Skip to main content

Compressive Sensing for Three-Dimensional Brain Magnetic Resonance Imaging

  • Conference paper
  • First Online:
Recent Trends in Image Processing and Pattern Recognition (RTIP2R 2018)

Abstract

Three dimensional (3D) Magnetic Resonance Imaging (MRI) reconstructions depend heavily on the imaging speed. Magnetic Resonance (MR) images consist of large volume of redundant and sparse data. Therefore, the need to reduce this data without degrading the image information. In Fourier Domain, sparse nature of MR images enables image reconstruction with fewer Fourier coefficients. Fourier Transform (FT) maps the image into the frequency domain using fixed and same size window throughout the analysis. In our paper, a method to perform compressive sensing for MR image is presented. Anisotropic filtering using Active Contour Modelling is performed to smoothen the image in order to preserve edge information. MR image is converted into Fourier Domain using Discrete Fourier Transform (DFT). l1 and l2 reconstruction algorithms are used to reconstruct the images using minimum coefficients that have maximum information.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Candes, E., Tao, T.: Near optimal signal recovery from random projections: universal encoding strategies. IEEE Trans. Inf. Theory 52(1) (2006)

    Article  MathSciNet  Google Scholar 

  2. Chavez-Roman, H., Ponomaryov, V.: Super resolution image generation using wavelet domain interpolation with edge extraction via a sparse representation. IEEE Geosci. Remote Sens. Lett. 11(10), 1777–1781 (2014)

    Article  Google Scholar 

  3. Donoho, D.: Compressed sensing. IEEE Trans. Inf. Theory 52(4), 1289–1306 (2006)

    Article  MathSciNet  Google Scholar 

  4. Fang, L., Wu, L., Zhang, Y.: A novel demodulation system based on continuous wavelet transform. Math. Probl. Eng. 9 (2015)

    Google Scholar 

  5. Lustig, M., Donoho, D.L., Santos, J.M., Pauly, J.M.: Compressed sensing MRI. IEEE Sign. Process. Mag. 25(2), 72 (2008)

    Article  Google Scholar 

  6. Perona, P., Malik, J.: Scale-space and edge detection using anisotropic diffusion. IEEE Trans. Pattern Anal. Mach. Intell. 12(7), 629–639 (2017)

    Article  Google Scholar 

  7. Pruessmann, K., Weiger, M., Scheidegger, M., Boesiger, P.: SENSE: sensitivity encoding for fast MRI. Magn. Reson. Med 42(5), 952–962 (1999)

    Article  Google Scholar 

  8. Ruikar, D.D., Sawat, D.D., Santosh, K.C., Hegadi, R.S.: 3D imaging in biomedical applications: a systematic review (Chap 8). In: Medical Imaging: Artificial Intelligence, Image Recognition, and Machine Learning Techniques. CRC Press (2019). ISBN 9780367139612

    Google Scholar 

  9. Sandilya, M., Nirmala, S.: Compressed sensing trends in magnetic resonance imaging. Eng. Sci. Technol. Int. J. 204, 1342–1352 (2017)

    Article  Google Scholar 

  10. Schwartz, D., Lemoine, D., Poiseau, E., Barillot, C.: Registration of MEG/EEG data with 3D MRI: methodology and precision issues. Brain Topogr. 9(2), 101–116 (1996)

    Article  Google Scholar 

  11. Zhang, Y., Wu, L.B.S.P., Dong, Z.: A two-level iterative reconstruction method for compressed sensing MRI. J. Electromagn. Waves Appl. 25(8–9), 1081–1091 (2011)

    Article  Google Scholar 

Download references

Acknowledgements

MRI data was downloaded from Open Access Series of Imaging Studies (OASIS) http://www.oasis-brains.org/ for making the neuroimaging datasets freely available to the scientific community. The codes were implement on MATLAB R2017b.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to H. Anitha .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

D’souza, S., Anitha, H., Kotegar, K. (2019). Compressive Sensing for Three-Dimensional Brain Magnetic Resonance Imaging. In: Santosh, K., Hegadi, R. (eds) Recent Trends in Image Processing and Pattern Recognition. RTIP2R 2018. Communications in Computer and Information Science, vol 1036. Springer, Singapore. https://doi.org/10.1007/978-981-13-9184-2_26

Download citation

  • DOI: https://doi.org/10.1007/978-981-13-9184-2_26

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-13-9183-5

  • Online ISBN: 978-981-13-9184-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics