Skip to main content

On the New Fractional Operator and Application to Nonlinear Bloch System

  • Conference paper
  • First Online:
Mathematical Modelling, Applied Analysis and Computation (ICMMAAC 2018)

Abstract

In this chapter, we analyze the nonlinear Bloch system with a new fractional operator without singular kernel proposed by Michele Caputo and Mauro Fabrizio. The commensurate and non-commensurate order nonlinear Bloch system is considered. Special solutions using a numerical scheme based in Lagrange interpolations were obtained. We studied the uniqueness and existence of the solutions employing the fixed point theorem. Novel chaotic attractors with total order less than 3 are obtained.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Magin, R., Feng, X., Baleanu, D.: Solving the fractional order Bloch equation. Concepts Magn. Reson. Part A 34A(1), 16–23 (2009)

    Article  Google Scholar 

  2. Meral, F.C., Royston, T.J., Magin, R.: Fractional calculus in viscoelasticity: an experimental study. Commun. Nonlinear Sci. Numer. Simul. 15(4), 939–945 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  3. Plfalvi, A.: Efficient solution of a vibration equation involving fractional derivatives. Int. J. Non-Linear Mech. 45, 169–175 (2010)

    Article  Google Scholar 

  4. Hu, F., Chen, L.C., Zhu, W.Q.: Stationary response of strongly non-linear oscillator with fractional derivative damping under bounded noise excitation. Int. J. Non-Linear Mech. 47, 1081–1087 (2012)

    Article  Google Scholar 

  5. Kharazmi, E., Zayernouri, M., Karniadakis, G.E.: A Petrov-Galerkin spectral element method for fractional elliptic problems. Comput. Methods Appl. Mech. Eng. 324, 512–536 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  6. Singh, J., Kumar, D., Baleanu, D., Rathore, S.: An efficient numerical algorithm for the fractional Drinfeld-Sokolov-Wilson equation. Appl. Math. Comput. 335, 12–24 (2018)

    MathSciNet  Google Scholar 

  7. Kumar, D., Agarwal, R.P., Singh, J.: A modified numerical scheme and convergence analysis for fractional model of Lienard’s equation. J. Comput. Appl. Math. 339, 405–413 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  8. Kumar, D., Singh, J., Baleanu, D.: Analysis of regularized long-wave equation associated with a new fractional operator with Mittag-Leffler type kernel. Phys. A: Stat. Mech. Appl. 492, 155–167 (2018)

    Article  MathSciNet  Google Scholar 

  9. Xu, H., Jiang, X.: Creep constitutive models for viscoelastic materials based on fractional derivatives. Comput. Math. Appl. 73(6), 1377–1384 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  10. Colinas-Armijo, N., Cutrona, S., Di Paola, M., Pirrotta, A.: Fractional viscoelastic beam under torsion. Commun. Nonlinear Sci. Numer. Simul. 48, 278–287 (2017)

    Article  MathSciNet  Google Scholar 

  11. Di Lorenzo, S., Di Paola, M., La Mantia, F.P., Pirrotta, A.: Non-linear viscoelastic behavior of polymer melts interpreted by fractional viscoelastic model. Meccanica 52(8), 1843–1850 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  12. Caputo, M., Fabricio, M.: A new definition of fractional derivative without singular kernel. Progr. Fract. Differ. Appl. 1(2), 73–85 (2015)

    Google Scholar 

  13. Caputo, M., Fabrizio, M.: 3D memory constitutive equations for plastic media. J. Eng. Mech. 143(5), D4016008 (2017)

    Article  Google Scholar 

  14. Singh, J., Kumar, D., Nieto, J.J.: Analysis of an El Nino-Southern Oscillation model with a new fractional derivative. Chaos Solitons Fractals 99, 109–115 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  15. Atangana, A., Baleanu, D.: Application of fixed point theorem for stability analysis of a nonlinear Schrodinger with Caputo-Liouville derivative. Filomat 31(8), 1–6 (2017)

    Article  MathSciNet  Google Scholar 

  16. Lozada, J., Nieto, J.J.: Properties of a new fractional derivative without singular kernel. Progr. Fract. Differ. Appl. 1(2), 87–92 (2015)

    Google Scholar 

  17. Atangana, A., Baleanu, D.: New fractional derivatives with nonlocal and non-singular kernel: theory and application to heat transfer model. Therm. Sci. 20, 763–769 (2016)

    Article  Google Scholar 

  18. Atangana, A.: Non validity of index law in fractional calculus: a fractional differential operator with Markovian and non-Markovian properties. Phys. A: Stat. Mech. Appl. 505, 688–706 (2018)

    Article  MathSciNet  Google Scholar 

  19. Atangana, A.: Blind in a commutative world: simple illustrations with functions and chaotic attractors. Chaos Solitons Fractals 114, 347–363 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  20. Atangana, A., Jain, S.: The role of power decay, exponential decay and Mittag-Leffler function’s waiting time distribution: application of cancer spread. Phys. A: Stat. Mech. Appl. 512, 330–351 (2018)

    Article  MathSciNet  Google Scholar 

  21. Atangana, A., Gómez-Aguilar, J.F.: Fractional derivatives with no-index law property: application to chaos and statistics. Chaos Solitons Fractals 114, 516–535 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  22. Atangana, A., Gómez-Aguilar, J.F.: Decolonisation of fractional calculus rules: breaking commutativity and associativity to capture more natural phenomena. Eur. Phys. J. Plus 133(4), 1–22 (2018)

