Skip to main content

Cytogenetic Relationship of Triticum and Aegilops Species

  • Chapter
  • First Online:
Biosystematics of Triticeae

Abstract

As mentioned above, some scientists such as Sakamun, Kihara, and Sax had found that Triticum plants have three types of chromosome numbers, i.e., 14, 28, and 42 chromosomes in the somatic cells of root tips and 7, 14, and 21 in the gamete cells. They are a ploidy relationship. Similar ploidy distribution was also observed in Aegilops species, as shown in Table 6.1.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Aase, H. C. (1930). Cytology of Triticum, Secale and Aegilops hybrids with reference to phylogeny (Washington. State College. Research studies) (Vol. 2). Pullman: State College of Washington.

    Google Scholar 

  • Aase, H. C., & Pewers, L. R. (1926). Chromosome number in crop plants. American Journal of Botany, 13, 367–372.

    Article  Google Scholar 

  • Bell, G. D. H., Lupton, F. G. H., & Riley, R. (1955). Investigations in the Triticineae. III. The morphology and field behaviour of the F2 generation of interspecific and intergeneric amphipl-oids. The Journal of Agricultural Science, 46, 199–231.

    Article  Google Scholar 

  • Blakeslee, A. F., & Avery, A. G. (1937). Methods of inducing doubling of chromosome in plants. The Journal of Heredity, 28, 373–411.

    Article  Google Scholar 

  • Bleier, H. (1926). Ein cytologischer Beilray zur Bastardierungszuchtung (pp. 302–310). II: Zeits. Pflanzenzucht.

    Google Scholar 

  • Bleier, H. (1928a). Zytologische Untersuchungen an seltenen Getreide-und Rübenbastarden. Verh. V Int. Kong. Vererb. Wiss. Berlin, 1, 447–452.

    Google Scholar 

  • Bleier, H. (1928b). Genetik und Zytologie teilweise und ganz steriler Getreidebastards. Bibiogr Gen., 4, 321–400.

    Google Scholar 

  • Bleier, H. (1930). Neue Boebachtungen uber die Reduktiosteilung Ven Weizen-Roggenund Aegilops- Weizen-Bastarden. Cambridge: V. Intern. Bot. Cong.

    Google Scholar 

  • Chapman, V., Mittler, T. E., & Riley, R. (1976). Equivalence of the A genome of bread wheat and that of T. urartu. Genetical Research, 27, 69–76.

    Article  Google Scholar 

  • Chen, P. D., & Gill, B. S. (1983). The origin of chromosome 4A, and genomes B and G of tetraploid wheats. Proc. 6th Int. Wheat Genet. Symp. (pp. 39–48). Japan: Kyoto.

    Google Scholar 

  • de Mol, W. (1924). De Reductiedeelin bji eenige Triticum Soorten. Genetica, 6, 289–329.

    Article  Google Scholar 

  • Dhaliwal, H. S., & Johnson, B. L. (1976). Anther morphology and the origin of the tetraploid wheats. Amer. J. Bot., 63, 363–368.

    Article  Google Scholar 

  • Dvorak, J. (1983). The origin of wheat chromosomes 4A and 4B and their genome reallocation. Canadian Journal of Genetics and Cytology, 25, 210–214.

    Article  Google Scholar 

  • Emme, H. K. (1924). Die Resultate der Zytogischen Untersuchungen einigen Aegilopsarte Zeitschr. Russ. Bot. Gesell., 8.

    Google Scholar 

  • Feldman, M. (1977). New evidence on the origin of genome B of Triticum. Canadian Journal of Genetics and Cytology, 19, 572.

    Google Scholar 

  • Gaines, E. F., & Aase, H. C. (1926). A haploid wheat plant. American Journal of Botany, 13, 373–385.

    Article  Google Scholar 

  • Hadlaczky, G. Y., & Belea, A. (1975). C-banding in wheat evolutionary cytogenetics. Plant Science Letters, 4, 85–88.

    Article  Google Scholar 

  • Hector, J. M. (1936). Introduction to the botany of field crops (Vol. cereal, pp. 143–197). Johannesburg: Central News Agency Ltd.

    Google Scholar 

  • Hollinshead, L. (1932). The occurrence of unpaired chromosome in hybrids between varieties of Triticum vulgare. Cytologia, 3, 119–141.

    Article  Google Scholar 

  • Horton, E. S. (1936). Studies in the cytology of wheat and of a wheat species hybrid. Amer. J. Bot., 23, 121–128.

    Article  Google Scholar 

  • Jinkins, J. A. (1929). Chromosome homologies in wheat and Aegilops. American Journal of Botany, 16, 238–245.

    Article  Google Scholar 

  • Johnson, B. L. (1975). Identification of the apparent B-genome donor of wheat. Canadian Journal of Genetics and Cytology, 17, 21–39.

    Article  Google Scholar 

  • Johnson, B. L., & Dhaliwal, H. S. (1976). Reproductive isolation of Triticum boeoticum and Triticum urartu and the origin of the tetraploid wheat. American Journal of Botany, 63, 1088–1094.

    Article  Google Scholar 

  • Johnson, B. L., & Dhaliwal, H. S. (1978). Triticum urartu and genome evolution in the tetraploid wheat. American Journal of Botany, 55, 907–918.

    Article  Google Scholar 

  • Kagawa, F. (1926). Cytological studieson Triticum and Aegilops I. size and shape of somatic chromosomes. La Cellule, 37, 231–323.

    Google Scholar 

  • Kagawa, F. (1927). The comparison of chromosomes among different species in Triticum. Proceedings of the Imperial Academy, 3, 304–306.

    Article  Google Scholar 

  • Kagawa, F. (1928). Cytological studies on Triticum and Aegilops II. On the genus crosses between Triticum and Aegilops. Japan. Journ. Bot, 4.

    Google Scholar 

  • Kattermann, G. (1931). Ueber die Bildung polyvalenter Chromosomenverbande bei einigen Gramineen. Planta, 12, 732–774.

    Article  Google Scholar 

  • Kihara, H. (1919). Über cytologische studien bei einigen Getreidearten, Mitt. I. Spezies-Bastarbe des weizensund Weizen-Roggen-Bastarde. The Botanical Magazine, Tokyo, 32, 17–38.

    Article  Google Scholar 

  • Kihara, H. (1924). Cytologische und genetische Studien bei wichtigen Getreidearten mit. besonderer Rucksicht auf das Verhalten der Chromosomen und die Sterilitat in den Bastarden. Memoirs of the College of Science, University of Kyoto. Series B, Biology, 1, 1–200.

    Google Scholar 

  • Kihara, H. (1930). Genomanalyse bei Triticum und Aegilops. Cytologia, 1, 263–284.

    Article  Google Scholar 

  • Kihara, H. (1937a). Genomanlyse bei Triticum und AegilopsVII. Kurze Übersicht über die Ergebnisse der Jahre 1934–1936. Memoirs of the College of Agriculture; Kyoto Imperial University, 41, 61.

    Google Scholar 

  • Kihara, H. (1937b). Synthesized allotetraploid F2 individuals obtained from the cross Aegilops speltoides × Ae. umbellulate. (A preliminary note). The Japanese Journal of Genetics, 13(5), 224–226.

    Article  Google Scholar 

  • Kihara, H. (1944). Discovery of the DD-analyzer, one of the ancestors of Triticum vulgare. Agric. Hort., 19, 13–14.

    Google Scholar 

  • Kihara, H. (1949). Genomanalyse bei Triticum und Aegilops IX. Cytologia, 14, 135–144.

    Article  Google Scholar 

  • Kihara, H., & Lilienfeld, F. A. (1932). Genomanalyse bei Triticum und Aegilops. IV. Untersuchungen an Aegilops × Triticum und Aegilops × Aegilops-Bastarden. Cytologia, 3, 384–456.

    Article  Google Scholar 

  • Kihara, H., & Lilienfeld, F. A. (1935). Genomanalyse bei Triticum und Aegilops. VI. Weitere Untersuchungen an Aegilops × Triticum und Aegilops × Aegilops-Bastarden. Cytologia, 6, 195–216.

    Article  Google Scholar 

  • Kihara, H., & Lilienfeld, F. (1949). A new synthesized 6x-wheat. In Proceedings of 8th International Congress of Genetics (Suppl. Vol. of Herditas, Lund), pp. 307–319.

    Google Scholar 

  • Kihara, H., & Nishiyama, I. (1928). New aspects of chromosome behavior in pollen mother-cells of tri-, tetra-, and pentaploid wheat hybrids. The Botanical Magazine, 42, 221–230.

    Article  Google Scholar 

  • Kihara, H., Okamoto, M., Ikegami, M., et al. (1950). Morphology and fertility of five new synthesized hexaploid wheats. Rep. Kihara Inst. Bio. Res.(Seiken Zihô), 4, 127–140. (With English summary, pp. 138–140).

    Google Scholar 

  • Kihara, H., Hosono, S., Nishiyama, I., et al. (1954). A study of wheat. Tokyo: Yokendo.

    Google Scholar 

  • Kimber, G. (1974). A reassessment of the origin of the polyploid wheat. Genetics, 78, 487–492.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kimber, G., & Sears, E. R. (1983). Assignment of genome symbols in Triticeae. In S. Sakamoto (Ed.), Proc. 6th Int. Wheat Genet. Symp. (pp. 1195–1196). Japan: Kyoto.

    Google Scholar 

  • Lindschau, M., & Oehler, F. (1936). Cytologische Untersuchungen an tetraploiden Aegilops- Artbastarden. Züchter, 8, 113–117.

    Article  Google Scholar 

  • Lilienfeld, F. A., & Kihara, H. (1934). Genomannalyse bei Triticum timopheevi Zhuk. Cytologia, 6, 87–122.

    Google Scholar 

  • Longley, A. E., & Sando, W. J. (1930). Neuclear divisions in the pollen mother cells of Triticum, Aegilops and Secale and their hybrids. Journal of Agricultural Research, 40, 683–719.

    Google Scholar 

  • Löve, A. (1984). Conspectus of the Triticeae. Feddes Repert, 95, 425–521.

    Google Scholar 

  • McFadden, E. S., & Sears, E. R. (1946). The origin of Triticum spelta and its free-threshing hexaploid relatives. The Journal of Heredity, 37(81–90), 107–116.

    Article  Google Scholar 

  • Mukai, Y. (1995). Multicolor fluorescence in situ hybridization approach for genome analysis and gene mapping in wheat and its relatives. In Proceedings of 8th International Wheat Genetics Symposium, pp. 543–546.

    Google Scholar 

  • Mukai, Y., Nakahara, Y., & Yammoto, M. (1993). Simultaneous discrimination of the three genomes in hexaploid wheat by multicolor fluorescence in situ hybridization using total genomic and highly repeated DNA probes. Genome, 36, 489–494.

    Article  CAS  PubMed  Google Scholar 

  • Nebel, B. R., & Ruttle, M. L. (1937). Action of colchicine on mitosis. Genetics, 23, 161–162.

    Google Scholar 

  • Nebel, B. R., & Ruttle, M. L. (1938). Cytological and genetical significance of colchicine. The Journal of Heredity, 29, 2–9.

    Article  CAS  Google Scholar 

  • Okamoto, M. (1957). Further information on identifioation of chromosomes in the A and B genomes. Wheat Information Service, 6, 3–4.

    Google Scholar 

  • Pathak, G. N. (1940). Studies in the cytology of cereals. Journal of Genetics, 39, 437–467.

    Article  Google Scholar 

  • Percival, J. (1923). Chromosome numbers in Aegilops. Nature, III, 2798, 810–810.

    Article  Google Scholar 

  • Percival, J. (1926). The morphology and cytology of some hybrid of Aegilops ovata, L. × wheat. Journal of Genetics, 17, 49–68.

    Article  Google Scholar 

  • Percival, J. (1930). Cytological studies of some hybrids of Aegilops sp. × wheats, and of some hybrids between different species of Aegilops. Journal of Genetics., 22, 201–278.

    Article  Google Scholar 

  • Percival, J. (1932). Cytological studies of some wheat and Aegilops hybrids. Ann. Botany, 46, 479–501.

    Article  Google Scholar 

  • Peto, F. H. (1936). Hybridization of Triticum and Agropyron II. Cytology of the male parents and F1 generation. Canadian Journal of Research, 14, 203–214.

    Article  Google Scholar 

  • Rees, H., & Davies, W. I. C. (1963). DNA and wheat ancestry. In Proceedings of IX: International Congress Genetics Haque, Nether-lands, Genetics Today, Vol. I: 136.

    Google Scholar 

  • Riley, R., Unrau, J., & Chapman, V. (1958). Evidence on the origin of the Bgenome of wheat. The Journal of Heredity, 49, 91–98.

    Article  Google Scholar 

  • Sachs, L. (1953). Chromosome behaviour in species hybrids with Triticum timopheevi. Heredity, 7, 49–58.

    Article  Google Scholar 

  • Sakamura, T. (1918). Kurze Mitteilung über die Chromosomenzahlen und die Verwandschafts- Verhaltnisse der Triticum-Arten. Botanical Magazine Tokyo, 32, 150–153.

    Article  Google Scholar 

  • Sarkar, P., & Stebbins, G. L. (1956). Morphological evidence concerning the origin of the B genome in wheat. Amer. Journal of Botany, 43, 297–304.

    Article  Google Scholar 

  • Sax, K. (1918). The behaviour of the chromosomes in fertilization. Genetics, 3, 309–327.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Sax, K. (1921). Chromosome relationships in wheat. Science, 54, 413–415.

    Article  CAS  PubMed  Google Scholar 

  • Sax, K. (1922). Sterility in wheat hybrid II. Chromosome behaviour in partially sterile hybrids. Genetics, 7, 513–552.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Sax, K., & Sax, H. J. (1924). Chromosome behaviour in a genus cross. Genetics, 9, 454–464.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Schiemann, E. (1928). Zytologische und pflanzen-geographische Beiträge zur Gattung Aegilops (II. Mitteilung). Ber Deutsch. Bot Ges, 46, 107–123.

    Google Scholar 

  • Sears, E. R. (1948). The cytology and genetics of the wheats and their relatives. Advances in Genetics, 2, 239–270.

    Article  Google Scholar 

  • Sears, E. R. (1956a). The B genome in wheat. Wheat Information Service, 4, 8–10.

    Google Scholar 

  • Sears, E. R. (1956b). Weizen. I. The systematics, cytology and genetics of wheat. Handbuch der Pflanzenzüchtung, 11, 164–187.

    Google Scholar 

  • Sears, E. R., & Okamoto, M. (1958). Inter genomic chromosme relationship in hexaploid wheat. In Proceedings of 10th International Congress Genetics, Montreal, Canada, 2, pp. 258–259.

    Google Scholar 

  • Shands, H. L., & Kimber, G. (1973). Reallocation of genomes of Tritcum timopheevi Zhuk. In Proceedings of 4th International Wheat Genetics Symposium, Missouri, Columbia, USA, pp. 95–99.

    Google Scholar 

  • Stevenson, F. J. (1930). Genetic characters in relation to chromosome numbers in a wheat species cross. Journal of Agricultural Research, 41, 161–179.

    Google Scholar 

  • Stolze, K. V. (1925). Die chromosomenzahlen der hauptsächlichsten Getreidearten nebst allgemeinen Betrachtungen über Chromosomen. Chromosomenzahl und Chromosomengröße im pflanzenreich. Bibliotheca Genetica, 9, 1–71.

    Google Scholar 

  • Thompson, W. P. (1926). Chromosome behaviour in a cross between wheat and rye. Genetics, 11, 317–332.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Tschermak, E. V., & Bleier, H. (1926). Über fruchtung Aegilops weizen Bastarde. Bastarde. Berichte der Deutschen Botanischen Gesellschaft, 44, 110–132.

    Google Scholar 

  • Upadhya, M. D., & Swaminathan, M. S. (1963). Genome analysis in triticum zhukovskyi, a new hexaploid wheat. Chromosoma, 14, 589–600.

    Google Scholar 

  • Wagenaar, E. B. (1961). Studies on the genome constitution of T. timopheevi Zhuk. I. Evidence for genetic control of meiotic irregularities in tetraploid hybrids. Canadian Journal of Genetics and Cytology, 3, 47–60.

    Article  Google Scholar 

  • Wagenaar, E. B. (1966). Studies on the genome constitution of Triticum timopheevi Zhuk. II. The Tr. timopheevi complex and its origin. Evolution, 20, 150–164.

    Article  CAS  PubMed  Google Scholar 

  • Waker, B. A. (Вакар Б А). (1933). Cytologische Untersuchungen Uber F1 der Rasscn-und Artbastarde des Weizens. Angewandte Botanik, 15, 203–224.

    Google Scholar 

  • Watanabe, Y., Mukade, K., & Saito, S. (1955). Studies on the production of amphidiploids as the sources of resiStance to leaf-ruSt in wheats: I. Cytogenetical studies on the F1 hybrids and the amphidiploids, Triticum Timopheevi Zhuk. × Aegitops squarrosa L. Japanese Journal of Breeding, 5(2), 75–86.

    Article  Google Scholar 

  • Watanabe, Y., Mukade, K., & Kokubun, K. (1956). Studies on the production of amphidiploids as the sources of resistance to leaf-rust in wheats. II. Cytogenetical studies on the F1 hybrids and the amphidiploids, Triticum Tilhohheevi Zhuk. × Triticum monococcum L. Japanese Journal of Breeding, 6(1), 23–31.

    Article  Google Scholar 

  • Watkins, A. E. (1924). Genetic and cytological studies in wheat. I. Journal of Genetics, 14, 129–171.

    Article  Google Scholar 

  • Вакар, Б. А. (Waker, B. A). (1932). Цитологическое иэуение Междувидовых гибридов рода Triticum. Тр. Прикл. Бот., Ген. иСен. II, 1, 189–241.

    Google Scholar 

  • Вакар, Б. А. (1935). Пщенично-пырейные Гибриды. Тр. Прикл. Бот., Ген. иСел., 28, 121–161.

    Google Scholar 

  • Ерицян, А. А. (1932). Кцитолгии пленчатых пщениц Грузии. Тр. Прикл. Вот., Ген., и Сел. сер. V, 1. Стр. 47–52.

    Google Scholar 

  • Жуковский, П. М. (1928a). Критико-систематический обзр видов рода Aegilops L. (Specierum generis Aegilops L. revisio critica), (A critical-systematical survey of the species of the genus Aegilops.). Тр. Прикл. Бот. Ген. и Сел., 18, 417–609.

    Google Scholar 

  • Жуковский, П. М. (1928b). Новый вид пщеницы. Тр. Прикл. Вот., Ген. и Сел. т., 19, 2, 59–66.

    Google Scholar 

  • Николаева, А. (1920). Zur cytologie der Triticum-Arten. Verhandl des Kongr. f. Pflanzenzucht. in Saratow. Autorreferat in Zeitschr. Induk. Abst. -u. Vererbungsl. 29.

    Google Scholar 

  • Николаева, А. Г. (1923). Цитолическое исследова-ние рода Triticum. Тр. Прикл. Бот. Ген. и Сел. т. 13, I, 33–44.

    Google Scholar 

  • Светоэарова, В. (1939). О вторм геноме T. timopheevi Zhuk. ДАН СССР, т. 23, B. 5, C., 472–476.

    Google Scholar 

  • Сорокина, О. Н. (1928). О хромосомы в вид Aegilops, Тр. Прикд. Бот., Ген. и Сел., 19, 523–532.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2020 China Agriculture Press & Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Yen, C., Yang, J., Yuan, Z., Ning, S., Liu, D. (2020). Cytogenetic Relationship of Triticum and Aegilops Species. In: Biosystematics of Triticeae. Springer, Singapore. https://doi.org/10.1007/978-981-13-9931-2_6

Download citation

Publish with us

Policies and ethics