Skip to main content

Stress Management: Sustainable Approach Towards Resilient Agriculture

  • Chapter
  • First Online:
Sustainable Agriculture: Biotechniques in Plant Biology

Abstract

The improvement of crop performance by increasing osmotic potential-adjusting ability is more significant in roots than other plant parts to avert stress. The role of osmotic adjustment in root elongating zone is to maintain turgor pressure to continue root elongation and root growth in drying soils, which enable the plant to maintain its transpiration by exploiting a greater volume of soil or utilize available water in a given soil volume more efficiently. In this chapter the various tolerance mechanism and diversity among the plants to combat is documented with numerous illustrations. In this last section role of plant metabolites for abiotic stress management is detailed out.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abberton, M., Batley, J., Bentley, A., Bryant, J., Cai, H., Cockram, J., et al. (2016). Global agricultural intensification during climate change: A role for genomics. Plant Biotechnology Journal, 14, 1095–1098. https://doi.org/10.1111/pbi.12467.

    Article  PubMed  Google Scholar 

  • Abraham, E., Salamo, I. P., Koncz, C., & Szabados, L. (2011). Identification of Arabidopsis and Thellungiella genes involved in salt tolerance by novel genetic system. Acta Biologica Szegediensis, 55(1), 53–57.

    Google Scholar 

  • Afendi, F. M., Okada, T., Yamazaki, M., Hirai-Morita, A., Nakamura, Y., Nakamura, K., Ikeda, S., Takahashi, H., Altaf-Ul-Amin, M., Darusman, L. K., et al. (2012). KNApSAcK family databases: Integrated metabolite-plant species databases for multifaceted plant research. Plant & Cell Physiology, 53, e1.

    Article  CAS  Google Scholar 

  • Agarwal, S., & Shaheen, R. (2007). Stimulation of antioxidant system and lipid peroxidation by abiotic stresses in leaves of Momordica charantia. Brazilian Journal of Plant Physiology, 19(2), 149–161.

    Article  CAS  Google Scholar 

  • Agati, G., Azzarello, E., Pollastri, S., & Tattini, M. (2012). Flavonoids as antioxidants in plants: Location and functional significance. Plant Science, 196, 67–76.

    Article  CAS  PubMed  Google Scholar 

  • Ahmad, P., & Prasad, M. N. V. (2012). Abiotic stress responses in plants: Metabolism, productivity and sustainability. New York: Springer.

    Book  Google Scholar 

  • Ahmad, C. A., Jaleel, M. A., Salem, G. N., & Sharma, S. (2010). Roles of enzymatic and nonenzymatic antioxidants in plants during abiotic stress. Critical Reviews in Biotechnology, 30(3), 161–175.

    Article  CAS  PubMed  Google Scholar 

  • Ahmad, R., Lim, C. J., & Kwon, S.-Y. (2013). Glycine betaine: A versatile compound with great potential for gene pyramiding to improve crop plant performance against environmental stresses. Plant Biotechnology Reports, 7, 49–57.

    Article  Google Scholar 

  • Ahmed, S. (2009). Effect of soil salinity on the yield and yield components of mungbean. Pakistan Journal of Botany, 41, 263–268.

    Google Scholar 

  • Alamgir, N. M., & Ali, M. Y. (1999). Effect of salinity on leaf pigments, sugar and protein concentrations and chloroplast ATPase activity of rice (Oryza sativa L.). Bangladesh Journal of Botany, 28(2), 145–149.

    Google Scholar 

  • Alcazar, R., Marco, F., Cuevas, J. C., et al. (2006). Involvement of polyamines in plant response to abiotic stress. Biotechnology Letters, 28(23), 1867–1876.

    Article  CAS  PubMed  Google Scholar 

  • Alcazar, R., Planas, J., Saxena, T., et al. (2010). Putrescine accumulation ´ confers drought tolerance in transgenic Arabidopsis plants overexpressing the homologous arginine decarboxylase 2 gene. Plant Physiology and Biochemistry, 48(7), 547–552.

    Article  CAS  PubMed  Google Scholar 

  • Aly-Salama, K. H., & Al-Mutawa, M. M. (2009). Glutathione-triggered mitigation in salt-induced alterations in plasmalemma of onion epidermal cells. International Journal of Agriculture and Biology, 11(5), 639–642.

    CAS  Google Scholar 

  • Anderson, B., Ward, J., & Schroeder, J. (1994). Evidence for an extracellular reception site for abscisic acid in Commelina guard cells. Plant Physiology, 104, 1177–1183.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Apel, K., & Hirt, H. (2004). Reactive oxygen species: Metabolism, oxidative stress, and signal transduction. Annual Review of Plant Biology, 55, 373–399.

    Article  CAS  PubMed  Google Scholar 

  • Arora, A., Sairam, R. K., & Srivastava, G. C. (2002). Oxidative stress and antioxidative systems in plants. Current Science, 82, 1227–1238.

    CAS  Google Scholar 

  • Asada, K. (1999). The water-water cycle in chloroplasts: Scavenging of active oxygens and dissipation of excess photons. Annual Review of Plant Biology, 50, 601–639.

    Article  CAS  Google Scholar 

  • Ashraf, M., & Foolad, M. R. (2007). Roles of glycine betaine and proline in improving plant abiotic stress resistance. Environmental and Experimental Botany, 59(2), 206–216.

    Article  CAS  Google Scholar 

  • Ashraf, M., Akram, N. A., Arteca, R. N., & Foolad, M. R. (2010). The physiological, biochemical and molecular roles of brassinosteroids and salicylic acid in plant processes and salt tolerance. Critical Reviews in Plant Sciences, 29(3), 162–190.

    Article  CAS  Google Scholar 

  • Azhiri-Sigari, T., Yamauchi, A., Kamoshita, A., & Wade, L. J. (2000). Genotypic variation in response of rainfed lowland rice to drought and rewatering. II. Root growth. Plant Production Science, 3, 180–188.

    Article  Google Scholar 

  • Babu, R. C., Pathan, M. S., Blum, A., & Nguyen, H. T. (1999). Comparison of measurement methods of osmotic adjustment in rice cultivars. Crop Science, 39, 150–158.

    Article  Google Scholar 

  • Bajgu. (2014). Nitric oxide: Role in plants under abiotic stress. In Physiological mechanisms and adaptation strategies in plants under changing environment (pp. 137–159). Springer.

    Google Scholar 

  • Bao, H., Chen, X., Lv, S., Jiang, P., Feng, J., Fan, P., Nie, L., & Li, Y. (2014). Virus-induced gene silencing reveals control of reactive oxygen species accumulation and salt tolerance in tomato by gamma-aminobutyric acid metabolic pathway. Plant, Cell & Environment, 38(3), 600–613.

    Article  CAS  Google Scholar 

  • Barragan, V., Leidi, E. O., Andrés, Z., et al. (2012). Ion exchangers NHX1 and NHX2 mediate active potassium uptake into vacuoles to regulate cell turgor and stomatal function in Arabidopsis. Plant Cell, 24(3), 1127–1142.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Begara-Morales, J. C., Sanchez-Calvo, B., Chaki, M., et al. (2014). Dual regulation of cytosolic ascorbate peroxidase (APX) by tyrosine nitration and S-nitrosylation. Journal of Experimental Botany, 65(2), 527–538.

    Article  CAS  PubMed  Google Scholar 

  • Belhaj, K., Chaparro-Garcia, A., Kamoun, S., & Nekrasov, V. (2013). Plant genome editing made easy: Targeted mutagenesis in model and crop plants using the CRISPR/Cas system. Plant Methods, 9, 1–10.

    Article  CAS  Google Scholar 

  • Ben Ahmed, C., Ben Rouina, B., Sensoy, S., Boukhriss, M., & Ben Abdullah, F. (2010). Exogenous proline effects on photosynthetic performance and antioxidant defense system of young olive tree. Journal of Agricultural and Food Chemistry, 58(7), 4216–4222.

    Article  CAS  PubMed  Google Scholar 

  • Besseau, S., Kellner, F., Lanoue, A., Thamm, A. M., Salim, V., Schneider, B., Geu-Flores, F., Hofer, R., Guirimand, G., Guihur, A., et al. (2013). A pair of tabersonine 16-hydroxylases initiates the synthesis of vindoline in an organ-dependent manner in Catharanthus roseus. Plant Physiology, 163, 1792–1803.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bi, X. L., Zhang, J. L., Chen, C. S., Zhang, D., Li, P. M., & Ma, F. W. (2014). Anthocyanin contributes more to hydrogen peroxide scavenging than other phenolics in apple peel. Food Chemistry, 152, 205–209.

    Article  CAS  PubMed  Google Scholar 

  • Binzel, M. L., Hess, F. D., Bressan, R. A., & Hasegawa, P. M. (1988). Intracellular compartmentation of ions in salt adapted tobacco cells. Plant Physiology, 86, 607–614.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Biscarini, F., Cozzi, P., Casella, L., Riccardi, P., Vattari, A., Orasen, G., et al. (2016). Genome-wide association study for traits related to plant and grain morphology, and root architecture in temperate rice accessions. PLoS One, 11, e0155425. https://doi.org/10.1371/journal.pone.0155425.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Blum, A., Zhang, J., & Nguyen, H. T. (1999). Consistent differences among wheat cultivars in osmotic adjustment and their relationship to plant production. Field Crops Research, 64, 287–291.

    Article  Google Scholar 

  • Bohnert, J., Nelson, D. E., & Jensen, R. G. (1995). Adaptations to environmental stresses. Plant Cell, 7(7), 1099–1111.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bolaños, J., & Edmeades, G. O. (1991). Value of selection for osmotic potential in tropical maize. Agronomy Journal, 83, 948–956.

    Article  Google Scholar 

  • Bolouri-Moghaddam, M. R., Le Roy, K., Xiang, L., Rolland, F., & Van den Ende, W. (2010). Sugar signalling and antioxidant network connections in plant cells. The FEBS Journal, 277, 2022–2037.

    Article  CAS  PubMed  Google Scholar 

  • Bottcher, C., von Roepenack-Lahaye, E., Schmidt, J., Schmotz, C., Neumann, S., Scheel, D., & Clemens, S. (2008). Metabolome analysis of biosynthetic mutants reveals a diversity of metabolic changes and allows identification of a large number of new compounds in Arabidopsis. Plant Physiology, 147, 2107–2120.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Bouchet, S., Bertin, P., Presterl, T., Jamin, P., Coubriche, D., Gouesnard, B., et al. (2017). Association mapping for phenology and plant architecture in maize shows higher power for developmental traits compared with growth influenced traits. Heredity, 118, 249–259. https://doi.org/10.1038/hdy.2016.88.

    Article  CAS  PubMed  Google Scholar 

  • Bray, E. A., Bailey-Serres, J., & Weretilnyk, E. (2000). Responses to abiotic stresses. Rockville: American Society of Plant Physiologists.

    Google Scholar 

  • Cabot, C., Sibole, J. V., Barcelo, J., & Poschenrieder, C. (2009). Abscisic acid decreases leaf Na+ exclusion in salt-treated Phaseolus vulgaris L. Journal of Plant Growth Regulation, 28(2), 187–192.

    Article  CAS  Google Scholar 

  • Chai, Y. Y., Jiang, C. D., Shi, L., Shi, T. S., & Gu, W. B. (2010). Effects of exogenous spermine on sweet sorghum during germination under salinity. Biologia Plantarum, 54(1), 145–148.

    Article  Google Scholar 

  • Chalker-Scott, L. (2002). Do anthocyanins function as osmoregulators in leaf tissues? Advances in Botanical Research, 37, 103–106.

    Article  CAS  Google Scholar 

  • Cha-Um, S., & Kirdmanee, C. (2010). Effect of glycinebetaine on proline, water use, and photosynthetic efficiencies, and growth of rice seedlings under salt stress. Turkish Journal of Agriculture and Forestry, 34(6), 517–527.

    CAS  Google Scholar 

  • Chaves, M. M., & Oliveira, M. M. (2004). Mechanisms underlying plant resilience to water deficits: Prospects for water-saving agriculture. Journal of Experimental Botany, 55, 2365–2384.

    Article  CAS  PubMed  Google Scholar 

  • De Lourdes Oliveira Otoch, M., Menezes Sobreira, A. C., Farias De Aragao, M. E., Orellano, E. G., Da Guia Silva Lima, M., & Fernandes De Melo, Ëœ. D. (2001). Salt modulation of vacuolar H+-ATPase and H+-pyrophosphatase activities in Vigna unguiculata. Journal of Plant Physiology, 158(5), 545–551.

    Article  Google Scholar 

  • Deivanai, S., Xavier, R., Vinod, V., Timalata, K., & Lim, O. F. (2011). Role of exogenous proline in ameliorating salt stress at early stage in two rice cultivars. Journal of Stress Physiology & Biochemistry, 7, 157–174.

    Google Scholar 

  • Dhanapal, A. P., Ray, J. D., Singh, S. K., Hoyos-Villegas, V., Smith, J. R., Purcell, L. C., et al. (2015). Genome-wide association study (GWAS) of carbon isotope ratio (δ13C) in diverse soybean (Glycine max (L.) Merr.) genotypes. Theoretical and Applied Genetics, 128, 73–91. https://doi.org/10.1007/s00122-014-2419-9.

    Article  CAS  PubMed  Google Scholar 

  • Dhanapal, A. P., Ray, J. D., Singh, S. K., Hoyos-Villegas, V., Smith, J. R., Purcell, L. C., et al. (2016). Genome-wide association mapping of soybean chlorophyll traits based on canopy spectral reflectance and leaf extracts. BMC Plant Biology, 16, 174. https://doi.org/10.1186/s12870-016-0861-x.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dietz, K. J., Tavakoli, N., Kluge, C., et al. (2001). Significance of the Vtype ATPase for the adaptation to stressful growth conditions and its regulation on the molecular and biochemical level. Journal of Experimental Botany, 52(363), 1969–1980.

    Article  CAS  PubMed  Google Scholar 

  • Dopp, M., Larher, F., & Weigel, P. (1985). Osmotic adaption in Australian mangroves. Vegetatio, 61(1–3), 247–253.

    Article  Google Scholar 

  • Duan, J., Li, J., Guo, S., & Kang, Y. (2008). Exogenous spermidine affects polyamine metabolism in salinity-stressed Cucumis sativus roots and enhances short-term salinity tolerance. Journal of Plant Physiology, 165(15), 1620–1635.

    Article  CAS  PubMed  Google Scholar 

  • Düring, H., & Dry, P. R. (1995). Osmoregulation in water stressed roots: Responses of leaf conductance and photosynthesis. Vitis, 34, 15–17.

    Google Scholar 

  • Dwivedi, S. L., Salvatore, C., Blair, M. W., Upadhyaya, H. D., Are, A. K., & Ortiz, R. (2016). Landrace germplasm for improving yield and abiotic stress adaptation. Trends in Plant Science, 21, 31–41. https://doi.org/10.1016/j.tplants.2015.10.012.

    Article  CAS  PubMed  Google Scholar 

  • El-Mashad, A. A., & Mohamed, H. I. (2012). Brassinolide alleviates salt stress and increases antioxidant activity of cowpea plants (Vigna sinensis). Protoplasma, 249(3), 625–635.

    Article  CAS  PubMed  Google Scholar 

  • El-Shintinawy, F., & El-Shourbagy, M. N. (2001). Alleviation of changes in protein metabolism in NaCl-stressed wheat seedlings by thiamine. Biologia Plantarum, 44(4), 541–545.

    Article  CAS  Google Scholar 

  • El-Tayeb, M. A. (2005). Response of barley grains to the interactive effect of salinity and salicylic acid. Plant Growth Regulation, 45(3), 215–224.

    Article  CAS  Google Scholar 

  • Famoso, A. N., Zhao, K., Clark, R. T., Tung, C.-W., Wright, M. H., Bustamante, C., et al. (2011). Genetic architecture of aluminum tolerance in rice (Oryza sativa) determined through genome-wide association analysis and QTL mapping. PLoS Genetics, 7, e1002221. https://doi.org/10.1371/journal.pgen.1002221.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • FAO. (2009). High level expert forum—How to feed the world in 2050. Economic and Social Development, Food and Agricultural Organization of the United Nations. Rome.

    Google Scholar 

  • Farfan, I. D. B., De La Fuente, G. N., Murray, S. C., Isakeit, T., Huang, P. C., Warburton, M., et al. (2015). Genome-wide association study for drought, aflatoxin resistance, and important agronomic traits of maize hybrids in the subtropics. PLoS One, 10, e0117737. https://doi.org/10.1371/journal.pone.0117737.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Farooq, M., Wahid, A., Kobayashi, N., Fujita, D., & Basra, S. M. A. (2009). Plant drought stress: Effects, mechanisms and management. Agronomy for Sustainable Development, 29, 185–212.

    Article  Google Scholar 

  • Fernie, A. R., Aharoni, A., Willmitzer, L., Stitt, M., Tohge, T., Kopka, J., Carroll, A. J., Saito, K., Fraser, P. D., & DeLuca, V. (2011). Recommendations for reporting metabolite data. Plant Cell, 23, 2477–2482.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ferreres, F., Figueiredo, R., Bettencourt, S., Carqueijeiro, I., Oliveira, J., Gil-Izquierdo, A., Pereira, D. M., Valentao, P., Andrade, P. B., Duarte, P., et al. (2011). Identification of phenolic compounds in isolated vacuoles of the medicinal plant Catharanthus roseus and their interaction with vacuolar class III peroxidase: An H2O2 affair? Journal of Experimental Botany, 62, 2841–2854.

    Article  CAS  PubMed  Google Scholar 

  • Flower, D. J., & Ludlow, M. M. (1986). Conbination of osmotic adjustment to the dehydration tolerance of water-stressed pigeonpea (Cajanus cajan (L.) mill sp) leaves. Plant, Cell & Environment, 13, 33–40.

    Google Scholar 

  • Flower, D. J., Rani, A. U., & Peacock, J. M. (1990). Influence of osmotic adjustment on the growth, stomatal conductance and light interception of contrasting sorghum lines in a harsh environment. Australian Journal of Plant Physiology, 17, 91–105.

    Google Scholar 

  • Flowers, J. (2004). Improving crop salt tolerance. Journal of Experimental Botany, 55(396), 307–319.

    Article  CAS  PubMed  Google Scholar 

  • Ford, W. (1984). Accumulation of low molecular weight solutes in water-stressed tropical legumes. Phytochemistry, 23(5), 1007–1015.

    Article  CAS  Google Scholar 

  • Foyer, H., Lopez-Delgado, H., Dat, J. F., & Scott, I. M. (1997). Hydrogen peroxide- and glutathione-associated mechanisms of acclimatory stress tolerance and signalling. Physiologia Plantarum, 100(2), 241–254.

    Article  CAS  Google Scholar 

  • Fragnire, C., Serrano, M., Abou-Mansour, E., Metraux, J.-P., & L’Haridon, F. (2011). Salicylic acid and its location in response to biotic and abiotic stress. FEBS Letters, 585(12), 1847–1852.

    Article  CAS  Google Scholar 

  • Frensch, J., & Hsiao, T. C. (1994). Transient responses of cell turgor and growth of maize roots as affected by changes in water potential. Plant Physiology, 104, 246–254.

    Article  Google Scholar 

  • Fukai, S., & Cooper, M. (1995). Development of drought-resistant cultivars using physiomorphological traits in rice. Field Crops Research, 40, 67–86.

    Article  Google Scholar 

  • Fukuda, A., & Tanaka, Y. (2006). Effects of ABA, auxin, and gibberellin on the expression of genes for vacuolar H+- inorganic pyrophosphatase, H+-ATPase subunit A, and Na+/H+ antiporter in barley. Plant Physiology and Biochemistry, 44(5–6), 351–358.

    Article  CAS  PubMed  Google Scholar 

  • Gadallah, A. (1999). Effects of proline and glycinebetaine on Vicia faba responses to salt stress. Biologia Plantarum, 42(2), 249–257.

    Article  CAS  Google Scholar 

  • Galvez, J., Baghour, M., Hao, G., Cagnac, O., Rodríguez-Rosales, M. P., & Venema, K. (2012). Expression of LeNHX isoforms in response to salt stress in salt sensitive and salt tolerant tomato species. Plant Physiology and Biochemistry, 51, 109–115.

    Article  CAS  PubMed  Google Scholar 

  • Gamon, J., Penuelas, J., & Field, C. (1992). A narrow-waveband spectral index that tracks diurnal changes in photosynthetic efficiency. Remote Sensing of Environment, 41, 35–44. https://doi.org/10.1016/0034-4257(92)90059-s.

    Article  Google Scholar 

  • Gao, Z., Sagi, M., & Lips, S. H. (1998). Carbohydrate metabolism in leaves and assimilate partitioning in fruits of tomato (Lycopersicon esculentum L.) as affected by salinity. Plant Science, 135(2), 149–159.

    Article  CAS  Google Scholar 

  • Ge, C., Cui, X., Wang, Y., et al. (2006). BUD2, encoding an Sadenosylmethionine decarboxylase, is required for Arabidopsis growth and development. Cell Research, 16(5), 446–456.

    Article  CAS  PubMed  Google Scholar 

  • Gill, S. S., Tajrishi, M., Madan, M., & Tuteja, N. (2013). A DESDbox helicase functions in salinity stress tolerance by improving photosynthesis and antioxidant machinery in rice (Oryza sativa L. cv. PB1). Plant Molecular Biology, 82(1–2), 1–22.

    Article  CAS  PubMed  Google Scholar 

  • Glaser, K., Kanawati, B., Kubo, T., Schmitt-Kopplin, P., & Grill, E. (2014). Exploring the Arabidopsis sulfur metabolome. The Plant Journal, 77, 31–45.

    Article  PubMed  CAS  Google Scholar 

  • Graham, P. H., & Vance, C. P. (2003). Legumes: Importance and constraints to greater use. Plant Physiology, 131, 872–877. https://doi.org/10.1104/pp.017004.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Groß, F., Durner, J., & Gaupels, F. (2013). Nitric oxide, antioxidants and prooxidants in plant defence responses. Frontiers in Plant Science, 4, 419.

    Article  PubMed  PubMed Central  Google Scholar 

  • Grumet, R., Albrechtsen, R. S., & Handon, A. D. (1987). Growth and yield of barley isopopulations differing in solute potential. Crop Science, 27, 991–995.

    Article  Google Scholar 

  • Guei, R. G., & Wassom, C. E. (1993). Genetics of osmotic adjustment in breeding maize for drought tolerance. Heredity, 71, 436–441.

    Article  Google Scholar 

  • Guo, Y., Qiu, Q.-S., Quintero, F. J., et al. (2004). Transgenic evaluation of activated mutant alleles of SOS2 reveals a critical requirement for its kinase activity and C-terminal regulatory domain for salt tolerance in Arabidopsis thaliana. Plant Cell, 16(2), 435–449.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Guo, Z., Chen, D., Alqudah, A. M., Röder, M. S., Ganal, M. W., & Schnurbusch, T. (2016). Genome-wide association analyses of 54 traits identified multiple loci for the determination of floral fertility in wheat. The New Phytologist, 214, 257–270. https://doi.org/10.1111/nph.14342.

    Article  CAS  PubMed  Google Scholar 

  • Gupta, K. J., Stoimenova, M., & Kaiser, W. M. (2005). In higher plants, only root mitochondria, but not leaf mitochondria reduce nitrite to NO, in vitro and in situ. Journal of Experimental Botany, 56(420), 2601–2609.

    Article  CAS  PubMed  Google Scholar 

  • Gupta, K., Dey, A., & Gupta, B. (2013a). Plant polyamines in abiotic stress responses. Acta Physiologiae Plantarum, 35(7), 2015–2036.

    Article  CAS  Google Scholar 

  • Gupta, K., Dey, A., & Gupta, B. (2013b). Polyamines and their role in plant osmotic stress tolerance. In N. Tuteja & S. S. Gill (Eds.), Climate change and plant abiotic stress tolerance (pp. 1053–1072). Weinheim: Wiley-VCH.

    Chapter  Google Scholar 

  • Gurmani, R., Bano, A., Khan, S. U., Din, J., & Zhang, J. L. (2011). Alleviation of salt stress by seed treatment with abscisic acid (ABA), 6-benzylaminopurine (BA) and chlormequat chloride (CCC) optimizes ion and organic matter accumulation and increases yield of rice (Oryza sativa L.). Australian Journal of Crop Science, 5(10), 1278–1285.

    CAS  Google Scholar 

  • Hale, M. G., & Orcutt, D. M. (1987). The physiology of plants under stress. New York: Wiley.

    Google Scholar 

  • Handrick, V., Vogt, T., & Frolov, A. (2010). Profiling of hydroxycinnamic acid amides in Arabidopsis thaliana pollen by tandem mass spectrometry. Analytical and Bioanalytical Chemistry, 398, 2789–2801.

    Article  CAS  PubMed  Google Scholar 

  • Hanson, A. D., Rathinasabapathi, B., Rivoal, J., Burnet, M., Dillon, M. O., & Gage, D. A. (1994). Osmoprotective compounds in the Plumbaginaceae: A natural experiment in metabolic engineering of stress tolerance. Proceedings of the National Academy of Sciences of the United States of America, 91(1), 306–310.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hanzawa, Y., Imai, A., Michael, A. J., Komeda, Y., & Takahashi, T. (2002). Characterization of the spermidine synthase-related gene family in Arabidopsis thaliana. FEBS Letters, 527(1–3), 176–180.

    Article  CAS  PubMed  Google Scholar 

  • Hao, D., Cheng, H., Yin, Z., Cui, S., Zhang, D., Wang, H., et al. (2012). Identification of single nucleotide polymorphisms and haplotypes associated with yield and yield components in soybean (Glycne max) landraces across multiple environments. Theoretical and Applied Genetics, 124, 447–458. https://doi.org/10.1007/s00122-011-1719-0.

    Article  CAS  PubMed  Google Scholar 

  • Harborne, J. B., & Williams, C. A. (2000). Advances in flavonoid research since 1992. Phytochemistry, 55, 481–504.

    Article  CAS  PubMed  Google Scholar 

  • Hasanuzzaman, M., Nahar, K., & Fujita, M. (2014). Regulatory role of polyamines in growth, development and abiotic stress tolerance in plants. In Plant adaptation to environmental change: Significance of amino acids and their derivatives (pp. 157–193).

    Google Scholar 

  • Hasegawa, P. M. (2013). Sodium (Na+) homeostasis and salt tolerance of plants. Environmental and Experimental Botany, 92, 19–31.

    Article  CAS  Google Scholar 

  • Hasegawa, P. M., Bressan, R. A., Zhu, J.-K., & Bohnert, H. J. (2000). Plant cellular and molecular responses to high salinity. Annual Review of Plant Biology, 51, 463–499.

    Article  CAS  Google Scholar 

  • Havaux, M. (2014). Carotenoid oxidation products as stress signals in plants. The Plant Journal, 79, 597–606.

    Article  CAS  PubMed  Google Scholar 

  • Hays, D. B., Do, J. H., Mason, R. E., Morgan, G., & Finlayson, S. A. (2007). Heat stress induced ethylene production in developing wheat grains induces kernel abortion and increased maturation in a susceptible cultivar. Plant Science, 172, 1113–1123. https://doi.org/10.1016/j.plantsci.2007.03.004.

    Article  CAS  Google Scholar 

  • He, L., Nada, K., & Tachibana, S. (2002). Effects of Spd pretreatment through the roots on growth and photosynthesis of chilled cucumber plants (Cucumis sativus L.). Journal of the Japanese Society for Horticultural Science, 71, 490–498.

    Article  CAS  Google Scholar 

  • Hernandez, I., Alegre, L., Van Breusegem, F., & Munne-Bosch, S. (2009). How relevant are flavonoids as antioxidants in plants? Trends in Plant Science, 14, 125–132.

    Article  CAS  PubMed  Google Scholar 

  • Herritt, M., Dhanapal, A. P., & Fritschi, F. B. (2016). Identification of genomic loci associated with the photochemical reflectance index by genome-wide association study in soybean. Plant Genome, 9. https://doi.org/10.3835/plantgenome2015.08.0072.

    Article  CAS  Google Scholar 

  • Hirayama, T., & Shinozaki, K. (2010). Research on plant abiotic stress responses in the post-genome era: Past, present and future. The Plant Journal, 61, 1041–1052.

    Article  CAS  PubMed  Google Scholar 

  • Hoque, M. A., Banu, M. N. A., Okuma, E., et al. (2007). Exogenous proline and glycinebetaine increase NaCl-induced ascorbateglutathione cycle enzyme activities, and proline improves salt tolerance more than glycinebetaine in tobacco Bright Yellow-2 suspension-cultured cells. Journal of Plant Physiology, 164(11), 1457–1468.