    Article  Google Scholar 

  23. Karger, J., Pfeifer, H., Vojta, G.: Time correlation during anomalous diffusion in fractal systems and signal attenuation in NMR field-gradient spectroscopy. Phys. Rev. A 37(11), 4514 (1988)

    Article  Google Scholar 

  24. Magin, R.L., Abdullah, O., Baleanu, D., Zhou, X.J.: Anomalous diffusion expressed through fractional order differential operators in the Bloch-Torrey equation. J. Magn. Reson. 190(2), 255–270 (2008)

    Article  Google Scholar 

  25. Hamri, N.E., Houmor, T.: Chaotic dynamics of the fractional order nonlinear Bloch system. Electron. J. Theor. Phys. 8(25), 233–244 (2011)

    Google Scholar 

  26. Yu, Q., Liu, F., Turner, I., Burrage, K.: Stability and convergence of an implicit numerical method for the space and time fractional Bloch-Torrey equation. Philos. Trans. R. Soc. A 371(1990), 20120150 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  27. Yu, Q., Liu, F., Turner, I., Burrage, K.: A computationally effective alternating direction method for the space and time fractional Bloch-Torrey equation in 3-D. Appl. Math. Comput. 219(8), 4082–4095 (2012)

    MathSciNet  MATH  Google Scholar 

  28. Song, J., Yu, Q., Liu, F., Turner, I.: A spatially second-order accurate implicit numerical method for the space and time fractional Bloch-Torrey equation. Numer. Algorithms 66(4), 911–932 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  29. Qin, S., Liu, F., Turner, I.W., Yu, Q., Yang, Q., Vegh, V.: Characterization of anomalous relaxation using the time-fractional Bloch equation and multiple echo T2*-weighted magnetic resonance imaging at 7 T. Magn. Reson. Med. 77(4), 1485–1494 (2017)

    Article  Google Scholar 

  30. Magin, R.L., Li, W., Velasco, M.P., Trujillo, J., Reiter, D.A., Morgenstern, A., Spencer, R.G.: Anomalous NMR relaxation in cartilage matrix components and native cartilage: fractional-order models. J. Magn. Reson. 210(2), 184–191 (2011)

    Article  Google Scholar 

  31. Qin, S., Liu, F., Turner, I., Vegh, V., Yu, Q., Yang, Q.: Multi-term time-fractional Bloch equations and application in magnetic resonance imaging. J. Comput. Appl. Math. 319, 308–319 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  32. Velasco, M., Trujillo, J., Reiter, D., Spencer, R., Li, W., Magin, R.: Anomalous fractional order models of relaxation. Proc. FDA 10, 1–6 (2010)

    Google Scholar 

  33. Petras, I.: Modeling and numerical analysis of fractional-order Bloch equations. Comput. Math. Appl. 61(2), 341–356 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  34. Yu, Q., Liu, F., Turner, I., Burrage, K.: Numerical simulation of the fractional Bloch equations. J. Comput. Appl. Math. 255, 635–651 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  35. Bhalekar, S., Daftardar-Gejji, V., Baleanu, D., Magin, R.: Transient chaos in fractional Bloch equations. Comput. Math. Appl. 64(10), 3367–3376 (2012)

    Article  MATH  Google Scholar 

  36. Baleanu, D., Magin, R.L., Bhalekar, S., Daftardar-Gejji, V.: Chaos in the fractional order nonlinear Bloch equation with delay. Commun. Nonlinear Sci. Numer. Simul. 25(1), 41–49 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  37. Bhalekar, S., Daftardar-Gejji, V., Baleanu, D., Magin, R.: Generalized fractional order Bloch equation with extended delay. Int. J. Bifurc. Chaos 22(04), 1–16 (2012)

    Article  MATH  Google Scholar 

  38. Bhalekar, S., Daftardar-Gejji, V., Baleanu, D., Magin, R.: Fractional Bloch equation with delay. Comput. Math. Appl. 61(5), 1355–1365 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  39. Toufik, M., Atangana, A.: New numerical approximation of fractional derivative with non-local and non-singular kernel: application to chaotic models. Eur. Phys. J. Plus 132(10), 1–16 (2017)

    Article  Google Scholar 

Download references

Acknowledgements

José Francisco Gómez Aguilar acknowledges the support provided by CONACyT: Cátedras CONACyT para jóvenes investigadores 2014 and SNI-CONACyT.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed equally and significantly in writing this article. All authors read and approved the final manuscript.

Corresponding author

Correspondence to J. F. Gómez-Aguilar .

Editor information

Editors and Affiliations

Ethics declarations

The authors declare that there is no conflict of interests regarding the publication of this paper.

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Gómez-Aguilar, J.F., Ghanbari, B., Bonyah, E. (2019). On the New Fractional Operator and Application to Nonlinear Bloch System. In: Singh, J., Kumar, D., Dutta, H., Baleanu, D., Purohit, S. (eds) Mathematical Modelling, Applied Analysis and Computation. ICMMAAC 2018. Springer Proceedings in Mathematics & Statistics, vol 272. Springer, Singapore. https://doi.org/10.1007/978-981-13-9608-3_9

Download citation

Publish with us

Policies and ethics