Skip to main content

Medicinal Plant-Associated Microbes as a Source of Protection and Production of Crops

  • Chapter
  • First Online:
Medically Important Plant Biomes: Source of Secondary Metabolites

Part of the book series: Microorganisms for Sustainability ((MICRO,volume 15))

Abstract

Symbiosis research has been undertaken by researchers working independently of one another and often focused on a broad range of symbiotic interactions ranging from bipartite microbial consortia to multicellular hosts and their complex microbial communities. Recent investigations in symbiosis can impact areas such as agriculture sustainability, where a basic understanding of plant-microbe symbiosis will provide foundational information on the increasingly important issue of climate change. In this respect, in this chapter, we provided comments and references to finally establish symbiosis as an overdue central discipline of biological science. The interactions between medicinal plants and beneficial microorganisms, such as some Actinobacteria, Firmicutes, etc., proved the importance of these interactions to both symbionts in terms of enhanced adaptability, survival, and fitness of plants under different environmental stresses.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Achari GA, Ramesh R (2014) Diversity, biocontrol, and plant growth promoting abilities of xylem residing bacteria from solanaceous crops. Int J Microbiol 2014:296521

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Ahmad P, Kumar A, Ashraf M, Akram NA (2012) Salt-induced changes in photosynthetic activity and oxidative defense system of three cultivars of mustard (Brassica juncea L.). Afr J Biotechnol 11:2694–2703

    CAS  Google Scholar 

  • Arkhipova T, Prinsen E, Veselov S, Martinenko E, Melentiev A, Kudoyarova G (2007) Cytokinin producing bacteria enhance plant growth in drying soil. Plant Soil 292:305–315

    Article  CAS  Google Scholar 

  • Ashraf M, Hasnain S, Berge O, Mahmood T (2004) Inoculating wheat seedlings with exopolysaccharide-producing bacteria restricts sodium uptake and stimulates plant growth under salt stress. Biol Fertil Soils 40:157–162

    CAS  Google Scholar 

  • Atanasov AG et al (2015) Discovery and resupply of pharmacologically active plant-derived natural products: a review. Biotechnol Adv 33:1582–1614

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Bacon C, Hinton D, Snook M (2005) Tentative identification of Bacillus mojavensis antifungal inhibitor. Phytopathology 95:S5

    Google Scholar 

  • Bafana A (2013) Diversity and metabolic potential of culturable root-associated bacteria from Origanum vulgare in sub-Himalayan region. World J Microbiol Biotechnol 29:63–74

    Article  PubMed  CAS  Google Scholar 

  • Baker K, Cook RJ (1974) Biological control of plant pathogens. WH Freeman, San Francisco, p 433

    Google Scholar 

  • Bakker PA, Berendsen RL, Doornbos RF, Wintermans PC, Pieterse CM (2013) The rhizosphere revisited: root microbiomics. Front Plant Sci 4:165

    Article  PubMed  PubMed Central  Google Scholar 

  • Barka EA, Nowak J, Clément C (2006) Enhancement of chilling resistance of inoculated grapevine plantlets with a plant growth-promoting rhizobacterium, Burkholderia phytofirmans strain PsJN. Appl Environ Microbiol 72:7246–7252

    Article  CAS  Google Scholar 

  • Baugh CL, Escobar B (2007) The genus Bacillus and genus Trichoderma for agricultural bio-augmentation. Rice Farm Mag 1:1–4

    Google Scholar 

  • Bertalan M et al (2009) Complete genome sequence of the sugarcane nitrogen-fixing endophyte Gluconacetobacter diazotrophicus Pal5. BMC Genomics 10:450. https://doi.org/10.1186/1471-2164-10-450

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Bhuvaneswari S, Madhavan S, Panneerselvam A (2013) Enumeration of endophytic bacteria from Solanum trilobatum L. World J Pharm Res 3:2270–2279

    Google Scholar 

  • Boor KJ (2006) Bacterial stress responses: what doesn’t kill them can make them stronger. PLoS Biol 4:e23

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Boyle C, Götz M, Dammann-Tugend U, Schulz B (2001) Endophyte-host interactions III. Local vs. systemic colonization. Symbiosis 31:259–281

    Google Scholar 

  • Carroll G (2011) Forest endophytes: pattern and process. Can J Bot 73:1316–1324

    Article  Google Scholar 

  • Castillo UF et al (2002) Munumbicins, wide-spectrum antibiotics produced by Streptomyces NRRL 30562, endophytic on Kennedia nigriscansa. Microbiology 148:2675–2685

    Article  PubMed  CAS  Google Scholar 

  • Castillo U et al (2003) Kakadumycins, novel antibiotics from Streptomyces sp. NRRL 30566, an endophyte of Grevillea pteridifolia. FEMS Microbiol Lett 224:183–190

    Article  PubMed  CAS  Google Scholar 

  • Castillo UF et al (2006) Munumbicins E-4 and E-5: novel broad-spectrum antibiotics from Streptomyces NRRL 3052 FEMS. Microbiol Lett 255:296–300

    Article  CAS  Google Scholar 

  • Chang CL, Lin Y, Bartolome AP, Chen Y-C, Chiu S-C, Yang W-C (2013) Herbal therapies for type 2 diabetes mellitus: chemistry, biology, and potential application of selected plants and compounds. Evid-Based Complement Alternat Med 2013:378657

    PubMed  PubMed Central  Google Scholar 

  • Chowdhury SP, Hartmann A, Gao X, Borriss R (2015a) Biocontrol mechanism by root-associated Bacillus amyloliquefaciens FZB42 – a review. Front Microbiol 6:780

    Article  PubMed  PubMed Central  Google Scholar 

  • Chowdhury SP et al (2015b) Cyclic lipopeptides of Bacillus amyloliquefaciens subsp. plantarum colonizing the lettuce rhizosphere enhance plant defense responses toward the bottom rot pathogen Rhizoctonia solani. Mol Plant-Microbe Interact 28:984–995

    Article  PubMed  CAS  Google Scholar 

  • Compant S, Reiter B, Sessitsch A, Nowak J, Clement C, Ait Barka E (2005) Endophytic colonization of Vitis vinifera L. by plant growth-promoting bacterium Burkholderia sp. strain PsJN. Appl Environ Microbiol 71:1685–1693. https://doi.org/10.1128/aem.71.4.1685-1693.2005

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Cook RJ, Baker KF (1983) The nature and practice of biological control of plant pathogens. Am Phytopathol Soc

    Google Scholar 

  • Coombs JT, Franco CMM (2003) Visualization of an endophytic Streptomyces species in wheat seed. Appl Environ Microbiol 69:4260–4262

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Cushnie TT, Cushnie B, Lamb AJ (2014) Alkaloids: an overview of their antibacterial, antibiotic-enhancing and antivirulence activities. Int J Antimicrob Agents 44:377–386

    Article  PubMed  CAS  Google Scholar 

  • Daffonchio D, Hirt H, Berg G (2015) Plant-microbe interactions and water management in arid and saline soils. In: Principles of plant-microbe interactions. Springer, Cham, pp 265–276

    Google Scholar 

  • Dai C, Yu B, Xu Z, Yuan S (2003) Effect of environmental factors on the growth and fatty acid composition of five endophytic fungi from Sapium sebiferum. Ying Yong Sheng Tai Xue Bao 14:1525–1528

    PubMed  CAS  Google Scholar 

  • Dell’Amico E, Cavalca L, Andreoni V (2008) Improvement of Brassica napus growth under cadmium stress by cadmium-resistant rhizobacteria. Soil Biol Biochem 40:74–84

    Article  CAS  Google Scholar 

  • Deng Y et al (2011) Complete genome sequence of Bacillus subtilis BSn5, an endophytic bacterium of Amorphophallus konjac with antimicrobial activity for the plant pathogen Erwinia carotovora subsp. Carotovora J Bacteriol 193:2070–2071

    Article  PubMed  CAS  Google Scholar 

  • Döbereiner J (1997) Biological nitrogen fixation in the tropics: social and economic contributions. Soil Biol Biochem 29:771–774

    Article  Google Scholar 

  • Dong Z, Canny MJ, McCully ME, Roboredo MR, Cabadilla CF, Ortega E, Rodes R (1994) A nitrogen-fixing endophyte of sugarcane stems (a new role for the apoplast). Plant Physiol 105:1139–1147

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Droby S (2005) Improving quality and safety of fresh fruits and vegetables after harvest by the use of biocontrol agents and natural materials. In: I international symposium on natural preservatives in food systems 709, p 45–52

    Google Scholar 

  • Ebrahim MK, Saleem A-R (2017) Alleviating salt stress in tomato inoculated with mycorrhizae: photosynthetic performance and enzymatic antioxidants. J Taibah Univ Sci 11:850–860

    Article  Google Scholar 

  • Egamberdieva D, da Silva JAT (2015) Medicinal plants and PGPR: a new frontier for phytochemicals. In: Plant-growth-promoting rhizobacteria (PGPR) and medicinal plants. Springer, Cham, pp 287–303

    Chapter  Google Scholar 

  • Egamberdieva D, Wirth S, Behrendt U, Ahmad P, Berg G (2017a) Antimicrobial activity of medicinal plants correlates with the proportion of antagonistic endophytes. Front Microbiol 8:199

    PubMed  PubMed Central  Google Scholar 

  • Egamberdieva D, Wirth SJ, Shurigin VV, Hashem A, Abd_Allah EF (2017b) Endophytic bacteria improve plant growth, symbiotic performance of chickpea (Cicer arietinum L.) and induce suppression of root rot caused by Fusarium solani under salt stress. Front Microbiol 8:1887

    Article  PubMed  PubMed Central  Google Scholar 

  • El-Deeb B, Fayez K, Gherbawy Y (2013) Isolation and characterization of endophytic bacteria from Plectranthus tenuiflorus medicinal plant in Saudi Arabia desert and their antimicrobial activities. J Plant Interact 8:56–64

    Article  CAS  Google Scholar 

  • El-Gendy MM, EL-Bondkly AM (2010) Production and genetic improvement of a novel antimycotic agent, saadamycin, against dermatophytes and other clinical fungi from endophytic Streptomyces sp. Hedaya48. J Ind Microbiol Biotechnol 37:831–841

    Article  CAS  PubMed  Google Scholar 

  • Erdogan O, Benlioglu K (2010) Biological control of Verticillium wilt on cotton by the use of fluorescent Pseudomonas spp. under field conditions. Biol Control 53:39–45

    Article  Google Scholar 

  • Esitken A, Pirlak L, Turan M, Sahin F (2006) Effects of floral and foliar application of plant growth promoting rhizobacteria (PGPR) on yield, growth and nutrition of sweet cherry. Sci Hortic 110:324–327

    Article  CAS  Google Scholar 

  • Ezra D et al (2004) Coronamycins, peptide antibiotics produced by a verticillate Streptomyces sp.(MSU-2110) endophytic on Monstera sp. Microbiology 150:785–793

    Article  CAS  PubMed  Google Scholar 

  • Fernandes P, Ferreira BS, Cabral JMS (2003) Solvent tolerance in bacteria: role of efflux pumps and cross-resistance with antibiotics. Int J Antimicrob Agents 22:211–216

    Article  PubMed  CAS  Google Scholar 

  • Furnkranz M, Lukesch B, Muller H, Huss H, Grube M, Berg G (2012) Microbial diversity inside pumpkins: microhabitat-specific communities display a high antagonistic potential against phytopathogens. Microb Ecol 63:418–428

    Article  PubMed  CAS  Google Scholar 

  • Gardner JM, Feldman AW, Zablotowicz RM (1982) Identity and behavior of xylem-residing bacteria in rough lemon roots of Florida citrus trees. Appl Environ Microbiol 43:1335–1342

    PubMed  PubMed Central  CAS  Google Scholar 

  • Gasser I et al (2011) Analysis of the endophytic lifestyle and plant growth promotion of Burkholderia terricola ZR2-12. Plant Soil 347:125

    Article  CAS  Google Scholar 

  • Golinska P, Wypij M, Agarkar G, Rathod D, Dahm H, Rai M (2015) Endophytic actinobacteria of medicinal plants: diversity and bioactivity. Antonie Van Leeuwenhoek 108:267–289

    Article  PubMed  PubMed Central  Google Scholar 

  • Graner G, Persson P, Meijer J, Alstrom S (2003) A study on microbial diversity in different cultivars of Brassica napus in relation to its wilt pathogen, Verticillium longisporum. FEMS Microbiol Lett 224:269–276

    Article  PubMed  CAS  Google Scholar 

  • Guo B, Wang Y, Sun X, Tang K (2008) Bioactive natural products from endophytes: a review. Appl Biochem Microbiol 44:136–142

    Article  CAS  Google Scholar 

  • Hameeda B, Harini G, Rupela O, Wani S, Reddy G (2008) Growth promotion of maize by phosphate-solubilizing bacteria isolated from composts and macrofauna. Microbiol Res 163:234–242

    Article  CAS  PubMed  Google Scholar 

  • Hashem A, Abd_Allah E, Alqarawi A, Al-Huqail A, Shah M (2016) Induction of osmoregulation and modulation of salt stress in Acacia gerrardii benth. by arbuscular mycorrhizal fungi and Bacillus subtilis (BERA 71). Biomed Res Int 2016:1–11

    Article  CAS  Google Scholar 

  • Horikoshi K (2008) Past, present and future of extremophiles. Extremophiles 12:1–2

    Article  PubMed  Google Scholar 

  • Hsouna AB, Trigui M, Mansour RB, Jarraya RM, Damak M, Jaoua S (2011) Chemical composition, cytotoxicity effect and antimicrobial activity of Ceratonia siliqua essential oil with preservative effects against Listeria inoculated in minced beef meat. Int J Food Microbiol 148:66–72

    Article  PubMed  CAS  Google Scholar 

  • Huang B, Lv C, Zhuang P, Zhang H, Fan L (2011) Endophytic colonisation of Bacillus subtilis in the roots of Robinia pseudoacacia L. Plant Biol 13:925–931

    Article  PubMed  CAS  Google Scholar 

  • Igarashi Y (2004) Screening of novel bioactive compounds from plant-associated actinomycetes. Actinomycetologica 18:63–66

    Article  CAS  Google Scholar 

  • Igarashi Y, Miura S-S, Fujita T, Furumai T (2006) Pterocidin, a cytotoxic compound from the endophytic Streptomyces hygroscopicus. J Antibiot 59:193

    Article  CAS  Google Scholar 

  • Igarashi Y et al (2007) Antitumor anthraquinones from an endophytic actinomycete Micromonospora lupini sp. Nov Bioorg Med Chem Lett 17:3702–3705

    Article  PubMed  CAS  Google Scholar 

  • James EK, Reis VM, Olivares FL, Baldani JI, Döbereiner J (1994) Infection of sugar cane by the nitrogen-fixing bacterium Acetobacter diazotrophicus. J Exp Bot 45:757–766

    Article  CAS  Google Scholar 

  • James EK, Olivares FL, de Oliveira AL, dos Reis FB Jr, da Silva LG, Reis VM (2001) Further observations on the interaction between sugar cane and Gluconacetobacter diazotrophicus under laboratory and greenhouse conditions. J Exp Bot 52:747–760

    Article  PubMed  CAS  Google Scholar 

  • James EK et al (2002) Infection and colonization of rice seedlings by the plant growth-promoting bacterium Herbaspirillum seropedicae Z67. Mol Plant-Microbe Interact 15:894–906

    Article  PubMed  CAS  Google Scholar 

  • Janisiewicz WJ, Korsten L (2002) Biological control of postharvest diseases of fruits. Annu Rev Phytopathol 40:411–441

    Article  PubMed  CAS  Google Scholar 

  • Jha Y, Subramanian R (2014) PGPR regulate caspase-like activity, programmed cell death, and antioxidant enzyme activity in paddy under salinity. Physiol Mol Biol Plants 20:201–207

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Jin H et al (2014) Characterization of rhizosphere and endophytic bacterial communities from leaves, stems and roots of medicinal Stellera chamaejasme L. Syst Appl Microbiol 37:376–385

    Article  PubMed  Google Scholar 

  • Jošić D, Protolipac K, Starović M, Stojanović S, Pavlović S, Miladinović M, Radović S (2012) Phenazines producing Pseudomonas isolates decrease Alternaria tenuissima growth, pathogenicity and disease incidence on cardoon. Arch Biol Sci 64:1495–1503

    Article  Google Scholar 

  • Kaplan D et al (2013) A survey of the microbial community in the rhizosphere of two dominant shrubs of the Negev Desert highlands, Zygophyllum dumosum (Zygophyllaceae) and Atriplex halimus (Amaranthaceae), using cultivation-dependent and cultivation-independent methods. Am J Bot 100:1713–1725

    Article  PubMed  Google Scholar 

  • Kavitha A, Prabhakar P, Vijayalakshmi M, Venkateswarlu Y (2009) Production of bioactive metabolites by Nocardia levis MK-VL_113. Lett Appl Microbiol 49:484–490

    Article  PubMed  CAS  Google Scholar 

  • Khan AL et al (2014) Bacterial endophyte Sphingomonas sp. LK11 produces gibberellins and IAA and promotes tomato plant growth. J Microbiol 52:689–695

    Article  CAS  PubMed  Google Scholar 

  • Khatiwora E, Adsul VB, Kulkarni M, Deshpande N, Kashalkar R (2012) Antibacterial activity of dibutyl phthalate: a secondary metabolite isolated from Ipomoea carnea stem. J Pharm Res 5:150–152

    Google Scholar 

  • Kim N, Shin JC, Kim W, Hwang BY, Kim BS, Hong Y-S, Lee D (2006) Cytotoxic 6-alkylsalicylic acids from the endophytic Streptomyces laceyi. J Antibiot 59:797

    Article  CAS  Google Scholar 

  • King EO, Ward MK, Raney DE (1954) Two simple media for the demonstration of pyocyanin and fluorescin. J Lab Clin Med 44:301–307

    PubMed  CAS  Google Scholar 

  • Knight C, Bowman MJ, Frederick L, Day A, Lee C, Dunlap CA (2018) The first report of antifungal lipopeptide production by a Bacillus subtilis subsp. inaquosorum strain. Microbiol Res 216:40–46

    Article  PubMed  CAS  Google Scholar 

  • Krause A, Bischoff B, Miche L, Battistoni F, Reinhold-Hurek B (2011) Exploring the function of alcohol dehydrogenases during the endophytic life of Azoarcus Sp. strain BH72. Mol Plant-Microbe Interact 24:1325–1332

    Article  PubMed  CAS  Google Scholar 

  • Krid S, Triki MA, Gargouri A, Rhouma A (2012) Biocontrol of olive knot disease by Bacillus subtilis isolated from olive leaves. Ann Microbiol 62:149–154

    Article  Google Scholar 

  • Lacava PT, Li W, Araújo WL, Azevedo JLC, Hartung JS (2007) The endophyte Curtobacterium flaccumfaciens reduces symptoms caused by Xylella fastidiosa in Catharanthus roseus. J Microbiol 45:388–393

    PubMed  CAS  Google Scholar 

  • Lemanceau P, Bauer P, Kraemer S, Briat J-F (2009) Iron dynamics in the rhizosphere as a case study for analyzing interactions between soils, plants and microbes. Plant Soil 321:513–535

    Article  CAS  Google Scholar 

  • Leveau JH, Lindow SE (2005) Utilization of the plant hormone indole-3-acetic acid for growth by Pseudomonas putida strain 1290. Appl Environ Microbiol 71:2365–2371

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Lewis GP (2005) Legumes of the world. Royal Botanic Gardens, Kew

    Google Scholar 

  • Li L et al. (2018) Synergistic plant–microbe interactions between endophytic bacterial communities and the medicinal plant Glycyrrhiza uralensis F. Antonie Van Leeuwenhoek 111(10): 1735–1748

    Article  PubMed  Google Scholar 

  • Liarzi O, Bucki P, Miyara SB, Ezra D (2016) Bioactive volatiles from an endophytic Daldinia cf. concentrica isolate affect the viability of the plant parasitic nematode Meloidogyne javanica. PLoS One 11:e0168437

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Lin Z-J, Lu X-M, Zhu T-J, Fang Y-C, Gu Q-Q, Zhu W (2008) GPR12 selections of the metabolites from an endophytic Streptomyces sp. asociated with Cistanches deserticola. Arch Pharm Res 31:1108

    Article  PubMed  CAS  Google Scholar 

  • Liu Y-H et al (2016) Culturable endophytic bacteria associated with medicinal plant Ferula songorica: molecular phylogeny, distribution and screening for industrially important traits 3. Biotech 6:209

    CAS  Google Scholar 

  • Liu Y et al (2017) Endophytic bacteria associated with endangered plant Ferula sinkiangensis KM Shen in an arid land: diversity and plant growth-promoting traits. J Arid Land 9:432–445

    Article  Google Scholar 

  • Lu C, Shen Y (2003) A new macrolide antibiotic with antitumor activity produced by Streptomyces sp. CS, a commensal microbe of Maytenus hookeri. J Antibiot 56:415–418

    Article  CAS  Google Scholar 

  • Lu C, Shen Y (2007) A novel ansamycin, naphthomycin K from Streptomyces sp. J Antibiot 60:649

    Article  CAS  Google Scholar 

  • Lugtenberg B, Kamilova F (2009) Plant-growth-promoting rhizobacteria. Annu Rev Microbiol 63:541–556

    Article  PubMed  CAS  Google Scholar 

  • Lugtenberg BJ, Dekkers L, Bloemberg GV (2001) Molecular determinants of rhizosphere colonization by Pseudomonas. Annu Rev Phytopathol 39:461–490

    Article  CAS  PubMed  Google Scholar 

  • Ma W et al (2010) The NS segment of an H5N1 highly pathogenic avian influenza virus (HPAIV) is sufficient to alter replication efficiency, cell tropism, and host range of an H7N1 HPAIV. J Virol 84:2122–2133

    Article  PubMed  CAS  Google Scholar 

  • Mahaffee WF, Kloepper JW (1997) Temporal changes in the bacterial communities of soil, rhizosphere, and endorhiza associated with field-grown cucumber (Cucumis sativus L.). Microb Ecol 34:210–223

    Article  PubMed  CAS  Google Scholar 

  • Malfanova N, Kamilova F, Validov S, Shcherbakov A, Chebotar V, Tikhonovich I, Lugtenberg B (2011) Characterization of Bacillus subtilis HC8, a novel plant-beneficial endophytic strain from giant hogweed. Microb Biotechnol 4:523–532

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Malfanova N, Lugtenberg BJJ, Berg G (2013) Bacterial endophytes: who and where, and what are they doing there? In: de Bruijn FJ (ed) Molecular microbial ecology of the rhizosphere, Wiley, pp 391–403

    Google Scholar 

  • Maloy OC (1993) Plant disease control: principles and practice. Wiley, New York

    Google Scholar 

  • Mandal S, DebMandal M (2016) Chapter 94 – Thyme (Thymus vulgaris L.) oils. In: Preedy VR (ed) Essential oils in food preservation, flavor and safety. Academic, San Diego, pp 825–834

    Chapter  Google Scholar 

  • Mansoor F, Sultana V, Ehteshamul-Haque S (2007) Enhancement of biocontrol potential of Pseudomonas aeruginosa and Paecilomyces lilacinus against root rot of mungbean by a medicinal plant Launaea nudicaulis L. Pak J Bot 39:2113–2119

    Google Scholar 

  • Misaghi IJ, Donndelinger CR (1990) Endophytic bacteria in symptom-free cotton plants. Phytopathology 80:808–811

    Article  Google Scholar 

  • Mohamad OA et al (2018a) Evaluation of the antimicrobial activity of endophytic bacterial populations from Chinese traditional medicinal plant licorice and characterization of the bioactive secondary metabolites produced by Bacillus atrophaeus against Verticillium dahliae. Front Microbiol 9:924

    Article  PubMed  PubMed Central  Google Scholar 

  • Mohamad OAA et al (2018b) Halophilic actinobacteria biological activity and potential applications. In: Extremophiles in Eurasian ecosystems: ecology, diversity, and applications. Springer, Cham, pp 333–364

    Chapter  Google Scholar 

  • Mundt JO, Hinkle NF (1976) Bacteria within ovules and seeds. Appl Environ Microbiol 32:694–698

    PubMed  PubMed Central  CAS  Google Scholar 

  • Naragani K, Mangamuri U, Muvva V, Poda S, Munaganti R (2016) Antimicrobial potential of Streptomyces cheonanensis VUK-a from mangrove origin. Int J Pharm Pharm Sci 8:53–57

    CAS  Google Scholar 

  • Nautiyal J, Christian M, Parker MG (2013) Distinct functions for RIP140 in development, inflammation, and metabolism. Trends Endocrinol Metab 24:451–459

    Article  PubMed  CAS  Google Scholar 

  • Nithya V, Halami PM (2012) Novel whole-cell reporter assay for stress-based classification of antibacterial compounds produced by locally isolated Bacillus spp. Indian J Microbiol 52:180–184

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Nongkhlaw FM, Joshi SR (2015) Investigation on the bioactivity of culturable endophytic and epiphytic bacteria associated with ethnomedicinal plants. J Infect Dev Countries 9:954–961

    Article  CAS  Google Scholar 

  • Okunishi S, Sako K, Mano H, Imamura A, Morisaki H (2005) Bacterial flora of endophytes in the maturing seed of cultivated rice (Oryza sativa). Microbes Environ 20:168–177

    Article  Google Scholar 

  • Passari AK, Mishra VK, Saikia R, Gupta VK, Singh BP (2015) Isolation, abundance and phylogenetic affiliation of endophytic actinomycetes associated with medicinal plants and screening for their in vitro antimicrobial biosynthetic potential. Front Microbiol 6:273

    Article  PubMed  PubMed Central  Google Scholar 

  • Pastor-Villaescusa B, Rangel-Huerta OD, Aguilera CM, Gil A (2015) A systematic review of the efficacy of bioactive compounds in cardiovascular disease: carbohydrates, active lipids and nitrogen compounds. Ann Nutr Metab 66:168–181

    Article  PubMed  CAS  Google Scholar 

  • Pedrosa FO et al (2011) Genome of Herbaspirillum seropedicae strain SmR1, a specialized diazotrophic endophyte of tropical grasses. PLoS Genet 7:e1002064

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Prasanth Reddy V, Ravi Vital K, Varsha P, Satyam S (2014) Review on Thymus vulgaris traditional uses and pharmacological properties. Med Aromat Plants 3:164

    Google Scholar 

  • Pujiyanto S, Lestari Y, Suwanto A, Budiarti S, Darusman LK (2012) Alpha-glucosidase inhibitor activity and characterization of endophytic actinomycetes isolated from some Indonesian diabetic medicinal plants. Int J Pharm Pharm Sci 4:327–333

    Google Scholar 

  • Pullen C et al (2002) New and bioactive compounds from Streptomyces strains residing in the wood of Celastraceae. Planta 216:162–167

    Article  PubMed  CAS  Google Scholar 

  • Puri SC, Verma V, Amna T, Qazi GN, Spiteller M (2005) An endophytic fungus from Nothapodytes foetida that produces Camptothecin. J Nat Prod 68:1717–1719

    Article  PubMed  CAS  Google Scholar 

  • Qin S et al (2012) Abundant and diverse endophytic actinobacteria associated with medicinal plant Maytenus austroyunnanensis in Xishuangbanna tropical rainforest revealed by culture-dependent and culture-independent methods. Environ Microbiol Rep 4:522–531

    Article  PubMed  Google Scholar 

  • Quadt-Hallmann A, Hallmann J, Kloepper JW (1997) Bacterial endophytes in cotton: location and interaction with other plant-associated bacteria. Can J Microbiol 43:254–259

    Article  CAS  Google Scholar 

  • Radhakrishnan R, Lee I-J (2016) Gibberellins producing Bacillus methylotrophicus KE2 supports plant growth and enhances nutritional metabolites and food values of lettuce. Plant Physiol Biochem 109:181–189

    Article  PubMed  CAS  Google Scholar 

  • Radhakrishnan R, Hashem A, Abd Allah EF (2017) Bacillus: a biological tool for crop improvement through bio-molecular changes in adverse environments. Front Physiol 8:667

    Article  PubMed  PubMed Central  Google Scholar 

  • Raio A, Puopolo G, Cimmino A, Danti R, Della Rocca G, Evidente A (2011) Biocontrol of cypress canker by the phenazine producer Pseudomonas chlororaphis subsp. aureofaciens strain M71. Biol Control 58:133–138

    Article  CAS  Google Scholar 

  • Rais A, Jabeen Z, Shair F, Hafeez FY, Hassan MN (2017) Bacillus spp., a bio-control agent enhances the activity of antioxidant defense enzymes in rice against Pyricularia oryzae. PLoS One 12:e0187412

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Ramyasmruthi S, Pallavi O, Pallavi S, Tilak K, Srividya S (2012) Chitinolytic and secondary metabolite producing Pseudomonas fluorescens isolated from Solanaceae rhizosphere effective against broad spectrum fungal phytopathogens. Asian J Plant Sci Res 2:16–24

    CAS  Google Scholar 

  • Reasoner DJ, Geldreich EE (1985) A new medium for the enumeration and subculture of bacteria from potable water. Appl Environ Microbiol 49:1–7

    PubMed  PubMed Central  CAS  Google Scholar 

  • Reinhold-Hurek B, Hurek T (2011) Living inside plants: bacterial endophytes. Curr Opin Plant Biol 14:435–443

    Article  PubMed  Google Scholar 

  • Roncato-Maccari LD et al (2003) Endophytic Herbaspirillum seropedicae expresses nif genes in gramineous plants. FEMS Microbiol Ecol 45:39–47

    Article  PubMed  CAS  Google Scholar 

  • Ryan RP, Germaine K, Franks A, Ryan DJ, Dowling DN (2008) Bacterial endophytes: recent developments and applications. FEMS Microbiol Lett 278:1–9

    Article  PubMed  CAS  Google Scholar 

  • Ryan RP et al (2009) The versatility and adaptation of bacteria from the genus. Nat Rev Microbiol 7:514–525

    Article  CAS  PubMed  Google Scholar 

  • Samish Z, Etinger-Tulczynska R (1963) Distribution of bacteria within the tissue of healthy tomatoes. Appl Microbiol 11:7–10

    PubMed  PubMed Central  CAS  Google Scholar 

  • Sanchez A, Thijs S, Beckers B, Gonzalez Chavez MDC, Weyens N, Carrillo R, Vangronsveld J (2017) Community structure and diversity of endophytic bacteria in seeds of three consecutive generations of Crotalaria pumila growing on metal mine residues. 422(1–2):51–66

    Google Scholar 

  • Sánchez-López AS, Thijs S, Beckers B, González-Chávez MC, Weyens N, Carrillo-González R, Vangronsveld J (2018) Community structure and diversity of endophytic bacteria in seeds of three consecutive generations of Crotalaria pumila growing on metal mine residues. Plant Soil 422:51–66

    Article  CAS  Google Scholar 

  • Santhanam R, Groten K, Meldau DG, Baldwin IT (2014) Analysis of plant-bacteria interactions in their native habitat: bacterial communities associated with wild tobacco are independent of endogenous jasmonic acid levels and developmental stages. PLoS One 9:e94710

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Saraf M, Pandya U, Thakkar A, Patel P (2013) Evaluation of rhizobacterial isolates for their biocontrol potential of seed borne fungal pathogens of Jatropha curcas L. Int J Innov Res Sci Eng Technol 2:7560–7566

    Google Scholar 

  • Schulz B, Wanke U, Draeger S, Aust HJ (1993) Endophytes from herbaceous plants and shrubs: effectiveness of surface sterilization methods. Mycol Res 97:1447–1450

    Article  Google Scholar 

  • Sekar S, Kandavel D (2010) Interaction of plant growth promoting rhizobacteria (PGPR) and endophytes with medicinal plants “new avenues for phytochemicals.” J Phytol 2(7):91–100

    Google Scholar 

  • Sharma D, Pramanik A, Agrawal PK (2016) Evaluation of bioactive secondary metabolites from endophytic fungus Pestalotiopsis neglecta BAB-5510 isolated from leaves of Cupressus torulosa D. Don. 3 Biotech 6:210

    Article  PubMed  PubMed Central  Google Scholar 

  • Sieber TN (2002) Fungal root endophytes. In: Waisel Y, Eshel A, Kafkafi U (eds) Plant roots: the hidden half third ed. Marcel Dekker, New York/Basel, pp 887–917

    Chapter  Google Scholar 

  • Singh JS (2013) Plant growth promoting rhizobacteria. Resonance 18:275–281

    Article  Google Scholar 

  • Singh R, Soni SK, Kalra A (2013) Synergy between Glomus fasciculatum and a beneficial Pseudomonas in reducing root diseases and improving yield and forskolin content in Coleus forskohlii Briq. under organic field conditions. Mycorrhiza 23:35–44

    Article  PubMed  Google Scholar 

  • Song S-Q, Otkur M, Zhang Z-D, Tang Q-Y (1992) Isolation and characterization of endophytic microorganisms in Glaycyrrhiza inflat Bat. from Xinjiang. Microbiology

    Google Scholar 

  • Song M, Yun HY, Kim YH (2014) Antagonistic Bacillus species as a biological control of ginseng root rot caused by Fusarium cf. incarnatum. J Ginseng Res 38:136–145

    Article  PubMed  Google Scholar 

  • Strobel G, Daisy B (2003) Bioprospecting for microbial endophytes and their natural products. Microbiol Mol Biol Rev 67:491–502

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Strobel GA, Dirkse E, Sears J, Markworth C (2001) Volatile antimicrobials from Muscodor albus, a novel endophytic fungus. Microbiology 147:2943–2950

    Article  PubMed  CAS  Google Scholar 

  • Strobel G, Daisy B, Castillo U, Harper J (2004) Natural products from endophytic microorganisms. J Nat Prod 67:257–268

    Article  PubMed  CAS  Google Scholar 

  • Sturz AV (1995) The role of endophytic bacteria during seed piece decay and potato tuberization. Plant Soil 175:257–263

    Article  CAS  Google Scholar 

  • Suresh A, Pallavi P, Srinivas P, Kumar VP, Reddy SR (2010) Plant growth promoting activities of fluorescent pseudomonads associated with some crop plants. Afr J Microbiol Res 4:1491–1494

    CAS  Google Scholar 

  • Suryanarayanan TS, Wittlinger SK, Faeth SH (2005) Endophytic fungi associated with cacti in Arizona. Mycol Res 109:635–639

    Article  PubMed  Google Scholar 

  • Suzuki T, Shimizu M, Meguro A, Hasegawa S, Nishimura T, Kunoh H (2005) Visualization of infection of an endophytic actinomycete Streptomyces galbus in leaves of tissue-cultured. Rhododendron 19:7–12

    Google Scholar 

  • Taechowisan T, Lu C, Shen Y, Lumyong S (2005) Secondary metabolites from endophytic Streptomyces aureofaciens CMUAc130 and their antifungal activity. Microbiology 151:1691–1695

    Article  PubMed  CAS  Google Scholar 

  • Taechowisan T, Wanbanjob A, Tuntiwachwuttikul P, Taylor WC (2006) Identification of Streptomyces sp. Tc022, an endophyte in Alpinia galanga, and the isolation of actinomycin D. Ann Microbiol 56:113–117

    Article  CAS  Google Scholar 

  • Taechowisan T, Lu C, Shen Y, Lumyong S (2007) Antitumor activity of 4-arylcoumarins from endophytic Streptomyces aureofaciens CMUAc130. J Cancer Res Ther 3:86

    Article  PubMed  CAS  Google Scholar 

  • Taghavi S et al (2009) Genome survey and characterization of endophytic bacteria exhibiting a beneficial effect on growth and development of poplar trees. Appl Environ Microbiol 75:748–757

    Article  PubMed  CAS  Google Scholar 

  • Taghavi S et al (2010) Genome sequence of the plant growth promoting endophytic bacterium Enterobacter sp. 638. PLoS Genet 6:e1000943

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Tank N, Saraf M (2003) Phosphate solubilization, exopolysaccharide production and indole acetic acid secretion by rhizobacteria isolated from Trigonella foenum-graecum. Indian J Microbiol 43:37–40

    Google Scholar 

  • Timmusk S, Grantcharova N, Wagner EGH (2005) Paenibacillus polymyxa invades plant roots and forms biofilms. Appl Environ Microbiol 71:7292–7300

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Vessey JK (2003) Plant growth promoting rhizobacteria as biofertilizers. Plant Soil 255:571–586

    Article  CAS  Google Scholar 

  • Vieira ML et al (2011) Diversity and antimicrobial activities of the fungal endophyte community associated with the traditional Brazilian medicinal plant Solanum cernuum Vell.(Solanaceae). Can J Microbiol 58:54–66

    Article  PubMed  Google Scholar 

  • Wahyudi AT, Astuti RP, Widyawati A, Mery A, Nawangsih AA (2011) Characterization of Bacillus sp. strains isolated from rhizosphere of soybean plants for their use as potential plant growth for promoting rhizobacteria. J Microbiol Antimicrob 3:34–40

    Google Scholar 

  • Wang P, Kong F, Wei J, Wang Y, Wang W, Hong K, Zhu W (2014) Alkaloids from the mangrove-derived actinomycete Jishengella endophytica 161111. Mar Drugs 12:477–490

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Weilharter A, Mitter B, Shin MV, Chain PSG, Nowak J, Sessitsch A (2011) Complete genome sequence of the plant growth-promoting endophyte Burkholderia phytofirmans strain PsJN. J Bacteriol 193:3383–3384

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Wu L, Han T, Li W, Jia M, Xue L, Rahman K, Qin L (2013) Geographic and tissue influences on endophytic fungal communities of Taxus chinensis var. mairei in China. Curr Microbiol 66:40–48

    Article  PubMed  CAS  Google Scholar 

  • Yang A, Akhtar SS, Iqbal S, Amjad M, Naveed M, Zahir ZA, Jacobsen S-E (2016) Enhancing salt tolerance in quinoa by halotolerant bacterial inoculation. Funct Plant Biol 43:632–642

    Article  CAS  PubMed  Google Scholar 

  • Yi H-S, Yang JW, Ryu C-M (2013) ISR meets SAR outside: additive action of the endophyte Bacillus pumilus INR7 and the chemical inducer, benzothiadiazole, on induced resistance against bacterial spot in field-grown pepper. Front Plant Sci 4:122

    Article  PubMed  PubMed Central  Google Scholar 

  • Young J (1992) Phylogenetic classification of nitrogen-fixing organisms. Biol Nitrogen Fixation 1544:43–86

    Google Scholar 

  • Zachow C, Fatehi J, Cardinale M, Tilcher R, Berg G (2010) Strain-specific colonization pattern of Rhizoctonia antagonists in the root system of sugar beet. FEMS Microbiol Ecol 74:124–135

    Article  PubMed  CAS  Google Scholar 

  • Zhang S, Qi-Yong Z (2007) Isolation and characterization of endophytic microorganisms in Glaycyrrhiza inflat bat. from Xinjiang. J Microbiol 5:014

    Google Scholar 

  • Zhang J, Wang J-D, Liu C-X, Yuan J-H, Wang X-J, Xiang W-S (2014) A new prenylated indole derivative from endophytic actinobacteria Streptomyces sp. neau-D50. Nat Prod Res 28:431–437

    Article  PubMed  CAS  Google Scholar 

  • Zhou H, Yang Y, Peng T, Li W, Zhao L, Xu L, Ding Z (2014) Metabolites of Streptomyces sp., an endophytic actinomycete from Alpinia oxyphylla. Nat Prod Res 28:265–267

    Article  PubMed  CAS  Google Scholar 

  • Zinniel DK et al (2002) Isolation and characterization of endophytic colonizing bacteria from agronomic crops and prairie plants. Appl Environ Microbiol 68:2198–2208

    Article  PubMed  PubMed Central  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wen-Jun Li .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Mohamad, O.A.A., Ma, JB., Liu, YH., Li, L., Hatab, S., Li, WJ. (2019). Medicinal Plant-Associated Microbes as a Source of Protection and Production of Crops. In: Egamberdieva, D., Tiezzi, A. (eds) Medically Important Plant Biomes: Source of Secondary Metabolites. Microorganisms for Sustainability, vol 15. Springer, Singapore. https://doi.org/10.1007/978-981-13-9566-6_10

Download citation

Publish with us

Policies and ethics