAS  PubMed  Google Scholar 

  • Fu, Y., Springer, N. M., Gerhardt, D. J., et al. (2010). Repeat subtraction-mediated sequence capture from a complex genome. Plant Journal, 62, 898–909.

    Article  CAS  Google Scholar 

  • Galvão, V. C., Nordström, K. J. V., Lanz, C., et al. (2012). Synteny-based mapping-by-sequencing enabled by targeted enrichment. Plant Journal, 71, 517–526.

    Google Scholar 

  • Gan, X., Stegle, O., Behr, J., et al. (2011). Multiple reference genomes and transcriptomes for Arabidopsis thaliana. Nature, 477, 419–423.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gao, L., Kielsmeier-Cook, J., Bajgain, P., et al. (2015). Development of genotyping by sequencing (GBS)- and array-derived SNP markers for stem rust resistance gene Sr42. Molecular Breeding, 35, 207. https://doi.org/10.1007/s11032-015-0404-4.

    Article  CAS  Google Scholar 

  • Garber, K. (2008). Fixing the front end. Nature Biotechnology, 26, 1101–1104.

    Article  CAS  PubMed  Google Scholar 

  • Gardiner, L. J., Gawronski, P., Olohan, L., et al. (2014). Using genic sequence capture in combination with a syntenic pseudo genome to map a deletion mutant in a wheat species. The Plant Journal, 80, 895–904.

    Article  CAS  PubMed  Google Scholar 

  • Gasc, C., Peyretaillade, E., & Peyret, P. (2016). Sequence capture by hybridization to explore modern and ancient genomic diversity in model and nonmodel organisms. Nucleic Acids Research, 44, 4504–4518.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gnirke, A., Melnikov, A., Maguire, J., et al. (2009). Solution hybrid selection with ultra-long oligonucleotides for massively parallel targeted sequencing. Nature Biotechnology, 27, 182–189.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gore, M. A., Chia, J. M., Elshire, R. J., et al. (2009). A first-generation haplotype map of maize. Science, 326, 1115–1117.

    Article  CAS  PubMed  Google Scholar 

  • Grativol, C., Regulski, M., Bertalan, M., et al. (2014). Sugarcane genome sequencing by methylation filtration provides tools for genomic research in the genus Saccharum. The Plant Journal, 79, 162–172.

    Article  CAS  PubMed  Google Scholar 

  • Gugger, P. F., Fitz-Gibbon, S., Pellegrini, M., et al. (2016). Species-wide patterns of DNA methylation variation in Quercus lobata and its association with climate gradients. Molecular Ecology, 25, 1665–1680.

    Article  CAS  PubMed  Google Scholar 

  • Guo, Y., Yuan, H., Fang, D., et al. (2014). An improved 2b-RAD approach (I2b-RAD) offering genotyping tested by a rice (Oryza sativa L.) F2 population. BMC Genomics, 15, 956–913.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hamilton, J. P., Hansey, C. N., Whitty, B. R., et al. (2011). Single nucleotide polymorphism discovery in elite North American potato germplasm. BMC Genomics, 12, 302.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hamilton, J. P., Sim, S.-C., Stoffel, K., et al. (2012). Single nucleotide polymorphism discovery in cultivated tomato via sequencing by synthesis. Plant Genome, 5, 17–29.

    Article  CAS  Google Scholar 

  • Harper, A. L., Trick, M., Higgins, J., et al. (2012). Associative transcriptomics of traits in the polyploid crop species Brassica napus. Nature Biotechnology, 30, 798–802.

    Article  CAS  PubMed  Google Scholar 

  • Hartl, D. L. (2000). Molecular melodies in high and low C. Nature Reviews, 1, 145–149.

    Article  CAS  PubMed  Google Scholar 

  • Harvey, M. G., Smith, B.T., Glenn, T. C., et al. (2013). Sequence capture versus restriction sited associated DNA sequencing for phylogeography. https://arxiv.org/abs/1312.6439.

  • Haun, W. J., Hyten, D. L., Xu, W. W., et al. (2011). The composition and origins of genomic variation among individuals of the soybean reference Cultivar Williams 82. Plant Physiology, 155, 645–655.

    Article  CAS  PubMed  Google Scholar 

  • Havlickova, L., He, Z., Wang, L., et al. (2018). Validation of an updated associative transcriptomics platform for the polyploid crop species Brassica napus by dissection of the genetic architecture of erucic acid and tocopherol isoform variation in seeds. The Plant Journal, 93, 181–192.

    Article  CAS  PubMed  Google Scholar 

  • Hegarty, M., Yadav, R., Lee, M., et al. (2013). Genotyping by RAD sequencing enables mapping of fatty acid composition traits in perennial ryegrass (Lolium perenne (L.)). Plant Biotechnology Journal, 11, 572–581.

    Article  CAS  PubMed  Google Scholar 

  • Henry, I. M., Nagalakshmi, U., Lieberman, M. C., et al. (2014). Efficient genome-wide detection and cataloging of EMS-induced mutations using exome capture and next-generation sequencing. The Plant Cell, 26, 1382–1397.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hsu, F. M., Yen, M. R., Wang, C. T., et al. (2017). Optimized reduced representation bisulfite sequencing reveals tissue-specific mCHH islands in maize. Epigenetics and Chromatin, 10, 42. https://doi.org/10.1186/s13072-017-0148-y.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Huang, X., Feng, Q., Qian, Q., et al. (2009). Highthroughput genotyping by whole-genome resequencing. Genome Research, 19, 1068–1076.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Huang, X., Yan, H. D., & Zhang, X. Q. (2016). De novo transcriptome analysis and molecular marker development of two Hemarthria species. Frontiers in Plant Sciences, 7, 496. https://doi.org/10.3389/fpls.2016.00496.

    Article  Google Scholar 

  • Hughes, T. R., Mao, M., & Jones, A. R. (2001). Expression profiling using microarrays fabricated by an ink-jet oligonucleotide synthesizer. Nature Biotechnology, 19, 342–347.

    Article  CAS  PubMed  Google Scholar 

  • Islam, M. S., Thysen, G. N., Jenkins, J. N., et al. (2015). Detection, validation and application of genotyping-by-sequencing based single nucleotide polymorphisms in upland cotton. The Plant Genome, 8. https://doi.org/10.3835/plantgenome2014.07.0034.

  • Jones, M. R., & Good, J. M. (2016). Targeted capture in evolutionary and ecological genomics. Molecular Ecology, 25, 185–202.

    Article  PubMed  Google Scholar 

  • Jupe, F., Witek, K., Verweij, W., et al. (2013). Resistance gene enrichment sequencing (RenSeq) enables reannotation of the NB-LRR gene family from sequenced plant genomes and rapid mapping of resistance loci in segregating populations. The Plant Journal, 76, 530–544.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • King, R., Bird, N., Ramirez-Gonzalez, R., et al. (2015). Mutation scanning in wheat by exon capture and next-generation sequencing. PLoS One, 10, 1–18.

    Google Scholar 

  • Kinoti, W. M., Constable, F. E., Nancarrow, N., et al. (2017). Analysis of intrahost genetic diversity of Prunus necrotic ringspot virus (PNRSV) using amplicon next generation sequencing. PLoS One, 12, e0179284. https://doi.org/10.1371/journal.pone.0179284.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kirst, M., Johnson, A. F., Baucom, C., et al. (2003). Apparent homology of expressed genes from wood forming tissues of loblolly pine (Pinus taeda L.) with Arabidopsis thaliana. Proceedings of the National Academy of science, USA, 100, 7383–7388.

    Article  Google Scholar 

  • Klonowska, K., Handschuh, L., Swiercz, A., et al. (2016). MTTE: An innovative strategy for the evaluation of targeted/exome enrichment efficiency. Oncotarget, 7. https://doi.org/10.18632/oncotarget.11646.

  • Krasileva, K. V., Vasquez-Gross, H. A., Howell, T., et al. (2017). Uncovering hidden variation in polyploid wheat. Proceedings of the National Academy of Sciences U S A, 114, 913–921.

    Article  CAS  Google Scholar 

  • Lam, H. M., Xu, X., Liu, X., et al. (2011). Resequencing of 31 wild and cultivated soybean genomes identifies patterns of genetic diversity and selection. Nature Genetics, 42, 1053–1059.

    Article  CAS  Google Scholar 

  • Lee, E. J., Pei, L., Srivastava, G., et al. (2011). Targeted bisulfite sequencing by solution hybrid selection and massively parallel sequencing. Nucleic Acids Research, 39, e127.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li, H., Peng, Z., Yang, X., et al. (2013). Genome-wide association study dissects the genetic architecture of oil biosynthesis in maize kernels. Nature Genetics, 45, 43–50.

    Article  CAS  PubMed  Google Scholar 

  • Liu, S., Yeh, C. T., Tang, H. M., et al. (2012a). Gene mapping via bulked segregant RNA-Seq (BSR-Seq). PLoS One, 7, e36406. https://doi.org/10.1371/journal.pone.0036406.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liu, S., Ying, K., Yeh, C. T., et al. (2012b). Changes in genome content generated via segregation of non-allelic homologs. Plant Journal, 72, 390–399.

    Article  CAS  Google Scholar 

  • Lu, F., Lipka, A. E., Glaubitz, J., et al. (2013). Switchgrass genomic diversity, ploidy, and evolution: Novel insights from a network-based SNP discovery protocol. PLoS Genetics, 9, e1003215.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Majewski, J., & Pastinen, T. (2011). The study of eQTL variations by RNA-Seq: From SNPs to phenotypes. Trends in Genetics, 27, 72–79.

    Article  CAS  PubMed  Google Scholar 

  • Mandel, J. R., Dikow, R. B., Funk, V. A., et al. (2014). A target enrichment method for gathering phylogenetic information from hundreds of loci: An example from the compositae. Applications in Plant Sciences, 2, 1300085.

    Article  Google Scholar 

  • Mascher, M., Richmond, T. A., & Gerhardt, D. J. (2013). Barley whole exome capture: A tool for genomic research in the genus Hordeum and beyond. Plant Journal, 76, 494–505.

    Article  CAS  Google Scholar 

  • Mascher, M., Jost, M., Kuon, J. E., et al. (2014). Mapping-by-sequencing accelerates forward genetics in barley. Genome Biology, 15, R78.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Maughan, P. J., Yourstone, S. M., Jellen, E. N., et al. (2009). SNP discovery via genomic reduction, barcoding and 454-pyrosequencing in Amaranth. Plant Genome, 2, 260–270.

    Article  CAS  Google Scholar 

  • Maughan, P. J., Yourstone, S. M., Byers, R. L., et al. (2010). Single-nucleotide polymorphism genotyping in mapping populations via genomic reduction and next-generation sequencing: Proof of concept. Plant Genome, 3, 166–178.

    Article  CAS  Google Scholar 

  • Maxam, A. M., & Gilbert, W. (1977). A new method for sequencing DNA. Proceedings of the National Academy of Sciences U S A, 74, 560–564.

    Article  CAS  Google Scholar 

  • Meena, S., Kumar, S. R., Venkata Rao, D. K., et al. (2016). De Novo sequencing and analysis of lemongrass transcriptome provide first insights into the essential oil biosynthesis of aromatic grasses. Frontiers in Plant Sciences, 7, 1129. https://doi.org/10.3389/fpls.2016.01129.

    Article  Google Scholar 

  • Meissner, A., Gnirke, A., & Bell, G. W. (2005). Reduced representation bisulfite sequencing for comparative high-resolution DNA methylation analysis. Nucleic Acids Research, 33, 5868–5877.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mertes, F., ElSharawy, A., Sauer, S., et al. (2011). Targeted enrichment of genomic DNA regions for next-generation sequencing. Briefings in Functional Genomics, 10, 374–386.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Michel, S., Ametz, C., Gungor, H., et al. (2016). Genomic selection across multiple breeding cycles in applied bread wheat breeding. Theoretical Applied Genetics, 129, 1179–1189.

    Article  PubMed  Google Scholar 

  • Miller, M. R., Atwood, T. S., Eames, B. F., et al. (2007a). RAD marker microarrays enable rapid mapping of zebrafish mutations. Genome Biology, 8, R105.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Miller, M. R., Dunham, J. P., & Amores, A. (2007b). Rapid and cost-effective polymorphism identification and genotyping using restriction site associated DNA (RAD) markers. Genome Research, 17, 240–248.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Myles, S., Chia, J. M., Hurwitz, B., et al. (2010). Rapid genomic characterization of the genus Vitis. PLoS One, 5, e8219.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Neale, D. B., Wegrzyn, J. L., Stevens, K. A., et al. (2014). Decoding the massive genome of loblolly pine using haploid DNA and novel assembly strategies. Genome Biology, 15, R59.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Neves, L. G., Davis, J. M., Barbazuk, W. B., et al. (2014). A high-density gene map of loblolly pine ( Pinus taeda L.) based on exome sequence capture genotyping. G3: Genes|Genomes|Genetics, 4, 29–37.

    Article  CAS  PubMed  Google Scholar 

  • Njuguna, W., Liston, A., Cronn, R., et al. (2010). Multiplexed fragaria chloroplast genome sequencing. Acta Horticulturae, 859, 315–320.

    Article  CAS  Google Scholar 

  • Palmer, L. E., Rabinowciz, P. D., Shaughnessy, A. L. O., et al. (2003). Maize genome sequencing by methylation filtration. Science, 302, 2115–2117.

    Article  PubMed  Google Scholar 

  • Pankin, A., Campoli, C., Dong, X., et al. (2014). Mapping-by-sequencing identifies Hv Phytochrome C as a candidate gene for the early maturity 5 locus modulating the circadian clock and photoperiodic flowering in barley. Genetics, 198, 383–396.

    Article  PubMed  PubMed Central  Google Scholar 

  • Parks, M., Cronn, R., & Liston, A. (2009). Increasing phylogenetic resolution at low taxonomic levels using massively parallel sequencing of chloroplast genomes. BMC Biology, 7, 84. https://doi.org/10.1186/1741-7007-7-84.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pegadaraju, V., Nipper, R., Hulke, B., et al. (2013). De novo sequencing of sunflower genome for SNP discovery using RAD (restriction site associated DNA) approach. BMC Genomics, 14, 556.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Peterson, D. G., Wessler, S. R., & Paterson, A. H. (2002). Efficient capture of unique sequences from eukaryotic genomes. Trends in Genetics, 18, 547–550.

    Article  CAS  PubMed  Google Scholar 

  • Peterson, B. K., Weber, J. N., & Kay, E. H. (2012). Double digest RADseq: An inexpensive method for de novo SNP discovery and genotyping in model and non-model species. PLoS One, 7, e37135.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pfender, W. F., Saha, M. C., Johnson, E. A., et al. (2011). Mapping with RAD (restriction-site associated DNA) markers to rapidly identify QTL for stem rust resistance in Lolium perenne. Theoretical and Applied Genetics, 122, 1467–1480.

    Article  CAS  PubMed  Google Scholar 

  • Poland, J. A., Brown, P. J., Sorrells, M. E., et al. (2012). Development of high-density genetic maps for barley and wheat using a novel two-enzyme genotyping-by-sequencing approach. PLoS One, 7, e32253.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pootakham, W., Ruang-Areerate, P., Jomchai, N., et al. (2015). Construction of a high-density integrated genetic linkage map of rubber tree (Hevea brasiliensis) using genotyping-by-sequencing (GBS). Frontiers in Plant Science, 6, 367. https://doi.org/10.3389/fpls.2015.00367.

    Article  PubMed  PubMed Central  Google Scholar 

  • Pootakham, W., Sonthirod, C., Naktang, C., et al. (2016). Effects of methylation-sensitive enzymes on the enrichment of genic SNPs and the degree of genome complexity reduction in a two-enzyme genotyping-by-sequencing (GBS) approach: A case study in oil palm (Elaeis guineensis). Molecular Breeding, 36, 154. https://doi.org/10.1007/s11032-016-0572-x.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rabinowicz, P. D., Schutz, K., Dedhia, N., Yordan, C., Parnell, L. D., Stein, L., McCombie, W. R., & Martienssen, R. A. (1999). Differential methylation of genes and retrotransposons facilitates shotgun sequencing of the maize genome. Nature Genetics, 23, 305–308.

    Google Scholar 

  • Rabinowicz, P. D., Citek, R., Budiman, M. A., et al. (2005). Differential methylation of genes and repeats in land plants. Genome Research, 15, 1431–1440.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Raman, H., Raman, R., Kilian, A., et al. (2014). Genome-wide delineation of natural variation for pod shatter resistance in Brassica napus. PLoS One, 9, e101673. https://doi.org/10.1371/journal.pone.0101673.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Russell, J., Hackett, C., Hedley, P., et al. (2014). The use of genotyping by sequencing in blackcurrant (Ribes nigrum): Developing high-resolution linkage maps in species without reference genome sequences. Molecular Breeding, 33, 835.

    Article  CAS  Google Scholar 

  • Saintenac, C., Jiang, D., & Akhunov, E. D. (2011). Targeted analysis of nucleotide and copy number variation by exon capture in allotetraploid wheat genome. Genome Biology, 12, R88.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sambrook, J., & Russell, D. W. (2001). Molecular cloning. A laboratory manual. New York: Cold Spring Harbor Laboratory Press.

    Google Scholar 

  • Sanger, F., Nicklen, S., & Coulson, A. R. (1977). DNA sequencing with chain-terminating inhibitors. Proceedings of the National Academy of Sciences U S A, 74, 5463–5467.

    Article  CAS  Google Scholar 

  • Scaglione, D., Acquadro, A., Portis, E., et al. (2012). RAD tag sequencing as a source of SNP markers in Cynara cardunculus L. BMC Genomics, 13, 3.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schmidt, M., Bell, M. V., & Woloszynska, M. (2017). Plant-RRBS, a bisulfite and next-generation sequencing-based methylome profiling method enriching for coverage of cytosine positions. BMC Plant Biology, 17, 115.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schnable, P. S., Liu, S., & Wu, W. (2013). Genotyping by next-generation sequencing (U.S. Patent Appl. No. 13/739,874).

    Google Scholar 

  • Schneeberger, K., Ossowski, S., Ott, F., et al. (2011). Reference-guided assembly of four diverse Arabidopsis thaliana genomes. Proceedings of the National Academy of Sciences U S A, 108, 10249–10254.

    Article  Google Scholar 

  • Shulaev, V., Sargent, D. J., Crowhurst, R. N., et al. (2011). The genome of woodland strawberry (Fragaria vesca). Nature Genetics, 43, 109–119.

    Article  CAS  PubMed  Google Scholar 

  • Slavov, G. T., Nipper, R., Robson, P., et al. (2014). Genome-wide association studies and prediction of 17 traits related to phenology, biomass and cell wall composition in the energy grass Miscanthus sinensis. New Phytologist, 201, 1227–1239.

    Article  CAS  PubMed  Google Scholar 

  • Sonah, H., Bastien, M., Iquira, E., et al. (2013). An improved genotyping by sequencing (GBS) approach offering increased versatility and efficiency of SNP discovery and genotyping. PLoS One, 8, e54603.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Song, J., Yang, X., Resende, M. F. R., et al. (2016). Natural allelic variations in highly polyploidy Saccharum complex. Frontiers in Plant Science, 7, 1–18.

    Google Scholar 

  • Southern, E. M. (1975). Detection of specific sequences among DNA fragments separated by gel electrophoresis. Journal of Molecular Biology, 98, 503–517.

    Article  CAS  PubMed  Google Scholar 

  • Steuernagel, B., Periyannan, S. K., Hernández-Pinzón, I., et al. (2016). Rapid cloning of disease-resistance genes in plants using mutagenesis and sequence capture. Nature Biotechnology, 34, 652–655.

    Article  CAS  PubMed  Google Scholar 

  • Stolle, E., & Moritz, R. F. A. (2013). RESTseq- efficient benchtop population genomics with RESTriction fragment SEQuencing. PLoS One, 8, e63960. https://doi.org/10.1371/journal.pone.0063960.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Straub, S. C. K., Parks, M., Weitemier, K., et al. (2012). Navigating the tip of the genomic iceberg: Next-generation sequencing for plant systematics. American Journal of Botany, 99, 349–364.

    Article  CAS  PubMed  Google Scholar 

  • Sun, X., Liu, D., Zhang, X., et al. (2013). SLAF-seq: An efficient method of large-scale de novo SNP discovery and genotyping using high-throughput sequencing. PLoS One, 8, e58700.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sutherland, E., Coe, L., & Raleigh, E. A. (1992). McrBC: A multisubunit GTP-dependent restriction endonuclease. Journal of Molecular Biology, 225, 327–348.

    Article  CAS  PubMed  Google Scholar 

  • Tanwar, U. K., Pruthi, V., & Randhawa, G. S. (2017). RNA-Seq of Guar (Cyamopsis tetragonoloba, L. Taub.) leaves: De novo transcriptome assembly, functional annotation and development of genomic resources. Frontiers in Plant Science, 8, 91. https://doi.org/10.3389/fpls.2017.00091.

    Article  PubMed  PubMed Central  Google Scholar 

  • Teng, C., Du, D., Xiao, L., et al. (2017). Mapping and identifying a candidate gene (Bnmfs) for female-male sterility through whole-genome resequencing and RNA-Seq in rapeseed (Brassica napus L.). Frontiers in Plant Science, 8, 2086. https://doi.org/10.3389/fpls.2017.02086.

    Article  PubMed  PubMed Central  Google Scholar 

  • Tewhey, R., Warner, J., Nakano, M., et al. (2009). Microdroplet-based PCR amplification for large scale targeted sequencing. Nature Biotechnology, 27, 1025–1031.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • The 3,000 Rice Genomes Project. (2014). GigaScience, 3, 7. https://doi.org/10.1186/2047-217X-3-7.

    Article  CAS  Google Scholar 

  • The International Wheat Genome Sequencing Consortium. (2014). A chromosome-based draft sequence of the hexaploid bread wheat (Triticum aestivum) genome. Science, 345, 1251788. https://doi.org/10.1126/science.1251788.

    Article  CAS  Google Scholar 

  • Tian, F., Bradbury, P. J., Brown, P. J., et al. (2011). Genome-wide association study of leaf architecture in the maize nested association mapping population. Nature Genetics, 43, 159–162.

    Article  CAS  PubMed  Google Scholar 

  • Toonen, R. J., Puritz, J. B., Forsman, Z. H., et al. (2013). ezRAD: A simplified method for genomic genotyping in non-model organisms. Peer Journal, 1, e203. https://doi.org/10.7717/peerj.203.

    Article  Google Scholar 

  • Turner, E. H., Ng, S. B., Nickerson, D. A., et al. (2009). Methods for genomic partitioning. Annual Review of Genomics and Human Genetics, 10, 263–284.

    Article  CAS  PubMed  Google Scholar 

  • Uitdewilligen, J. G. A. M., Wolters, A. M. A., D’hoop, B. B., et al. (2013). A next-generation sequencing method for genotyping-by-sequencing of highly heterozygous autotetraploid potato. PLoS One, 8, e62355.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Uribe-Convers, S., Duke, J. R., Moore, M. J., et al. (2014). A long PCR–based approach for DNA enrichment prior to next-generation sequencing for systematic studies. Applications in Plant Sciences, 2, 1300063. https://doi.org/10.3732/apps.1300063.

    Article  Google Scholar 

  • Van Orsouw, N. J., Hogers, R. C. J., Janssen, A., et al. (2007). Complexity reduction of polymorphic sequences (CRoPSTM): A novel approach for large-scale polymorphism discovery in complex genomes. PLoS One, 2, e1172. https://doi.org/10.1371/journal.pone.0001172.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Varshney, R. K., Song, C., Saxena, R. K., et al. (2013). Draft genome sequence of chickpea (Cicer arietinum) provides a resource for trait improvement. Nature Biotechnology, 31, 240–246.

    Article  CAS  PubMed  Google Scholar 

  • Varshney, R. K., Saxena, R. K., Upadhyaya, H. D., et al. (2017). Whole-genome resequencing of 292 pigeonpea accessions identifies genomic regions associated with domestication and agronomic traits. Nature Genetics, 49, 1082–1088.

    Article  CAS  PubMed  Google Scholar 

  • Wang, S., Meyer, E., McKay, J. K., et al. (2012). 2b-RAD: A simple and flexible method for genome-wide genotyping. Nature Methods, 9, 808–810.

    Article  CAS  PubMed  Google Scholar 

  • Wei, L., Jian, H., Lu, K., et al. (2016). Genome-wide association analysis and differential expression analysis of resistance to Sclerotinia stem rot in Brassica napus. Plant Biotechnology Journal, 14, 1368–1380.

    Article  CAS  PubMed  Google Scholar 

  • Weitemier, K., Shannon, C. K. S., Cronn, R. C., et al. (2014). HYB-Seq: Combining target enrichment and genome skimming for plant phylogenomics. Applications in Plant Sciences, 2, 1400042.

    Article  Google Scholar 

  • Wendler, N., Mascher, M., Nöh, C., et al. (2014). Unlocking the secondary gene-pool of barley with next-generation sequencing. Plant Biotechnology Journal, 12, 1122–1131.

    Article  CAS  PubMed  Google Scholar 

  • Whitelaw, C. A., Barbazuk, W. B., Pertea, G., et al. (2003). Enrichment of gene-coding sequences in maize by genome filtration. Science, 302, 2118–2120.

    Article  PubMed  Google Scholar 

  • Winfield, M. O., Wilkinson, P. A., Allen, A. M., et al. (2012). Targeted re-sequencing of the allohexaploid wheat exome. Plant Biotechnology Journal, 10, 733–742.

    Article  CAS  PubMed  Google Scholar 

  • Winfield, M. O., Allen, A. M., Burridge, A. J., et al. (2016). High-density SNP genotyping array for hexaploid wheat and its secondary and tertiary gene pool. Plant Biotechnology Journal, 14, 1195–1206.

    Article  CAS  PubMed  Google Scholar 

  • Xu, P., Xu, S., Wu, X., et al. (2014). Population genomic analyses from low-coverage RAD-Seq data: A case study on the non-model cucurbit bottle gourd. The Plant Journal, 77, 430–442.

    Article  CAS  PubMed  Google Scholar 

  • Yang, S. S., Tu, Z. J., Cheung, F., et al. (2011). Using RNA-Seq for gene identification, polymorphism detection and transcript profiling in two alfalfa genotypes with divergent cell wall composition in stems. BMC Genomics, 12, 199.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yang, H., Tao, Y., Zheng, Z., et al. (2013). Rapid development of molecular markers by next-generation sequencing linked to a gene conferring phomopsis stem blight disease resistance for marker-assisted selection in lupin (Lupinus angustifolius L.) breeding. Theoretical and Applied Genetics, 126, 511–522.

    Article  CAS  PubMed  Google Scholar 

  • Yuan, Y., SanMiguel, P. J., & Bennetzen, J. L. (2002). Methylation-spanning linker libraries link gene-rich regions and identify epigenetic boundaries in Zea mays. Genome Research, 12, 1345–1349.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zemach, A., McDaniel, I. E., Silva, P., et al. (2010). Genome-wide evolutionary analysis of eukaryotic DNA methylation. Science, 328, 916–919.

    Article  CAS  PubMed  Google Scholar 

  • Zhang, X., Yazaki, J., & Sundaresan, A. (2006). Genome-wide high-resolution mapping and functional analysis of DNA methylation in arabidopsis. Cell, 126, 1189–1201.

    Article  CAS  PubMed  Google Scholar 

  • Zhou, L., & Holliday, J. A. (2012). Targeted enrichment of the black cottonwood (Populus trichocarpa) gene space using sequence capture. BMC Genomics, 13, 703.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhou, X., Xia, Y., Ren, X., et al. (2014). Construction of a SNP-based genetic linkage map in cultivated peanut based on large scale marker development using next-generation double-digest restriction-site-associated DNA sequencing (ddRADseq). BMC Genomics, 15, 351.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zilberman, D., & Henikoff, S. (2007). Genome-wide analysis of DNA methylation patterns. Development, 134, 3959–3965.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kishor Gaikwad .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Kaur, P., Gaikwad, K. (2019). Principles and Implications of Various Genome Enrichment Approaches for Targeted Sequencing of Plant Genomes. In: Khurana, S., Gaur, R. (eds) Plant Biotechnology: Progress in Genomic Era. Springer, Singapore. https://doi.org/10.1007/978-981-13-8499-8_2

Download citation

Publish with us

Policies and ethics