    Article  CAS  PubMed  Google Scholar 

  • Hoque, M. A., Banu, M. N. A., Nakamura, Y., Shimoishi, Y., & Murata, Y. (2008). Proline and glycinebetaine enhance antioxidant defense and methylglyoxal detoxification systems and reduce NaCl-induced damage in cultured tobacco cells. Journal of Plant Physiology, 165(8), 813–824.

    Article  CAS  PubMed  Google Scholar 

  • Hossain, K. K., Itoh, R. D., Yoshimura, G., et al. (2010). Effects of nitric oxide scavengers on thermoinhibition of seed germination in Arabidopsis thaliana. Russian Journal of Plant Physiology, 57(2), 222–232.

    Article  CAS  Google Scholar 

  • Hossain, M. A., Munemasa, S., Uraji, M., Nakamura, Y., Mori, I. C., & Murata, Y. (2011). Involvement of endogenous abscisic acid in methyl jasmonate-induced stomatal closure in Arabidopsis. Plant Physiology, 156(1), 430–438.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hsiao, T. C., & Xu, L. K. (2000). Sensitivity of growth of root versus leaves to water stress: Biophysical analysis and relation to water transport. Journal of Experimental Botany, 51, 1595–1616.

    Article  CAS  PubMed  Google Scholar 

  • Huang, X., & Han, B. (2014). Natural variations and genome-wide association studies in crop plants. Annual Review of Plant Biology, 65, 531–551. https://doi.org/10.1146/annurev-arplant-050213-035715.

    Article  CAS  PubMed  Google Scholar 

  • Hummel, I., EI-Amrani, A., Gouesbet, G., Hennion, F., & Couee, I. (2004). Involvement of polyamines in the interacting effects of low temperature and mineral supply on Pringlea antiscorbutica (Kerguelen cabbage) seedlings. Journal of Experimental Botany, 55, 1125–1134.

    Article  CAS  PubMed  Google Scholar 

  • Hussain, K., Nawaz, K., Majeed, A., et al. (2011). Role of exogenous salicylic acid applications for salt tolerance in violet (Viola Odorata L.). Sarhad Journal of Agriculture, 27, 171–175.

    Google Scholar 

  • Ingvordsen, C. H., Backes, G., Lyngkjaer, M. F., Peltonen-Sainio, P., Jahoor, A., Mikkelsen, T. N., et al. (2015). Genome-wide association study of production and stability traits in barley cultivated under future climate scenarios. Molecular Breeding, 35, 84. https://doi.org/10.1007/s11032-015-0283-8.

    Article  CAS  Google Scholar 

  • Ippolito, A., Nigro, F., Lima, G., et al. (1997). Mechanism of resistance to Botrytis cinerea in wound of cured kiwifruits. Acta Horticulturae, 444, 719–724.

    Article  Google Scholar 

  • Ishitani, M., Liu, J., Halfter, U., Kim, C.-S., Shi, W., Zhu, J.- K. (2000). SOS3 function in plant salt tolerance requires Nmyristoylation and calcium binding. Plant Cell, 12(9), 1667–1677.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • James, R. A., Blake, C., Byrt, C. S., & Munns, R. (2011). Major genes for Na+ exclusion, Nax1 and Nax2 (wheat HKT1;4 and HKT1;5), decrease Na+ accumulation in bread wheat leaves under saline and waterlogged conditions. Journal of Experimental Botany, 62(8), 2939–2947.

    Article  CAS  PubMed  Google Scholar 

  • Janska, A., Marsik, P., Zelenkova, S., & Odessa, J. (2010). Cold stress and acclimation – What is important for metabolic adjustment? Plant Biology, 12, 395–405.

    Article  CAS  PubMed  Google Scholar 

  • Jayakannan, M., Bose, J., Babourina, O., et al. (2013). Salicylic acid improves salinity tolerance in Arabidopsis by restoring membrane potential and preventing salt-induced K+ loss via a GORK channel. Journal of Experimental Botany, 64(8), 2255–2268.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jeschke, W. D., Peuke, A. D., Pate, J. S., & Hartung, W. (1997). Transport, synthesis and catabolism of abscisic acid (ABA) in intact plants of castor bean (Ricinus communis L.) under phosphate deficiency and moderate salinity. Journal of Experimental Botany, 48(314), 1737–1747.

    Article  CAS  Google Scholar 

  • Kavi-Kishor, P. B., Sangam, S., Amrutha, R. N., Sri-Laxmi, P., Naidu, K. R., Rao, K. R. S. S., Sreenath, R., Reddy, K. J., Theriappan, P., & Sreenivasulu, N. (2005). Regulation of proline biosynthesis, degradation, uptake and transport in higher plants: Its implications in plant growth and abiotic stress tolerance. Current Science, 88, 424–438.

    Google Scholar 

  • Kerepesi, I., & Galiba, G. (2000). Osmotic and salt stress-induced alteration in soluble carbohydrate content in wheat seedlings. Crop Science, 40(2), 482–487.

    Article  CAS  Google Scholar 

  • Keskin, B. C., Sarikaya, A. T., Yuksel, B., & Memon, A. R. (2010). Abscisic acid regulated gene expression in bread wheat (Triticum aestivum L.). Australian Journal of Crop Science, 4(8), 617–625.

    CAS  Google Scholar 

  • Keunen, E., Peshev, D., Vangronsveld, J., Van den Ende, W., & Cuypers, A. (2013). Plant sugars are crucial players in the oxidative challenge during abiotic stress: Extending the traditional concept. Plant, Cell & Environment, 36, 1242–1255.

    Article  CAS  Google Scholar 

  • Khan, M. A., Ungar, I. A., & Showalter, A. M. (2000). Effects of sodium chloride treatments on growth and ion accumulation of the halophyte haloxylon recurvum. Communications in Soil Science and Plant Analysis, 31(17–18), 2763–2774.

    Article  CAS  Google Scholar 

  • Kim, H., Latif Khan, A., Waqas, M., et al. (2013). Silicon application to rice root zone influenced the phytohormonal and antioxidant responses under salinity stress. Journal of Plant Growth Regulation, 33, 137–149.

    Article  CAS  Google Scholar 

  • Kinnersley, A. M., & Turano, F. J. (2000). Gamma aminobutyric acid (GABA) and plant responses to stress. Critical Reviews in Plant Sciences, 19, 479–509.

    Article  CAS  Google Scholar 

  • Knott, J. M., Romer, P., & Sumper, M. (2007). Putative spermine syn- ¨ thases from Thalassiosira pseudonana and Arabidopsis thaliana synthesize thermospermine rather than spermine. FEBS Letters, 581(16), 3081–3086.

    Article  CAS  PubMed  Google Scholar 

  • Kopyra, M., & Gwóźdź, E. A. (2003). Nitric oxide stimulates seed ´ germination and counteracts the inhibitory effect of heavy metals and salinity on root growth of Lupinus luteus. Plant Physiology and Biochemistry, 41(11–12), 1011–1017.

    Article  CAS  Google Scholar 

  • Kovacs, Z., Simon-Sarkadi, L., Szucs, A., & Kocsy, G. (2010). Differential effects of cold, osmotic stress and abscisic acid on polyamine accumulation in wheat. Amino Acids, 38(2), 623–631.

    Article  CAS  PubMed  Google Scholar 

  • Kudoh, H., & Sonoike, K. (2002). Irreversible damage to photo system I by chilling in the light: Cause of the degradation of chlorophyll after returning to normal growth temperature. Planta, 215, 541–548.

    Article  CAS  PubMed  Google Scholar 

  • Kusano, T., Yamaguchi, K., Berberich, T., & Takahashi, Y. (2007). Advances in polyamine research in 2007. Journal of Plant Research, 120(3), 345–350.

    Article  CAS  PubMed  Google Scholar 

  • Kusano, M., Tohge, T., Fukushima, A., Kobayashi, M., Hayashi, N., Otsuki, H., Kondou, Y., Goto, H., Kawashima, M., Matsuda, F., et al. (2011). Metabolomics reveals comprehensive reprogramming involving two independent metabolic responses of Arabidopsis to UV-B light. The Plant Journal, 67, 354–369.

    Article  CAS  PubMed  Google Scholar 

  • Lasky, J. R., Upadhyaya, H. D., Ramu, P., Deshpande, S., Hash, C. T., Bonnette, J., et al. (2015). Genome-environment associations in sorghum landraces predict adaptive traits. Science Advances, 1, e1400218. https://doi.org/10.1126/sciadv.1400218.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lavola, A., Julkunen-Tiitto, R., de laRosa, T. M., Lehto, T., & Aphalo, P. J. (2000). Allocation of carbon to growth and secondary metabolites in birch seedlings under UV-B radiation and CO2 exposure. Physiologia Plantarum, 109, 260–267.

    Article  CAS  Google Scholar 

  • Leiser, W. L., Rattunde, H. F. W., Weltzein, E., Cisse, N., Abdou, M., Diallo, A., et al. (2014). Two in one sweep: Aluminum tolerance and grain yield in P-limited soils are associated to the same genomic region in West African Sorghum. BMC Plant Biology, 14, 206. https://doi.org/10.1186/s12870-014-0206-6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lesk, C., Rowhami, P., & Ramankutty, N. (2016). Influence of extreme weather disasters on global crop production. Nature, 529, 84–87. https://doi.org/10.1038/nature16467.

    Article  CAS  PubMed  Google Scholar 

  • Levitt, J. (1980). Responses of plants to environmental stress: Chilling, freezing, and high temperature stresses (2nd ed.). New York: Academic.

    Google Scholar 

  • Li, Z., Wakao, S., Fischer, B. B., & Niyogi, K. K. (2009). Sensing and responding to excess light. Annual Review of Plant Biology, 60, 391–395. https://doi.org/10.1146/annurev.arplant.58.032806.103844.

    Article  CAS  Google Scholar 

  • Li, B., He, L., Guo, S., et al. (2013). Proteomics reveal cucumber Spd-responses under normal condition and salt stress. Plant Physiology and Biochemistry, 67, 7–14.

    Article  CAS  PubMed  Google Scholar 

  • Liang, S., Zhou, R., Dong, S., & Shil, S. (2008). Adaptation to salinity in mangroves: Implication on the evolution of salt tolerance. Chinese Science Bulletin, 53, 1708–1715.

    Article  CAS  Google Scholar 

  • Liu, J., Ishitani, M., Halfter, U., Kim, C.-S., & Zhu, J.-K. (2000). The Arabidopsis thaliana SOS2 gene encodes a protein kinase that is required for salt tolerance. Proceedings of the National Academy of Sciences of the United States of America, 97(7), 3730–3734.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liu, W., Li, R.-J., Han, T.-T., Cai, W., Fu, Z.-W., & Lu, Y.-T. (2015). Salt stress reduces root meristem size by nitric oxide-mediated modulation of Auxin accumulation and Signaling in Arabidopsis. Plant Physiology, 168(1), 343–356.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lobell, D. B., Roberts, M. J., Schlenker, W., Braun, N., Little, B. B., Rejesus, R. M., & Hammer, G. L. (2014). Greater sensitivity to drought accompanies maize yield increase in the U.S. Midwest. Science, 344, 516–519.

    Article  CAS  PubMed  Google Scholar 

  • Ludlow, M. M., Santamaria, J. M., & Fukai, S. (1990). Contribution of osmotic adjustment to grain yield in Sorghum bicolor (L.) Moench under water-limited conditions. II. Water stress after anthesis. Australian Journal of Agricultural Research, 41, 67–78.

    Article  Google Scholar 

  • Ma, L., Zhang, H., Sun, L., et al. (2012). NADPH oxidase AtrbohD and AtrbohF function in ROS-dependent regulation of Na+/K+ homeostasis in Arabidopsis under salt stress. Journal of Experimental Botany, 63(1), 305–317.

    Article  CAS  PubMed  Google Scholar 

  • Mackill, D. J., Ismail, A. M., Singh, U. S., Labios, R. V., & Paris, T. R. (2012). Development and rapid adoption of sub-mergence-tolerant (Sub1) rice varieties. Advances in Agronomy, 155, 299–352. https://doi.org/10.1016/B978-0-12-394276-0.00006-8.

    Article  Google Scholar 

  • Mahfouz, M. M., Piatek, A., & Stewart, C. N., Jr. (2014). Genome engineering via TALENs and CRISPR/Cas9 systems: Challenges and perspectives. Plant Biotechnology Journal, 12, 1006–1014.

    Article  CAS  PubMed  Google Scholar 

  • Makela, P., Karkkainen, J., & Somersalo, S. (2000). Effect of glycinebetaine on chloroplast ultrastructure, chlorophyll and protein content, and RuBPCO activities in tomato grown under drought or salinity. Biologia Plantarum, 43(3), 471–475.

    Article  CAS  Google Scholar 

  • Makumburage, G. B., Richbourg, H. L., La Torre, K. D., Capps, A., Chen, C. X., & Stapleton, A. E. (2013). Genotype to phenotype maps: Multiple input abiotic signals combine to produce growth effects via attenuating signaling interactions in maize. G3. Bethesda, 3, 2195–2204. https://doi.org/10.1534/g3.113.008573.

    Article  CAS  Google Scholar 

  • Mao, Y., Zhang, H., Xu, N., Zhang, B., Gou, F., & Zhu, J. K. (2013). Application of the CRISPR-Cas system for efficient genome engineering in plants. Molecular Plant, 6, 2008–2011.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Martínez-Atienza, J., Jiang, X., Garciadeblas, B., et al. (2007). Conservation of the salt overly sensitive pathway in rice. Plant Physiology, 143(2), 1001–1012.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Matysik, J., Alia, A., Bhalu, B., & Mohanty, P. (2002). Molecular mechanisms of quenching of reactive oxygen species by proline under stress in plants. Current Science, 82(5), 525–532.

    CAS  Google Scholar 

  • Maurer, A., Draba, V., Jiang, Y., Schnaithmann, F., Sharma, R., Schumann, E., et al. (2015). Modelling the genetic architecture of flowering time in barley through nested association mapping. BMC Genomics, 16, 290. https://doi.org/10.1186/s12864-015-1459-7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Michael, T. P., & VanBuren, R. (2015). Progress, challenges and the future of crop genomes. Current Opinion in Plant Biology, 24, 71–81. https://doi.org/10.1016/j.pbi.2015.02.002.

    Article  CAS  PubMed  Google Scholar 

  • Miller, G., Suzuki, N., Ciftci-Yilmaz, S., & Mittler, R. (2010). Reactive oxygen species homeostasis and signalling during drought and salinity stresses. Plant, Cell & Environment, 33, 453–467.

    Article  CAS  Google Scholar 

  • Mittler, R., Vanderauwera, S., Gollery, M., & Van Breusegem, F. (2004). Reactive oxygen gene network of plants. Trends in Plant Science, 9, 490–498.

    Article  CAS  PubMed  Google Scholar 

  • Morales, D., Rodriguez, P., Dellamico, J., Nicolas, E., Torrecillas, A., & Sanchez-Blanco, M. J. (2003). Hightemperature preconditioning and thermal shock imposition affects water relations, gas exchange and root hydraulic conductivity in tomato. Biologia Plantarum, 47, 203–208.

    Article  Google Scholar 

  • Morgan, J. M. (1983). Osmoregulation as a selection criterion for drought tolerance in wheat. Australian Journal of Agricultural Research, 34, 607–614.

    Article  Google Scholar 

  • Morgan, J. M. (1995). Growth and yield of wheat lines with differing osmoregulative capacity at high soil water deficit in seasons of varying evaporative demand. Field Crops Research, 40, 143–152.

    Article  Google Scholar 

  • Morgan, J. M., Rodríguez-Maribona, B., & Knights, E. J. (1991). Adaptation to water-deficit in chickpea breeding lines by osmoregulation: Relationship to grain-yields in the field. Field Crops Research, 27, 61–70.

    Article  Google Scholar 

  • Morreel, K., Saeys, Y., Dima, O., Lu, F., Van de Peer, Y., Vanholme, R., Ralph, J., Vanholme, B., & Boerjan, W. (2014). Systematic structural characterization of metabolites in Arabidopsis via candidate substrate–product pair networks. Plant Cell, 26, 929–945.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Morrison, M. J., & Stewart, D. W. (2002). Heat stress during flowering in summer rape. Crop Science, 42, 797–803.

    Article  Google Scholar 

  • Moschou, P. N., Delis, I. D., Paschalidis, K. A., & Roubelakis-Angelakis, K. A. (2008a). Transgenic tobacco plants over expressing polyamine oxidase are not able to cope with oxidative burst generated by abiotic factors. Physiologia Plantarum, 133, 140–156.

    Article  CAS  PubMed  Google Scholar 

  • Moschou, P. N., Paschalidis, K. A., & RoubelakisAngelakis, K. A. (2008b). Plant polyamine catabolism: The state of the art. Plant Signaling and Behavior, 3(12), 1061–1066.

    Article  PubMed  PubMed Central  Google Scholar 

  • Msanne, J., Lin, J., Stone, J., & Awada, T. (2011). Characterization of abiotic stress responsive Arabidopsis thaliana RD29A and RD29B genes and evaluation of transgenes. Planta, 234, 97–107.

    Article  CAS  PubMed  Google Scholar 

  • Munir, N., & Aftab, F. (2011). Enhancement of salt tolerance in sugarcane by ascorbic acid pretreatment. African Journal of Biotechnology, 10(80), 18362–18370.

    CAS  Google Scholar 

  • Munns, R. (2005). Genes and salt tolerance: Bringing them together. New Phytologist, 167(3), 645–663.

    Article  CAS  PubMed  Google Scholar 

  • Munns, R., & Tester, M. (2008). Mechanisms of salinity tolerance. Annual Review of Plant Biology, 59, 651–681.

    Article  CAS  PubMed  Google Scholar 

  • Nakabayashi, R., Sawada, Y., Yamada, Y., Suzuki, M., Hirai, M. Y., Sakurai, T., & Saito, K. (2013). Combination of liquid chromatography– Fourier transform ion cyclotron resonance-mass spectrometry with 13C-labeling for chemical assignment of sulfur-containing metabolites in onion bulbs. Analytical Chemistry, 85, 1310–1315.

    Article  CAS  PubMed  Google Scholar 

  • Nakabayashi, R., Yonekura-Sakakibara, K., Urano, K., Suzuki, M., Yamada, Y., Nishizawa, T., Matsuda, F., Kojima, M., Sakakibara, H., Shinozaki, K., et al. (2014). Enhancement of oxidative and drought tolerance in Arabidopsis by overaccumulation of antioxidant flavonoids. The Plant Journal, 77, 367–379.

    Article  CAS  PubMed  Google Scholar 

  • Natella, F., Maldini, M., Leoni, G., & Scaccini, C. (2014). Glucosinolates redox activities: Can they act as antioxidants? Food Chemistry, 149, 226–232.

    Article  CAS  PubMed  Google Scholar 

  • Nazar, R., Iqbal, N., Syeed, S., & Khan, N. A. (2011). Salicylic acid alleviates decreases in photosynthesis under salt stress by enhancing nitrogen and sulfur assimilation and antioxidant metabolism differentially in two mungbean cultivars. Journal of Plant Physiology, 168(8), 807–815.

    Article  CAS  PubMed  Google Scholar 

  • Niggeweg, R., Michael, A. J., & Martin, C. (2004). Engineering plants with increased levels of the antioxidant chlorogenic acid. Nature Biotechnology, 22, 746–754.

    Article  CAS  PubMed  Google Scholar 

  • Nishizawa, A., Yabuta, Y., & Shigeoka, S. (2008). Galactinol and raffinose constitute a novel function to protect plants from oxidative damage. Plant Physiology, 147, 1251–1263.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nounjan, N., Nghia, P. T., & Theerakulpisut, P. (2012). Exogenous proline and trehalose promote recovery of rice seedlings from salt-stress and differentially modulate antioxidant enzymes and expression of related genes. Journal of Plant Physiology, 169(6), 596–604.

    Article  CAS  PubMed  Google Scholar 

  • Nutzmann, H. W., & Osbourn, A. (2014). Gene clustering in plant specialized metabolism. Current Opinion in Biotechnology, 26, 91–99.

    Article  CAS  PubMed  Google Scholar 

  • Obata, T., & Fernie, A. R. (2012). The use of metabolomics to dissect plant responses to abiotic stresses. Cellular and Molecular Life Sciences, 69, 3225–3243.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Oh, D.-H., Lee, S. Y., Bressan, R. A., Yun, D.-J., & Bohnert, H. J. (2010). Intracellular consequences of SOS1 deficiency during salt stress. Journal of Experimental Botany, 61(4), 1205–1213.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Oikawa, A., & Saito, K. (2012). Metabolite analyses of single cells. The Plant Journal, 70, 30–38.

    Article  CAS  PubMed  Google Scholar 

  • Okubo, K., & Yoshiki, Y. (2000). The role of triterpenoid on reactive oxygen scavenging system: Approach from the new chemiluminescence system (XYZ system). BioFactors, 13, 219–223.

    Article  CAS  PubMed  Google Scholar 

  • Oleszek, W. A. (2002). Chromatographic determination of plant saponins. Journal of Chromatography. A, 967, 147–162.

    Article  CAS  PubMed  Google Scholar 

  • Ortiz, R. (2015). Plant breeding in the Omics era (p. 249). New York: Springer. https://doi.org/10.1007/978-3-319-20532-8.

    Book  Google Scholar 

  • Pang, S., Chen, S., Dai, Y., Chen, Y. W., & Yan, X. (2010). Comparative proteomics of salt tolerance inArabidopsis thaliana and Thellungiella halophila. Journal of Proteome Research, 9(5), 2584–2599.

    Article  CAS  PubMed  Google Scholar 

  • Panicot, M., Minguet, E. G., Ferrando, A., et al. (2002). A polyamine metabolon involving aminopropyl transferase complexes in Arabidopsis. Plant Cell, 14(10), 2539–2551.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Parida, K., Das, A. B., & Mohanty, P. (2004). Investigations on the antioxidative defence responses to NaCl stress in a mangrove, Bruguiera parviflora: Differential regulations of isoforms of some antioxidative enzymes. Plant Growth Regulation, 42(3), 213–226.

    Article  CAS  Google Scholar 

  • Pasam, R. K., Sharma, R., Malosetti, M., van Eeuwijk, F. A., Haseneyer, G., Kilian, B., et al. (2012). Genome-wide association studies for agronomical traits in a worldwide spring barley collection. BMC Plant Biology, 12, 16. https://doi.org/10.1186/1471-2229-12-16.

    Article  PubMed  PubMed Central  Google Scholar 

  • Peshev, D., Vergauwen, R., Moglia, A., Hideg, E., & Van den Ende, W. (2013). Towards understanding vacuolar antioxidant mechanisms: A role for fructans? Journal of Experimental Botany, 64, 1025–1038.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Petchey, O. L., & Gaston, K. J. (2006). Functional diversity: Back to basics and looking forward. Ecology Letters, 9, 741–758. https://doi.org/10.1111/j.1461-0248.2006.00924.x.

    Article  PubMed  Google Scholar 

  • Pollier, J., Morreel, K., Geelen, D., & Goossens, A. (2011). Metabolite profiling of triterpene saponins in Medicago truncatula hairy roots by liquid chromatography Fourier transform ion cyclotron resonance mass spectrometry. Journal of Natural Products, 74, 1462–1476.

    Article  CAS  PubMed  Google Scholar 

  • Pontis, H. G. (1989). Fructans and cold stress. Journal of Plant Physiology, 134, 148–150.

    Article  CAS  Google Scholar 

  • Qin, P., Lin, Y., Hu, Y., Liu, K., Mao, S., Li, Z., et al. (2016). Genome-wide association study of drought-related resistance traits in Aegilops tauschii. Genetics and Molecular Biology, 39, 398–407. https://doi.org/10.1590/1678-4685-GMB-2015-0232.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Queval, G., Jaillard, D., Zechmann, B., & Noctor, G. (2011). Increased intracellular H2O2 availability preferentially drives glutathione accumulation in vacuoles and chloroplasts. Plant, Cell & Environment, 34, 21–32.

    Article  CAS  Google Scholar 

  • Quintero, J., Ohta, M., Shi, H., Zhu, J.-K., & Pardo, J. M. (2002). Reconstitution in yeast of the Arabidopsis SOS signaling pathway for Na+ homeostasis. Proceedings of the National Academy of Sciences of the United States of America, 99(13), 9061–9066.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Quintero, J., Martinez-Atienza, J., Villalta, I., et al. (2011). Activation of the plasma membrane Na/H antiporter salt-overly-sensitive 1 (SOS1) by phosphorylation of an auto-inhibitory C-terminal domain. Proceedings of the National Academy of Sciences of the United States of America, 108(6), 2611–2616.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Quisenberry, J. E., Cartwright, G. B., & McMichael, B. L. (1984). Genetic relationship between turgor maintenance and growth in cotton germplasm. Crop Science, 24, 479–482.

    Article  Google Scholar 

  • Radin, J. W. (1983). Physiological consequences of cellular water defi cit: Osmotic adjustment. In H. M. Taylor, W. R. Jordan, & T. R. Sinclair (Eds.), Limitations to efficient water use in crop production (pp. 267–276). Madison: American Society of Agronomy.

    Google Scholar 

  • Rahman, S., Miyake, H., & Takeoka, Y. (2002). Effects of exogenous glycinebetaine on growth and ultrastructure of salt-stressed rice seedlings (Oryza sativa L.). Plant Production Science, 5(1), 33–44.

    Article  CAS  Google Scholar 

  • Rahnama, A., James, R. A., Poustini, K., & Munns, R. (2010). Stomatal conductance as a screen for osmotic stress tolerance in durum wheat growing in saline soil. Functional Plant Biology, 37(3), 255–263.

    Article  Google Scholar 

  • Rambla, J. L., Vera-Sirera, F., Blazquez, M. A., Carbonell, J., & Granell, A. ´. (2010). Quantitation of biogenic tetraamines in Arabidopsis thaliana. Analytical Biochemistry, 397(2), 208–211.

    Article  CAS  PubMed  Google Scholar 

  • Rawia Eid, A., Taha, L. S., & Ibrahiem, S. M. M. (2011). Alleviation of adverse effects of salinity on growth, and chemical constituents of marigold plants by using glutathione and ascorbate. Journal of Applied Sciences Research, 7, 714–721.

    Google Scholar 

  • Rebolledo, M. G., Peña, A. L., Duitama, J., Cruz, D. F., Dingkuhn, M., Grenier, C., et al. (2016). Combining image analysis, genome wide association studies and different field trials to reveal stable genetic regions related to panicle architecture and the number of spikelets per panicle in rice. Frontiers in Plant Science, 7, 1384. https://doi.org/10.3389/fpls.2016.01384.

    Article  PubMed  PubMed Central  Google Scholar 

  • Reddy, M. P., Sanish, S., & Iyengar, E. R. R. (1992). Photosynthetic studies and compartmentation of ions in different tissues of Salicornia brachiata Roxb. under saline conditions. Photosynthetica, 26, 173–179.

    CAS  Google Scholar 

  • Rhee, S. Y., & Mutwil, M. (2014). Towards revealing the functions of all genes in plants. Trends in Plant Science, 19, 212–221. https://doi.org/10.1016/j.tplants.2013.10.006.

    Article  CAS  PubMed  Google Scholar 

  • Rodríguez-Maribona, B., Tenorio, J. L., Conde, J. R., & Ayerbe, L. (1992). Correlation between yield and osmotic adjustment of peas (Pisum sativum L.) under drought stress. Field Crops Research, 29, 15–22.

    Article  Google Scholar 

  • Roy, M., & Wu, R. (2002). Overexpression of S-adenosylmethionine decarboxylase gene in rice increases polyamine level and enhances sodium chloride-stress tolerance. Plant Science, 163(5), 987–992.

    Article  CAS  Google Scholar 

  • Roy, S. J., Negrao, S., & Tester, M. (2014). Salt resistant crop plants. Current Opinion in Biotechnology, 26, 115–124.

    Article  CAS  PubMed  Google Scholar 

  • Roychoudhury, A., Basu, S., & Sengupta, D. N. (2011). Amelioration of salinity stress by exogenously applied spermidine or spermine in three varieties of indica rice differing in their level of salt tolerance. Journal of Plant Physiology, 168(4), 317–328.

    Article  CAS  PubMed  Google Scholar 

  • Sairam, R. K., & Tyagi, A. (2004). Physiology and molecular biology of salinity stress tolerance in plants. Current Science, 86(3), 407–421.

    CAS  Google Scholar 

  • Saito, K. (2013). Phytochemical genomics — A new trend. Current Opinion in Plant Biology, 16, 373–380.

    Article  CAS  PubMed  Google Scholar 

  • Saito, K., Hirai, M. Y., & Yonekura-Sakakibara, K. (2008). Decoding genes with coexpression networks and metabolomics — ‘Majority report by precogs’. Trends in Plant Science, 13, 36–43.

    Article  CAS  PubMed  Google Scholar 

  • Saito, K., Yonekura-Sakakibara, K., Nakabayashi, R., Higashi, Y., Yamazaki, M., Tohge, T., & Fernie, A. R. (2013). The flavonoid biosynthetic pathway in Arabidopsis: Structural and genetic diversity. Plant Physiology and Biochemistry, 72, 21–34.

    Article  CAS  PubMed  Google Scholar 

  • Sakamoto, A., & Murata, N. (2002). The role of glycine betaine in the protection of plants from stress: Clues from transgenic plants. Plant, Cell & Environment, 25, 163–171.

    Article  CAS  Google Scholar 

  • Sanders, D. (2000). Plant biology: The salty tale of Arabidopsis. Current Biology, 10(13), R486–R488.

    Article  CAS  PubMed  Google Scholar 

  • Santakumari, M., & Berkowitz, G. A. (1991). Chloroplast volume: Cell water potential relationships and acclimation of photosynthesis to leaf water deficits. Photosynthesis Research, 28, 9–20.

    Article  CAS  PubMed  Google Scholar 

  • Santamaria, J. M., Ludlow, M. M., & Fukai, S. (1990). Contribution of osmotic adjustment to grain yield in Sorghum bicolor (L.) Moench under water-limited conditions. I. Water stress before anthesis. Australian Journal of Agricultural Research, 41, 51–65.

    Article  Google Scholar 

  • Sawada, H., Shim, I.-S., & Usui, K. (2006). Induction of benzoic acid 2-hydroxylase and salicylic acid biosynthesis-modulation by salt stress in rice seedlings. Plant Science, 171(2), 263–270.

    Article  CAS  Google Scholar 

  • Sawai, S., Ohyama, K., Yasumoto, S., Seki, H., Sakuma, T., Yamamoto, T., Takebayashi, Y., Kojima, M., Sakakibara, H., Aoki, T., et al. (2014). Sterol side chain reductase 2 is a key enzyme in the biosynthesis of cholesterol, the common precursor of toxic steroidal glycoalkaloids in potato. Plant Cell, 26, 3763–3774.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Saxena, S. C., Kaur, H., Verma, P., et al. (2013). Osmoprotectants: Potential for crop improvement under adverse conditions. In Plant acclimation to environmental stress (pp. 197–232). New York: Springer.

    Chapter  Google Scholar 

  • Scheben, A., Batley, J., & Edwards, D. (2017a). Genotyping-by-sequencing approaches to characterize crop genomes: Choosing the right tool for the right application. Plant Biotechnology Journal, 15, 149–161. https://doi.org/10.1111/pbi.12645.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Scheben, A., Wolter, F., Batley, J., Puchta, H., & Edwards, D. (2017b). Towards CRISPR/Cas crops – Bringing together genomics and genome editing. The New Phytologist. https://doi.org/10.1111/nph.14702. Epub ahead of print.

    Article  CAS  PubMed  Google Scholar 

  • Schroeder, J. I., Delhaize, E., Frommer, W. B., et al. (2013). Using membrane transporters to improve crops for sustainable food production. Nature, 497, 60–66.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Serraj, R., & Sinclair, T. R. (2002). Osmolyte accumulation: Can it really help increase crop yield under drought conditions? Plant, Cell & Environment, 25, 333–341.

    Article  Google Scholar 

  • Serrano, R., Mulet, J. M., Rios, G., et al. (1999). A glimpse of the mechanisms of ion homeostasis during salt stress. Journal of Experimental Botany, 50, 1023–1036.

    Article  CAS  Google Scholar 

  • Shahidi, F., & Chandrasekara, A. (2010). Hydroxycinnamates and their in vitro and in vivo antioxidant activities. Phytochemistry Reviews, 9, 147–170.

    Article  CAS  Google Scholar 

  • Shaked-Sachray, L., Weiss, D., Reuveni, M., Nissim-Levi, A., & Oren-Shamir, M. (2002). Increased anthocyanin accumulation in aster flowers at elevated temperatures due to magnesium treatment. Physiologia Plantarum, 114, 559–565.

    Article  CAS  PubMed  Google Scholar 

  • Sharp, R. E., & Davies, W. J. (1979). Solute regulation and growth by roots and shoots of water-stressed maize plants. Planta, 147, 43–49.

    Article  CAS  PubMed  Google Scholar 

  • Sharp, R. E., Hsiao, C. T., & Silk, W. K. (1990). Growth of the maize primary root at low water potentials. II role of growth and deposition of hexose and potassium in osmotic adjustment. Plant Physiology, 93, 1337–1346.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sharp, R. E., Poroyko, V., Hejlek, L. G., Spollen, W. G., Springer, G. K., Bohnert, H. J., & Nguyen, H. T. (2004). Root growth maintenance during water defi cits: Physiology to functional genomics. Journal of Experimental Botany, 55, 2343–2351.

    Article  CAS  PubMed  Google Scholar 

  • Shevyakova, I., Musatenko, L. I., Stetsenko, L. A., et al. (2013). Effects of abscisic acid on the contents of polyamines and proline in common bean plants under salt stress. Russian Journal of Plant Physiology, 60, 200–211.

    Article  CAS  Google Scholar 

  • Shi, H., Ishitani, M., Kim, C., & Zhu, J.-K. (2000). The Arabidopsis thaliana salt tolerance gene SOS1 encodes a putative Na+/H+ antiporter. Proceedings of the National Academy of Sciences of the United States of America, 97(12), 6896–6901.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shi, Quintero, F. J., Pardo, J. M., & Zhu, J.-K. (2002). The putative plasma membrane Na+/H+ antiporter SOS1 controls longdistance Na+ transport in plants. Plant Cell, 14(2), 465–477.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Signorelli, S., Coitiño, E. L., Borsani, O., & Monza, J. (2014). Molecular mechanisms for the reaction between (_)OH radicals and proline: Insights on the role as reactive oxygen species scavenger in plant stress. The Journal of Physical Chemistry. B, 118, 37–47.

    Article  CAS  PubMed  Google Scholar 

  • Sima, N. A. K. K., Askari, H., Mirzaei, H. H., & Pessarakli, M. (2009). Genotype-dependent differential responses of three forage species to calcium supplement in saline conditions. Journal of Plant Nutrition, 32, 579–597.

    Article  CAS  Google Scholar 

  • Simoes-Araujo, J. L., Rumjanek, N. G., & Margis-Pinheiro, M. (2003). Small heat shock proteins genes are differentially expressed in distinct varieties of common bean. Brazilian Journal of Plant Physiology, 15, 33–41.

    Article  CAS  Google Scholar 

  • Sturm, S., & Seger, C. (2012). Liquid chromatography–nuclear magnetic resonance coupling as alternative to liquid chromatography– Mass spectrometry hyphenations: Curious option or powerful and complementary routine tool? Journal of Chromatography. A, 1259, 50–61.

    Article  CAS  PubMed  Google Scholar 

  • Subbarao, G. V., Chauhan, Y. S., & Johansen, C. (2000). Patterns of osmotic adjustment in pigeonpea – Its importance as a mechanism of drought resistance. European Journal of Agronomy, 12, 239–249.

    Article  Google Scholar 

  • Sumner, L. W., Amberg, A., Barrett, D., Beale, M. H., Beger, R., Daykin, C. A., Fan, T. W., Fiehn, O., Goodacre, R., Griffin, J. L., et al. (2007). Proposed minimum reporting standards for chemical analysis chemical analysis working group (CAWG) metabolomics standards initiative (MSI). Metabolomics, 3, 211–221.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sumner, L. W., Lei, Z., Nikolau, B. J., Saito, K., Roessner, U., & Trengove, R. (2014). Proposed quantitative and alphanumeric metabolite identification metrics. Metabolomics, 10, 1047–1049.

    Article  CAS  Google Scholar 

  • Suzuki, N., Rivero, R. M., Shulaev, V., Blumwald, E., & Mittler, R. (2014). Abiotic and biotic stress combinations. The New Phytologist, 203, 32–43.

    Article  PubMed  Google Scholar 

  • Szabados, L., & Savoure, A. (2010). Proline: A multifunctional amino acid. Trends in Plant Science, 15, 89–97.

    Article  CAS  PubMed  Google Scholar 

  • Tahir, M. A., Aziz, T., Farooq, M., & Sarwar, G. (2012). Siliconinduced changes in growth, ionic composition, water relations, chlorophyll contents and membrane permeability in two saltstressed wheat genotypes. Archives of Agronomy and Soil Science, 58(3), 247–256.

    Article  CAS  Google Scholar 

  • Takahashi, T., & Kakehi, J.-I. (2010). Polyamines: Ubiquitous polycations with unique roles in growth and stress responses. Annals of Botany, 105(1), 1–6.

    Article  CAS  PubMed  Google Scholar 

  • Thoen, M. P. M., Olivas, N. H. D., Kloth, K. J., Coolen, S., Huang, P.-P., Aarts, M. G., et al. (2016). Genetic architecture of plant stress resistance: Multi-trait genome-wide association mapping. The New Phytologist, 213, 1346–1362. https://doi.org/10.1111/nph.14220.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Thomas, J. C., Sepahi, M., Arendall, B., & Bohnert, H. J. (1995). Enhancement of seed germination in high salinity by engineering mannitol expression inArabidopsis thaliana. Plant, Cell and Environment, 18(7), 801–806.

    Article  CAS  Google Scholar 

  • Thomashow, M. F. (1999). Plant cold acclimation: Freezing tolerance genes and regulatory mechanisms. Annual Review of Plant Physiology and Plant Molecular Biology, 50, 571–599.

    Article  CAS  PubMed  Google Scholar 

  • Tian, F., Bradbury, P. J., Brown, P. J., Hung, H., Sun, Q., Flint-Garcia, S., et al. (2011). Genome-wide association study of leaf architecture in the maize nested association mapping population. Nature Genetics, 43, 159–162. https://doi.org/10.1038/ng.746.

    Article  CAS  PubMed  Google Scholar 

  • Tilman, D., Balzer, C., Hill, J., & Befort, B. L. (2011). Global food demand and the sustainable intensification of agriculture. Proceedings of the National Academy of Sciences of the United States of America, 108, 20260–20264. https://doi.org/10.1073/pnas.1116437108.

    Article  PubMed  PubMed Central  Google Scholar 

  • Tohge, T., Ramos, M. S., Nunes-Nesi, A., Mutwil, M., Giavalisco, P., Steinhauser, D., Schellenberg, M., Willmitzer, L., Persson, S., Martinoia, E., et al. (2011). Toward the storage metabolome: Profiling the barley vacuole. Plant Physiology, 157, 1469–1482.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tohge, T., Watanabe, M., Hoefgen, R., & Fernie, A. R. (2013). The evolution of phenylpropanoid metabolism in the green lineage. Critical Reviews in Biochemistry and Molecular Biology, 48, 123–152.

    Article  CAS  PubMed  Google Scholar 

  • Trethowan, R. M., Reynolds, M. P., Ortiz-Monasterio, I., & Ortiz, R. (2007). The genetic basis of the green revolution in wheat production. Plant Breeding Reviews, 28, 39–58. https://doi.org/10.1002/9780470168028.ch2.

    Article  CAS  Google Scholar 

  • Turner, N. C., & Jones, M. M. (1980). Turgor maintenance by osmotic adjustment: A review and evaluation. In N. C. Turner & P. J. Kramer (Eds.), Adaptation of plant to water and high temperature stress (pp. 87–103). New York: Wiley.

    Google Scholar 

  • Tuteja, N., Sahoo, R. K., Garg, B., & Tuteja, R. (2013). OsSUV3 dual helicase functions in salinity stress tolerance by maintaining photosynthesis and antioxidant machinery in rice (Oryza sativa L. cv. IR64). The Plant Journal, 76(1), 115–127.

    CAS  PubMed  Google Scholar 

  • Urano, K., Yoshiba, Y., Nanjo, T., Ito, T., Yamaguchi-Shinozaki, K., & Shinozaki, K. (2004). Arabidopsis stress-inducible gene for arginine decarboxylase AtADC2 is required for accumulation of putrescine in salt tolerance. Biochemical and Biophysical Research Communications, 313(2), 369–375.

    Article  CAS  PubMed  Google Scholar 

  • Valluru, R., Reynolds, M. P., Davies, W. J., & Sukumaran, S. (2017). Phenotypic and genome-wide association analysis of spike ethylene in diverse wheat genotypes under heat stress. The New Phytologist, 214, 271–283. https://doi.org/10.1111/nph.14367.

    Article  CAS  PubMed  Google Scholar 

  • Van den Ende, W., Michiels, A., DeRoover, J., & VanLaere, A. (2002). Fructan biosynthetic and breakdown enzymes in dicots evolved from different invertases: Expression of fructan genes throughout chicory development. Scientific World Journal, 2, 1273–1287.

    Article  Google Scholar 

  • Van Oosten, M. J., Sharkhuu, A., Batelli, G., Bressan, R. A., & Maggio, A. (2013). The Arabidopsis thaliana mutant air1 implicates SOS3 in the regulation of anthocyanins under salt stress. Plant Molecular Biology, 83, 405–415.

    Article  PubMed  CAS  Google Scholar 

  • Velikova, V. B., Edreva, A. M., Tsonev, T. D., & Jones, H. G. (2007). Singlet oxygen quenching by phenylamides and their parent compounds. Zeitschrift für Naturforschung. Section C, 62, 833–838.

    Article  CAS  Google Scholar 

  • Verbruggen, N., & Hermans, C. (2008). Proline accumulation in plants: A review. Amino Acids, 35, 753–759.

    Article  CAS  PubMed  Google Scholar 

  • Vickers, C. E., Gershenzon, J., Lerdau, M. T., & Loreto, F. (2009). A unified mechanism of action for volatile isoprenoids in plant abiotic stress. Nature Chemical Biology, 5, 283–291.

    Article  CAS  PubMed  Google Scholar 

  • Voetberg, G. S., & Sharp, R. E. (1991). Growth of the maize primary root at low water potentials. III. Role of increased proline deposition in osmotic adjustment. Plant Physiology, 96, 1125–1130.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang, Y., & Nii, N. (2000). Changes in chlorophyll, ribulose bisphosphate carboxylase-oxygenase, glycine betaine content, photosynthesis and transpiration in Amaranthus tricolor leaves during salt stress. Journal of Horticultural Science and Biotechnology, 75(6), 623–627.

    Article  CAS  Google Scholar 

  • Wang, B., Luttge, U., & Ratajczak, R. (2001). Effects of salt treatment ¨ and osmotic stress on V-ATPase and V-PPase in leaves of the halophyte Suaeda salsa. Journal of Experimental Botany, 52(365), 2355–2365.

    Article  CAS  PubMed  Google Scholar 

  • Westgate, M. E., & Boyer, J. S. (1985). Osmotic adjustment and the inhibition of leaf, root, stem, and silk growth at low water potentials in maize. Planta, 164, 540–549.

    Article  CAS  PubMed  Google Scholar 

  • Wissuwa, M., Kondo, K., Fukuda, T., Mori, A., Rose, M. T., Pariasca-Tanaka, J., et al. (2015). Unmasking novel loci for internal phosphorus utilization efficiency in rice germplasm through genome-wide association analysis. PLoS One, 10, e0124215. https://doi.org/10.1371/journal.pone.0124215.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Xiaomu, N. X. N., Bressan, R. A., Hasegawa, P. M., & Pardo, J. M. (1995). Ion homeostasis in NaCl stress environments. Plant Physiology, 109(3), 735–742.

    Article  Google Scholar 

  • Yamaguchi, K., Takahashi, Y., Berberich, T., et al. (2006). The polyamine spermine protects against high salt stress in Arabidopsis thaliana. FEBS Letters, 580(30), 6783–6788.

    Article  CAS  PubMed  Google Scholar 

  • Yang, Z., Nakabayashi, R., Okazaki, Y., Mori, T., Takamatsu, S., Kitanaka, S., Kikuchi, J., & Saito, K. (2014). Toward better annotation in plant metabolomics: Isolation and structure elucidation of 36 specialized metabolites from Oryza sativa (rice) by using MS/MS and NMR analyses. Metabolomics, 10, 543–555.

    Article  CAS  PubMed  Google Scholar 

  • Yen, H. E., Wu, S.-M., Hung, Y.-H., & Yen, S.-K. (2000). Isolation of 3 salt-induced low-abundance cDNAs from light-grown callus of Mesembryanthemum crystallinum by suppression subtractive hybridization. Physiologia Plantarum, 110(3), 402–409.

    Article  CAS  Google Scholar 

  • Yonekura-Sakakibara, K., Nakabayashi, R., Sugawara, S., Tohge, T., Ito, T., Koyanagi, M., Kitajima, M., Takayama, H., & Saito, K. (2014). A flavonoid 3-O-glucoside:200-O-glucosyltransferase responsible for terminal modification of pollen-specific flavonols in Arabidopsis thaliana. The Plant Journal, 79, 769–782.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang, J. L., & Shi, H. (2013). Physiological and molecular mechanisms of plant salt tolerance. Photosynthesis Research, 115, 1–22.

    Article  CAS  PubMed  Google Scholar 

  • Zhang, Y., Wang, L., Liu, Y., Zhang, Q., Wei, Q., & Zhang, W. (2006). Nitric oxide enhances salt tolerance in maize seedlings through increasing activities of proton-pump and Na+/H+ antiport in the tonoplast. Planta, 224(3), 545–555.

    Article  CAS  PubMed  Google Scholar 

  • Zhang, Y., Wang, Y., Yang, H. W., Wang, D., & Liu, J. (2007). Involvement of hydrogen peroxide and nitric oxide in salt resistance in the calluses from Populus euphratica. Plant, Cell and Environment, 30(7), 775–785.

    Article  PubMed  CAS  Google Scholar 

  • Zhang, W., Jiang, B., Li, W., Song, H., Yu, Y., & Chen, J. (2009). Polyamines enhance chilling tolerance of cucumber (Cucumis sativus L.). through modulating antioxidative system. Scientia Horticulturae, 122, 200–208.

    Article  CAS  Google Scholar 

  • Zhao, M.-G., Chen, L., Zhang, L.-L., & Zhang, W.-H. (2009). Nitric reductase-dependent nitric oxide production is involved in cold acclimation and freezing tolerance in Arabidopsis. Plant Physiology, 151(2), 755–767.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhao, C., Takeshima, R., Zhu, J., Xu, M., Sato, M., Watanabe, S., et al. (2016). A recessive allele for delayed flowering at the soybean maturity locus E9 is a leaky allele of F2a, a FLOWERING LOCUS T ortholog. BMC Plant Biology, 16, 20. https://doi.org/10.1186/s12870-016-0704-9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhou, Y. H., Yu, J. Q., Huang, L. F., & Nogues, S. (2004). The relationship between CO2 assimilation, photosynthetic electron transport and water–water cycle in chill-exposed cucumber leaves under low light and subsequent recovery. Plant, Cell & Environment, 27, 1503–1514.

    Article  Google Scholar 

  • Zhu, J.-K. (2003). Regulation of ion homeostasis under salt stress. Current Opinion in Plant Biology, 6(5), 441–445.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Parray, J.A., Yaseen Mir, M., Shameem, N. (2019). Stress Management: Sustainable Approach Towards Resilient Agriculture. In: Sustainable Agriculture: Biotechniques in Plant Biology . Springer, Singapore. https://doi.org/10.1007/978-981-13-8840-8_5

Download citation

Publish with us

Policies and ethics