Skip to main content

A Optimization Approach for Consensus in Multi-agent Systems

  • Conference paper
  • First Online:
Agents and Multi-agent Systems: Technologies and Applications 2019

Abstract

This work presents a method based on the application of optimization theory to minimize time for consensus in multi-agent systems. More specifically, the Nelder–Mead algorithm, modified for constrained problems, is utilized to compute an optimum matrix gain that minimizes time in an objective function related to consensus time. The paper presents the problem formulation, simulations, and results that prove the efficiency of optimization methods for this class of application.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    A detailed explanation of this function may be found at https://www.mathworks.com/matlabcentral/fileexchange/8277-fminsearchbnd-fminsearchcon.

References

  1. Ren, W., Beard, R.W., Atkins, E.M.: Information consensus in multivehicle cooperative control. IEEE Control Syst. Mag. 27(2), 71–82 (2007)

    Article  Google Scholar 

  2. Giulietti, F., Pollini, L., Innocenti, M.: Autonomous formation flight. IEEE Control Syst. Mag. 20(6), 34–44 (2000)

    Article  Google Scholar 

  3. Pimenta, L.C.A., Pereira, G.A.S., Michael, N., Mesquita, R.C., Bosque, M.M., Chaimowicz, L., Kumar, V.: Swarm coordination based on smoothed particle hydrodynamics technique. IEEE Trans. Robot. 29(2), 383–399 (2013)

    Article  Google Scholar 

  4. Pimenta, L.C.A., Kumar, V., Mesquita, R.C., Pereira, G.A.S.: Sensing and coverage for a network of heterogeneous robots. In: 2008 47th IEEE Conference on Decision and Control, pp. 3947–3952 (2008)

    Google Scholar 

  5. Beard, R.W., Lawton, J., Hadaegh, F.Y.: A coordination architecture for spacecraft formation control. IEEE Trans. Control Syst. Technol. 9(6), 777–790 (2001)

    Article  Google Scholar 

  6. Freitas, E., Carvalho, J.R.H.: Genetic algorithm approach for a class of multi-criteria, multi-vehicle planner of uavs. In: Gaspar-Cunha, A., Henggeler Antunes, C., Coello, C.C. (eds.) Evolutionary Multi-criterion Optimization. Springer International Publishing (2015)

    Google Scholar 

  7. Saadat, J., Moallem, P., Koofigar, H.: Training echo estate neural network using harmony search algorithm. Int. J. Artif. Intell. 15(1), 163–179 (2017)

    Google Scholar 

  8. Second order intelligent proportional-integral fuzzy control of twin rotor aerodynamic systems. Procedia Comput. Sci. 139, 372–380 (2018); 6th International Conference on Information Technology and Quantitative Management

    Google Scholar 

  9. A self-optimizing mobile network: auto-tuning the network with firefly-synchronized agents. Inf. Sci. 182(1), 77–92 (2012); Nature-Inspired Collective Intelligence in Theory and Practice

    Google Scholar 

  10. Lynch, N.A.: Distributed Algorithms. Morgan Kaufmann Publishers Inc., San Francisco (1996)

    MATH  Google Scholar 

  11. Vicsek, T., Czirók, A., Ben-Jacob, E., Cohen, I., Shochet, O.: Novel type of phase transition in a system of self-driven particles. Phys. Rev. Lett. 75, 1226–1229 (1995)

    Article  MathSciNet  Google Scholar 

  12. Jadbabaie, A., Lin, J., Morse, A.S.: Coordination of groups of mobile autonomous agents using nearest neighbor rules. IEEE Trans. Autom. Control 48(6), 988–1001 (2003)

    Article  MathSciNet  Google Scholar 

  13. Olfati-Saber, R.: Flocking for multi-agent dynamic systems: algorithms and theory. IEEE Trans. Autom. Control 51(3), 401–420 (2006)

    Article  MathSciNet  Google Scholar 

  14. dos Santos Junior, C.R.P., Carvalho, J.R.H., Souza, F.O., Savino, H.J.: Exponential consensus with decay rate estimation for heterogeneous multi-agent systems. J. Intell. Robot. Syst. (2018)

    Google Scholar 

  15. Luenberger, D.G., Ye, Y.: Linear and Nonlinear Programming, 4th edn. Springer International Publishing (2016)

    Google Scholar 

  16. Bazaraa, M.S.: Nonlinear Programming: Theory and Algorithms, 3rd edn. Wiley Publishing (2013)

    Google Scholar 

  17. Oliveira, S.L.C., Carvalho, J.R.H., Ferreira, P.A.V.: A convex approach for multi-criteria decision making in hierarchical systems. J. Multi-criteria Decis. Anal. 7(4), 181–192 (1998)

    Article  Google Scholar 

  18. Elfes, A., Bergerman, M., Carvalho, J.R.H., de Paiva, E.C., Ramos, J.J.G., Bueno, S.S.: Air-ground robotic ensembles for cooperative applications: Concepts and preliminary results. In: 1999 International Conference on Field and Service Robotics. Pittsburgh-USA (1999)

    Google Scholar 

  19. Lateral control of airship with uncertain dynamics using incremental nonlinear dynamics inversion. IFAC-PapersOnLine 48(19), 69–74 (2015); 11th IFAC Symposium on Robot Control SYROCO 2015

    Article  Google Scholar 

  20. Nelder, J.A., Mead, R.: A simplex method for function minimization. Comput. J. 7, 308–313 (1965)

    Article  MathSciNet  Google Scholar 

  21. West, D.B.: Introduction to Graph Theory, 2nd edn. Prentice Hall (2000)

    Google Scholar 

  22. Luersen, M., Le Riche, R., Guyon, F.: A constrained, globalized, and bounded Nelder-Mead method for engineering optimization. Struct. Multidiscip. Optim. 27(1–2), 43–54 (2004)

    Article  Google Scholar 

  23. Ren, W., Beard, R.W., Atkins, E.M.: A survey of consensus problems in multi-agent coordination. In: Proceedings of the 2005, American Control Conference, vol. 3, pp. 1859–1864 (2005)

    Google Scholar 

  24. Qin, J., Ma, Q., Shi, Y., Wang, L.: Recent advances in consensus of multi-agent systems: a brief survey. IEEE Trans. Ind. Electron. 64(6), 4972–4983 (2017)

    Article  Google Scholar 

  25. Dorri, A., Kanhere, S.S., Jurdak, R.: Multi-agent systems: a survey. IEEE Access 6, 28573–28593 (2018)

    Article  Google Scholar 

  26. Sun, Y.G., Wang, L.: Consensus of multi-agent systems in directed networks with nonuniform time-varying delays. IEEE Trans. Autom. Control 54(7), 1607–1613 (2009). https://doi.org/10.1109/TAC.2009.2017963

    Article  MATH  Google Scholar 

Download references

Acknowledgements

To SENAI Innovation Institute for Microelectronics, FAPEAM(PROTI MOBI-LIDADE 009/2017), INCT(CNPq 465755/2014-3) and FAPESP(2014/50851-0).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Carlos R. P. dos Santos Junior .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

dos Santos Junior, C.R.P., Carvalho, J.R.H., Savino, H.J. (2020). A Optimization Approach for Consensus in Multi-agent Systems. In: Jezic, G., Chen-Burger, YH., Kusek, M., Šperka, R., Howlett, R., Jain, L. (eds) Agents and Multi-agent Systems: Technologies and Applications 2019. Smart Innovation, Systems and Technologies, vol 148. Springer, Singapore. https://doi.org/10.1007/978-981-13-8679-4_7

Download citation

Publish with us

Policies and ethics