Skip to main content

Gravity Wave Characteristics in the Winter Antarctic Mesosphere by a Long-Term Numerical Simulation Using a Non-hydrostatic General Circulation Model

  • Chapter
  • First Online:
Dynamical Characteristics of Inertia-Gravity Waves in the Antarctic Mesosphere

Part of the book series: Springer Theses ((Springer Theses))

  • 182 Accesses

Abstract

In this chapter, a long-term simulation using the high-top non-hydrostatic general circulation model is carried out to examine mesospheric gravity waves observed by the PANSY radar in five months from April to August 2016. Successive runs lasting 7 days are made from the MERRA reanalysis data with an overlap of two days between each run. The data for analyses are prepared by extracting the last five days of each simulation. The simulated wind fields are closely compared to the PANSY radar observations and the MERRA reanalysis data. Moreover, statistical characteristics of the mesospheric disturbances simulated by NICAM such as ω spectra of each variable, kinetic and potential energies, momentum and energy fluxes of gravity waves are examined.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 54.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Alexander, M. J., & Barnet, C. (2007). Using satellite observations to constrain parameterizations of gravity wave effects for global models. Journal of the Atmospheric Sciences, 64, 1652–1665.

    Article  ADS  Google Scholar 

  2. Baumgaertner, A. J. G., McDonald, A. J., Hibbins, R. E., Fritts, D. C., Murphy, D. J., & Vincent, R. A. (2008). Short-period planetary waves in the Antarctic middle atmosphere. Journal of Atmospheric and Solar-Terrestrial Physics, 70(10), 1336–1350, https://doi.org/10.1016/j.jastp.2008.04.007.

  3. Blackman, R. B., & Tukey, J. W. (1958). The measurement of power spectra from the point of view of communications engineering. New York: Dover.

    MATH  Google Scholar 

  4. Bloom, S., Takacs, L., DaSilva, A., & Ledvina, D. (1996). Data assimilation using incremental analysis updates. Monthly Weather Review, 124, 1256–1271.

    Article  ADS  Google Scholar 

  5. Bühler, O., & McIntyre, M. E. (2005). Wave capture and wave-vortex duality. Journal of Fluid Mechanics, 534, 67–95.

    Article  ADS  MathSciNet  Google Scholar 

  6. Chen, C., Chu, X., McDonald, A. J., Vadas, S. L., Yu, Z., Fong, W., & Lu, X. (2013). Inertia—gravity waves in Antarctica: A case study using simultaneous lidar and radar measurements at McMurdo/Scott Base (77.8° S, 166.7° E). Journal of Geophysical Research: Atmospheres118(7), 2794–2808.

    Google Scholar 

  7. Chen, C., Chu, X., Zhao, J., Roberts, B. R., Yu, Z., Fong, W., Lu, X., & Smith, J. A. (2016). Lidar observations of persistent gravity waves with periods of 3–10 h in the Antarctic middle and upper atmosphere at McMurdo (77.83_S, 166.67_E). Journal of Geophysical Research: Space Physics, 121, 1483–1502. https://doi.org/10.1002/2015ja022127.

  8. Geller, M. A., Alexander, M., Love, P. T., Bacmeister, J., Ern, M., Hertzog, A., Zhou, T. (2013). A comparison between gravity wave momentum fluxes in observations and climate models. Journal of Climate, 26(17).

    Google Scholar 

  9. Hertzog, A., Boccara, G., Vincent, R. A., Vial, F., & Cocquerez, P. (2008). Estimation of gravity wave momentum flux and phase speeds from quasi-Lagrangian stratospheric balloon flights. Part II: Results from the Vorcore campaign in Antarctica. Journal of the Atmospheric Sciences, 65(10), 3056–3070.

    Google Scholar 

  10. Kalisch, S., Preusse, P., Ern, M., Eckermann, S. D., & Riese, M. (2014). Differences in gravity wave drag between realistic oblique and assumed vertical propagation. Journal of Geophysical Research: Atmospheres, 119, 10081–10099.

    Google Scholar 

  11. Lane, T. P., & Knievel, J. C. (2005). Some effects of model resolution on simulated gravity waves generated by deep, mesoscale convection. Journal of the Atmospheric Sciences, 62, 3408–3419.

    Article  ADS  Google Scholar 

  12. Muraoka, Y., Fukao, S., Sugiyama, T., Yamamoto, M., Nakamura, T., Tsuda, T., et al. (1990). Frequency-spectra of mesospheric wind fluctuations observed with the MU radar. Geophysical Research Letters, 17(11), 1897–1900. https://doi.org/10.1029/Gl017i011p01897.

    Article  ADS  Google Scholar 

  13. Murphy, D. J., French, W. J. R., & Vincent, R. A. (2007). Long-Period Planetary Waves in the mesosphere and lower thermosphere above davis, antarctica. Journal of Atmospheric and Solar-Terrestrial Physics. https://doi.org/10.1016/j.jastp.2007.06.008.

    Article  Google Scholar 

  14. Plougonven, R., Hertzog, A., & Guez, L. (2013). Gravity waves over Antarctica and the Southern Ocean: Consistent momentum fluxes in mesoscale simulations and stratospheric balloon observations. Quarterly Journal of the Royal Meteorological Society, 139, 101–118.

    Article  ADS  Google Scholar 

  15. Rienecker, M., et al. (2011) MERRA: NASA’s modernera retrospective analysis for research and applications. Journal of Climate, 24, 3648–3624.

    Google Scholar 

  16. Sakazaki, T., Fujiwara, M., Zhang, X., Hagan, M., & Forbes, J. (2012). Diurnal tides in the troposphere to the lower mesosphere as deduced from TIMED/SABER satellite data and six global reanalysis data sets. Journal Geophysical Research, 117, D13108. https://doi.org/10.1029/2011JD017117.

    Article  ADS  Google Scholar 

  17. Sato, K. (1990). Vertical wind disturbances in the troposphere and lower stratosphere observed by the MU radar. Journal of the Atmospheric Sciences, 47, 2803–2817.

    Article  ADS  Google Scholar 

  18. Sato, K., Kohma, M., Tsutsumi, M., & Sato, T. (2017). Frequency spectra and vertical profiles of wind fluctuations in the summer Antarctic mesosphere revealed by MST radar observations. Journal of Geophysical Research: Atmospheres, 122(1), 3–19.

    ADS  Google Scholar 

  19. Sato, K., Kumakura, T., & Takahashi, M. (1999). Gravity waves appearing in a high-resolution GCM simulation. Journal of the Atmospheric Sciences, 56(8), 1005–1018.

    Article  ADS  Google Scholar 

  20. Sato, K., Tateno, S., Watanabe, S., & Kawatani, Y. (2012). Gravity wave characteristics in the Southern Hemisphere revealed by a high-resolution middle-atmosphere general circulation model. Journal of the Atmospheric Sciences, 69, 1378–1396. https://doi.org/10.1175/JAS-D-11-0101.1.

    Article  ADS  Google Scholar 

  21. Sato, K., Tsutsumi, M., Sato, T., Nakamura, T., Saito, A., Tomikawa, Y., et al. (2014). Program of the antarctic syowa MST/IS Radar (PANSY). J. Atmos. Solar-Terr. Phys., 118A, 2–15.

    Article  ADS  Google Scholar 

  22. Sato, K., Watanabe, S., Kawatani, Y., Tomikawa, Y., Miyazaki, K., & Takahashi, M. (2009). On the origins of mesospheric gravity waves. Geophysical Reseach Letters, 36, L19801. https://doi.org/10.1029/2009GL039908.

    Article  ADS  Google Scholar 

  23. Satoh, M., Tomita, H., Yashiro, H., Miura, H., Kodama, C., Seiki, T., et al. (2014). The non-hydrostatic icosahedral atmospheric model: Description and development. Progress in Earth and Planetary Science, 1, 1–32.

    Article  Google Scholar 

  24. Shibuya, R., Sato, K., Tomikawa, Y., Tsutsumi, M., & Sato, T. (2015). A study of multiple tropopause structures caused by inertia-gravity waves in the Antarctica. Journal of the Atmospheric Sciences, 72, 2109–2130.

    Article  ADS  Google Scholar 

  25. Shibuya, R., Sato, K., Tsutsumi, M., Sato, T., Tomikawa, Y., Nishimura, K., & Kohma, M. (2017). Quasi-12 h inertia-gravity waves in the lower mesosphere observed by the PANSY radar at Syowa Station (39.6° E, 69.0° S), Atmospheric Chemistry and Physics, 17, 6455–6476, https://doi.org/10.5194/acp-17-6455-2017.

  26. Shibuya, R., & Sato, K. (2019). A study of the dynamical characteristics of inertia-gravity waves in the Antarctic mesosphere combining the PANSY radar and a non-hydrostatic general circulation model. Atmospheric Chemistry and Physics, 19, 3395–3415. https://doi.org/10.5194/acp-19-3395-2019.

  27. Watanabe, S., Sato, K., Kawatani, Y., & Takahashi, M. (2015). Vertical resolution dependence of gravity wave momentum flux simulated by an atmospheric general circulation model. Geoscientific Model Development, 8, 1637–1644. https://doi.org/10.5194/gmd-8-1637-2015.

    Article  ADS  Google Scholar 

  28. Wu, W.-S., Purser, R. J., & Parrish, D. F. (2002). Three-dimensional variational analysis with spatially inhomogeneous covariances. Monthly Weather Review, 130, 2905–2916.

    Article  ADS  Google Scholar 

  29. Yasui, R., Sato, K., & Tsutsumi, M. (2016). Seasonal and interannual variation of mesospheric gravity waves based on MF radar observations over 15 years at Syowa Station in the Antarctic. SOLA, 12, 46–50. https://doi.org/10.2151/sola.2016-010.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ryosuke Shibuya .

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Shibuya, R. (2020). Gravity Wave Characteristics in the Winter Antarctic Mesosphere by a Long-Term Numerical Simulation Using a Non-hydrostatic General Circulation Model. In: Dynamical Characteristics of Inertia-Gravity Waves in the Antarctic Mesosphere. Springer Theses. Springer, Singapore. https://doi.org/10.1007/978-981-13-9085-2_3

Download citation

Publish with us

Policies and ethics