Skip to main content

Pixel N-Grams Representation for Medical Image Classification

  • Chapter
  • First Online:
Hybrid Machine Intelligence for Medical Image Analysis

Part of the book series: Studies in Computational Intelligence ((SCI,volume 841))

Abstract

Image classification has wide applications in many fields including medical imaging. A major aspect of classification is to extract features that can correctly represent important variations in an image. Global image features commonly used for classification include Intensity Histograms, Haralick’s features based on Gray-level co-occurrence matrix, Local Binary Patterns and Gabor filters. A novel feature extraction and image representation technique ‘Pixel N-grams’ inspired from ‘Character N-grams’ concept in text categorization is described in this chapter. The classification performance of Pixel N-grams is tested on the various datasets including UIUC texture dataset, binary shapes dataset, miniMIAS dataset of mammography, and real-world high-resolution mammography dataset provided by an Australian radiology practice. The results are compared with other feature extraction techniques such as co-occurrence matrix features, intensity histogram, and bag of visual words. The results demonstrate promising classification accuracy in addition to reduced computational costs, enabling a new way for mammographic classification on low resource computers.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Truly digital mammograms/primary digital mammograms are digital mammograms directly generated with the help of advanced imaging equipment.

  2. 2.

    Secondary digital mammograms are conventional film-based mammograms digitised with the help of a scanner.

  3. 3.

    MATLAB 7.9.0.

References

  1. Abdel-Zaher, A.M., Eldeib, A.M.: Breast cancer classification using deep belief networks. Expert Syst. Appl. 46, 139–144 (2016)

    Article  Google Scholar 

  2. Arevalo, J., González, F.A., Ramos-Pollán, R., Oliveira, J.L., Lopez, M.A.G.: Convolutional neural networks for mammography mass lesion classification. In: Engineering in Medicine and Biology Society (EMBC), 2015 37th Annual International Conference of the IEEE, pp. 797–800. IEEE (2015)

    Google Scholar 

  3. Bankman, I.: Handbook of Medical Image Processing and Analysis. Academic Press (2008)

    Google Scholar 

  4. Cheng, E., Xie, N., Ling, H., Bakic, P.R., Maidment, A.D., Megalooikonomou, V.: Mammographic image classification using histogram intersection. In: 2010 IEEE International Symposium on Biomedical Imaging: From Nano to Macro, pp. 197–200. IEEE (2010)

    Google Scholar 

  5. Dhungel, N., Carneiro, G., Bradley, A.P.: Automated mass detection in mammograms using cascaded deep learning and random forests. In: 2015 International Conference on Digital Image Computing: Techniques and Applications (DICTA), pp. 1–8. IEEE (2015)

    Google Scholar 

  6. Eberl, M.M., Fox, C.H., Edge, S.B., Carter, C.A., Mahoney, M.C.: BI-RADS classification for management of abnormal mammograms. J. Am. Board Family Med. 19, 161–164 (2006)

    Article  Google Scholar 

  7. El-Faramawy, N., Rangayyan, R., Desautels, J., Alim, O.: Shape factors for analysis of breast tumors in mammograms. In: 1996 Canadian Conference on Electrical and Computer Engineering, pp. 355–358. IEEE (1996)

    Google Scholar 

  8. Engeland, S.V.: Detection of Mass Lesions in Mammograms by Using Multiple Views, [Sl: sn] (2006)

    Google Scholar 

  9. Evans, K.K., Birdwell, R.L., Wolfe, J.M.: If you don’t find it often, you often don’t find it: why some cancers are missed in breast cancer screening. PLoS ONE 8, e64366 (2013)

    Article  Google Scholar 

  10. Haralick, R.M., Shanmugam, K., Dinstein, I.H.: Textural features for image classification. In: IEEE Transactions on Systems, Man and Cybernetics, pp. 610–621 (1973)

    Article  Google Scholar 

  11. Huo, Z., Giger, M.L., Vyborny, C.J., Wolverton, D.E., Schmidt, R.A., Doi, K.: Automated computerized classification of malignant and benign masses on digitized mammograms. Acad. Radiol. 5, 155–168 (1998)

    Article  Google Scholar 

  12. Hussain, M., Khan, S., Muhammad, G., Berbar, M., Bebis, G.: Mass detection in digital mammograms using gabor filter bank. In: IET Conference on Image Processing (IPR 2012), pp. 1–5. IET (2012)

    Google Scholar 

  13. Islam, M.J., Ahmadi, M., Sid-Ahmed, M.A.: An efficient automatic mass classification method in digitized mammograms using artificial neural network. arXiv preprint arXiv:1007.5129 (2010)

  14. Jalalian, A., Mashohor, S.B., Mahmud, H.R., Saripan, M.I.B., Ramli, A.R.B., Karasfi, B.: Computer-aided detection/diagnosis of breast cancer in mammography and ultrasound: a review. Clin. Imaging 37, 420–426 (2013)

    Article  Google Scholar 

  15. Jirari, M.: Computer Aided System For Detecting Masses in Mammograms. Kent State University (2008)

    Google Scholar 

  16. Joseph, S., Balakrishnan, K.: Local binary patterns, haar wavelet features and haralick texture features for mammogram image classification using artificial neural networks. In: Advances in Computing and Information Technology. Springer, Berlin (2011)

    Chapter  Google Scholar 

  17. Kulkami, P., Stranieri, A., Ugon, J.: Texture image classification using pixel N-grams. In: IEEE International Conference on Signal and Image Processing (ICSIP), pp. 137–141. IEEE (2016)

    Google Scholar 

  18. Kulkarni, P., Stranieri, A.: Comparison of pixel N-grams with histogram, haralick’s features and bag-of-visual-words for texture image classification. In: 2018 3rd International Conference for Convergence in Technology (I2CT), pp. 1–5. IEEE (2018)

    Google Scholar 

  19. Kulkarni, P., Stranieri, A., Kulkarni, S., Ugon, J., Mittal, M.: Visual character n-grams for classification and retrieval of radiological images. Int. J. Multimed. Appl. 6, 35 (2014)

    Google Scholar 

  20. Lazebnik, S., Schmid, C., Ponce, J.: A sparse texture representation using local affine regions. IEEE Trans. Pattern Anal. Mach. Intell. 27, 1265–1278 (2005)

    Article  Google Scholar 

  21. Li, Y., Chen, H., Rohde, G.K., Yao, C., Cheng, L.: Texton analysis for mass classification in mammograms. Pattern Recogn. Lett. 52, 87–93 (2015)

    Article  Google Scholar 

  22. Lladó, X., Oliver, A., Freixenet, J., Martí, R., Martí, J.: A textural approach for mass false positive reduction in mammography. Comput. Med. Imaging Graph. 33, 415–422 (2009)

    Article  Google Scholar 

  23. Lu, S., Bottema, M.J.: Structural image texture and early detection of breast cancer. In: Proceedings of the 2003 APRS Workshop on Digital Image Computing, pp. 15–20 (2003)

    Google Scholar 

  24. Materka, A., Strzelecki, M.: Texture analysis methods—a review. Technical University of Lodz, Institute of Electronics, COST B11 Report, Brussels, pp. 9–11 (1998)

    Google Scholar 

  25. Mckenzie, E.: Breast Cancer Screening (2014)

    Google Scholar 

  26. Mousa, R., Munib, Q., Moussa, A.: Breast cancer diagnosis system based on wavelet analysis and fuzzy-neural. Expert Syst. Appl. 28, 713–723 (2005)

    Article  Google Scholar 

  27. Mu, T., Nandi, A.K., Rangayyan, R.M.: Classification of breast masses using selected shape, edge-sharpness, and texture features with linear and kernel-based classifiers. J. Digit. Imaging 21, 153–169 (2008)

    Article  Google Scholar 

  28. Myatt, G.J.: Making Sense of Data: A Practical Guide to Exploratory Data Analysis and Data Mining. Wiley (2007)

    Google Scholar 

  29. Nanni, L., Brahnam, S., Lumini, A.: A very high performing system to discriminate tissues in mammograms as benign and malignant. Expert Syst. Appl. 39, 1968–1971 (2012)

    Article  Google Scholar 

  30. Ojansivu, V., Heikkilä, J.: Blur insensitive texture classification using local phase quantization. In: International Conference on Image and Signal Processing, pp. 236–243. Springer, Berlin (2008)

    Google Scholar 

  31. Papakostas, G.A., Boutalis, Y.S., Karras, D.A., Mertzios, B.G.: A new class of Zernike moments for computer vision applications. Inf. Sci. 177, 2802–2819 (2007)

    Article  MathSciNet  Google Scholar 

  32. Petrick, N., Chan, H.P., Sahiner, B., Helvie, M.A.: Combined adaptive enhancement and region-growing segmentation of breast masses on digitized mammograms. Med. Phys. 26, 1642–1654 (1999)

    Article  Google Scholar 

  33. Sivic, J., Zisserman, A.: Video Google: A Text Retrieval Approach to Object Matching in Videos. USA (2003)

    Google Scholar 

  34. te Brake, G.M., Karssemeijer, N., Hendriks, J.: Automated detection of breast carcinomas not detected in a screening program. Radiology 207, 465–471 (1998)

    Article  Google Scholar 

  35. Tsai, C.-F.: Bag-of-words representation in image annotation: a review. ISRN Artificial Intell. 2012, 1–19 (2012)

    Article  Google Scholar 

  36. Varela, C., Timp, S., Karssemeijer, N.: Use of border information in the classification of mammographic masses. Phys. Med. Biol. 51, 425 (2006)

    Article  Google Scholar 

  37. Wei, C.-H., Chen, S.Y., Liu, X.: Mammogram retrieval on similar mass lesions. Comput. Methods Progr. Biomed. 106, 234–248 (2012)

    Article  Google Scholar 

  38. Wei, C.-H., Li, Y., Huang, P.J.: Mammogram retrieval through machine learning within BI-RADS standards. J. Biomed. Inform. 44, 607–614 (2011)

    Article  Google Scholar 

  39. Weka, W.: 3: Data Mining Software in Java. University of Waikato, Hamilton, New Zealand (www.cs.waikato.ac.nz/ml/weka) (2011)

  40. WHO.: Latest World Cancer Statistics, International Agency for Research on Cancer (IARC) [Online]. World Health Organisation. [Accessed] (2016)

    Google Scholar 

  41. Yang, M., Kpalma, K., Ronsin, J.: A survey of shape feature extraction techniques. Pattern Recogn. 43–90 (2008)

    Google Scholar 

  42. Zhang, J., Tan, T.: Brief review of invariant texture analysis methods. Pattern Recogn. 35, 735–747 (2002)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pradnya Kulkarni .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Kulkarni, P., Stranieri, A. (2020). Pixel N-Grams Representation for Medical Image Classification. In: Bhattacharyya, S., Konar, D., Platos, J., Kar, C., Sharma, K. (eds) Hybrid Machine Intelligence for Medical Image Analysis. Studies in Computational Intelligence, vol 841. Springer, Singapore. https://doi.org/10.1007/978-981-13-8930-6_2

Download citation

  • DOI: https://doi.org/10.1007/978-981-13-8930-6_2

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-13-8929-0

  • Online ISBN: 978-981-13-8930-6

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics