Skip to main content

Drought and Heat Stress in Cotton (Gossypium hirsutum L.): Consequences and Their Possible Mitigation Strategies

  • Chapter
  • First Online:
Agronomic Crops

Abstract

Drought and heat are the most important abiotic stresses that adversely affect phenology, growth, fiber yield, as well as the quality of cotton across the world. The problem will become more severe in future climate change scenarios because of the frequent occurrence of high temperatures and water shortage. Development of high yielding cotton genotypes, resistant to drought and heat stress, is one of the most important priorities of cotton breeders. Therefore, it is important to evaluate the genotypic performance for heat and drought stress and also important to understand the physiological, biochemical responses to stresses as well as the agronomic performance of the genotypes under stress conditions. The correlation between yield and physiological as well as biochemical (nonenzymatic antioxidants and enzymatic antioxidants) responses of cotton under heat and drought stress conditions is also the most important factor to develop the efficient genotypes that are possible to grow. Whereas, screening of cotton genotypes under heat and drought stress is one of the essential protocols that can be used to select a large number of population within the shortest period. This approach can be used to differentiate the agronomical, physiological, and biochemical attributes of cotton genotypes contrasting for drought and heat stress tolerance. The present review tried to highlight the management strategies that could be useful to mitigate the drought and heat stress by using antioxidant, phytohormone, nutrient management, and other appropriate management strategies for maximizing cotton yield. While, among the compatible antioxidants, exogenous application of proline or glycine betaine is a good option to improve drought and heat tolerance in cotton. Therefore, foliar application of antioxidants in combination with soil-applied organic fertilizers is very effective for reducing the negative effect of drought and heat stress and to increase productivity.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

PAR:

Photosynthetically active radiation

AA:

Ascorbic acid

ABA:

Abscisic acid

APX:

Ascorbate peroxidase

APX1:

Cytosolic ascorbate peroxidase 1

CAT:

Catalase

Chl:

Chlorophyll

CMT:

Cellular membrane thermostability

CSI:

Chlorophyll stability index

CTD:

Canopy temperature depression

DSI:

Drought stress index

GA3:

Gibberellic acid

GB:

Glycine betaine

GMP:

Geometric mean productivity

GR:

Glutathione reductase

HSI:

Heat susceptibility index

JA:

Jasmonic acid

LEL:

Leaf electrolyte leakage

MDA:

Malondialdehyde

MeJA:

Methyljasmonic acid

MP:

Mean productivity

POD:

Peroxidase

ROS:

Reactive oxygen species

RWC:

Relative water content

SA:

Salicylic acid

SOD:

Superoxide dismutase

SSI:

Stress susceptibility index

STE:

Stress tolerance efficiency

STI:

Stress tolerance index

VPD:

Vapor pressure deficit

YSI:

Yield stability index

References

  • Abbas G, Ahmad S, Ahmad A, Nasim W, Fatima Z, Hussain S, ur Rehman MH, Khan MA, Hasanuzzaman M, Fahad S, Boote KJ, Hoogenboom G (2017) Quantification the impacts of climate change and crop management on the phenology of maize-based cropping system in Punjab Pakistan. Agric For Meteorol 247:42–55. https://doi.org/10.1016/j.agrformet.2017.07.012

    Article  Google Scholar 

  • Abro S, Rajput MT, Khan MA, Sial MA, Tahir SS (2015) Screening of cotton (Gossypium hirsutum L.) genotypes for heat tolerance. Pak J Bot 47:2085–2091

    CAS  Google Scholar 

  • Ahmad S, Nadeem M, Abbas G, Fatima Z, Khan RJ, Ahmed M, Ahmad A, Rasul G, Khan MA (2016) Quantification of the effects of climate warming and crop management on sugarcane phenology. Clim Res 71:47–61

    Article  Google Scholar 

  • Ahmad S, Abbas Q, Abbas G, Fatima Z, Rehman AU, Naz S, Younis H, Khan RJ, Nasim W, Rehman MHU, Ahmad A, Rasul G, Khan MA, Hasanuzzaman M (2017) Quantification of climate warming and crop management impacts on cotton phenology. Plan Theory 6:1–16

    Google Scholar 

  • Ahmadizadeh M, Nori A, Shahbazi H, Habibpour M (2011) Effects of drought stress on some agronomic and morphological traits of durum wheat (Triticum durum) landraces under greenhouse condition. Afr J Biotechnol 10:4097–14107

    Google Scholar 

  • Akhtar N, Abbas G, Hussain K, Ahmad N, Rashid S (2013) Impact of heat induced sterility on some genotypes of upland cotton under field conditions. Int J Agric Appl Sci 5:2–4

    Google Scholar 

  • Ali Q, Ashraf M, Athar H (2007) Exogenously applied proline at different growth stages enhances growth of two maize cultivars grown under water deficit conditions. Pak J Bot 39:1133–1144

    Google Scholar 

  • Anjum SA, Wang LC, Farooq M, Hussain M, Xue LL, Zou CM (2011) Brassinolide application improves the drought tolerance in maize through modulation of enzymatic antioxidants and leaf gas exchange. J Agron Crop Sci 197:177–185

    Article  CAS  Google Scholar 

  • Arfan M, Athar HR, Ashraf M (2007) Does exogenous application of salicylic acid through the rooting medium modulate growth and photosynthetic capacity in two differently adapted spring wheat cultivars under salt stress? J Plant Physiol 164:685–694

    Article  CAS  PubMed  Google Scholar 

  • Ashraf M, Foolad MR (2007) Roles of GB and proline in improving plant abiotic stress resistance. Environ Exp Bot 59:206–216

    Article  CAS  Google Scholar 

  • Azhar FM, Ali Z, Akhtar MM, Khan AA, Trethowan R (2009) Genetic variability of heat tolerance, and its effect on yield and fibre quality mtraits in upland cotton (Gossypium hirsutum L.). Plant Breed 128:356–362

    Article  Google Scholar 

  • Barnabas B, Jager K, Feher A (2008) The effect of drought and heat stress on reproductive processes in cereals. Plant Cell Environ 31:11–38

    CAS  PubMed  Google Scholar 

  • Basal H, Dagdelen N, Unay A, Yilmaz E (2009) Effects of deficit drip irrigation ratios on cotton (Gossypium hirsutum L.) yield and fibre quality. J Agron Crop Sci 195(1):19–29

    Article  Google Scholar 

  • Basu S, Ramegowda V, Kumar A, Pereira A (2016) Plant adaptation to drought stress. F1000Research, 5, F1000 faculty rev–1554. https://doi.org/10.12688/f1000research.7678.1

  • Bibi AC, Oosterhuis DM, Brown RS, Gonias ED, Bourland FM (2003) The physiological response of cotton to high temperatures for germplasm screening. In: Oosterhuis DM (ed) Summaries of Arkansas cotton research 2003 series, vol 521. Arkansas Agricultural Experiment Station, Fayetteville, pp 87–92

    Google Scholar 

  • Bibi AC, Oosterhuis DM, Gonias ED, Bourland FM (2004) Screening a diverse set of cotton cultivars for high temperature tolerance. Summ Arkansas Cotton Res 533:39–43

    Google Scholar 

  • Bibi AC, Oosterhuis DM, Gonias ED (2008) Photosynthesis, quantum yield of photosystem II and membrane leakage as affected by high temperatures in cotton genotypes. J Cotton Sci 12:150–159

    CAS  Google Scholar 

  • Bita CE, Gerats T (2013) Plant tolerance to high temperature in a changing environment: scientific fundamentals and production of heat stress-tolerant crops. Front Plant Sci 4:273. https://doi.org/10.3389/fpls.2013.00273

    Article  PubMed  PubMed Central  Google Scholar 

  • Bray EA, Bailey-Serres J, Weretilnyk E (2000) Responses to abiotic stresses. In: Gruissem W, Buchannan BB, Jones RL (eds) Biochemistry and molecular biology of plants. American Society of Plant Physiologists, Rockville, pp 1158–1203

    Google Scholar 

  • Brown PW, Zeiher CA (1998) A model to estimate cotton canopy temperature in the desert southwest. In: Dugger CP, Richter DA (eds) Proceeding of the beltwide cotton conferences. National Cotton Council of America, Memphis, TN, p 1734

    Google Scholar 

  • Brown PW, Zeiher CA, Silvertooth J (1995) Response of upland cotton to elevated night temperatures. I. Results of field studies. In: Dugger CP, Richter DA (eds) Proceeding of the beltwide cotton conferences. National Cotton Council of America, Memphis, TN, p 1129

    Google Scholar 

  • Burke JJ (2007) Evaluation of source leaf responses to water-deficit stressesin cotton using a novel stress bioassay. Plant Physiol 143:108–121

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cairns JE, Crossa J, Zaidi PH, Grudloyma P, Sanchez C, Araus JL, Thaitad S, Makumbi D, Magorokosho C, Bänziger M, Menkir A (2013) Identification of drought, heat, and combined drought and heat tolerant donors in maize. Crop Sci 53:1335–1346

    Article  Google Scholar 

  • Carmo-Silva AE, Gore MA, Andrade-Sanchez P, French AN, Hunsaker DJ, Salvucci ME (2012) Decreased CO2 availability and inactivation of Rubisco limit photosynthesis in cotton plants under heat and drought stress in the field. Environ Exp Bot 83:1–11

    Article  CAS  Google Scholar 

  • Chen Z, Gallie DR (2004) The ascorbic acid redox state controls guard cell signaling and stomatal movement. Plant Cell 16:1143–1162

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Choudhary A, Pandey P, Senthil-Kumar M (2016) Tailored responses to simultaneous drought stress and pathogen infection in plants. In: Hossain MA, Wani SH, Bhattacharjee S, Burritt DJ, Tran L-SP (eds) Drought stress tolerance in plants. Springer, Cham, pp 427–438. https://doi.org/10.1007/978-3-319-28899-4_18

    Chapter  Google Scholar 

  • Collado MB, Arturi MJ, Aulicino MB, Molina MC (2010) Identification of salt tolerance in seedling of maize (Zea mays L.) with the cell membrane stability trait. Int Res J Plant Sci 1:126–132

    Google Scholar 

  • Colom MR, Vazzana C (2003) Photosynthesis and PSII functionality of drought-resistant and drought sensitive weeping love grass plants. Environ Exp Bot 49:135–144

    Article  CAS  Google Scholar 

  • Cottee NS, Tan DK, Bange MP, Cothren JT, Campbell LC (2010) Multi-level determination of heat tolerance in cotton (Gossypium hirsutum L.) under field conditions. Crop Sci 50:2553–2564

    Article  Google Scholar 

  • Demiral T, Turkan I, Sekmen AH (2011) Signalling strategies during drought and salinity, recent news. Adv Bot Res 57:293–317

    Article  CAS  Google Scholar 

  • Ding Y, Tao Y, Zhu C (2013) Emerging roles of microRNAs in the mediation of drought stress response in plants. J Exp Bot 64:3077–3086

    Article  CAS  PubMed  Google Scholar 

  • Dolatabadian A, Sanavi AM, Harifi MS (2009) Effect of ascorbic acid (vitamin C) leaf feeding on antioxidant enzymes activity, proline accumulation and lipid peroxidation of canola (Brassica napus L.) under salt stress condition. J Sci Technol Agric Nat Res 13:611–620

    Google Scholar 

  • Ekinci R, Sema B, Emine K, Çetin K (2017) The effects of high temperature stress on some agronomic characters in cotton. Pak J Bot 49:503–508

    Google Scholar 

  • El-Okkiah SA (2017) Effect of foliar application of some organic compounds to mitigate the harmful effects due to late sowing (Heat stress) on New Egyptian Cotton Cultivar, Giza 94 (Gossypium barbadense, L.). M. Sc. thesis, Faculty of Agriculture, Kafr El Sheikh University, Egypt

    Google Scholar 

  • EL Sabagh A, Hossain A, Barutçular C, Islam MS, Ratnasekera D, Kumar N, Meena RS, Gharib HS, Saneoka H, Teixeira da Silva JA (2019a) Drought and salinity stress management for higher and sustainable canola (‘Brassica napus’ L.) production: a critical review. Aust J Crop Sci 13(1):88–96

    Article  CAS  Google Scholar 

  • EL Sabagh A, Hossain A, Islam MS, Barutçular C, Ratnasekera D, Kumar N, Meena RS, Gharib HS, Saneoka H, Teixeira da Silva JA (2019b) Sustainable soybean production and abiotic stress management in saline environments: a critical review. Aust J Crop Sci 13(2):228–236

    Article  CAS  Google Scholar 

  • Fahad S, Bajwa AA, Nazir U, Anjum SA, Farooq A, Zohaib A, Sadia S, Nasim W, Adkins S, Saud S, Ihsan MZ (2017) Crop production under drought and heat stress: plant responses and management options. Front Plant Sci 8:1147. https://doi.org/10.3389/fpls.2017.01147

    Article  PubMed  PubMed Central  Google Scholar 

  • Fanaei HR, Galavi M, Kafi M, Ghanbari Bonjar A (2012) Amelioration of water stress by potassium fertilizer in two oilseed species. Int J Plant Prod 3:41–54

    Google Scholar 

  • Farooq M, Wahid A, Kobayashi N, Fujita D, Basra SM (2009) Plant drought stress: effects, mechanisms and management. In: Sustainable agriculture. Springer, Dordrecht, pp 153–188

    Chapter  Google Scholar 

  • Fischer RA, Maurer R (1978) Drought resistance in spring wheat cultivars. I. Grain yield responses. Aust J Agric Res 29:897–912

    Article  Google Scholar 

  • Fita A, Rodríguez-Burruezo A, Boscaiu M, Prohens J, Vicente O (2015) Breeding and domesticating crops adapted to drought and salinity: a new paradigm for increasing food production. Front Plant Sci 6:978. https://doi.org/10.3389/fpls.2015.00978

    Article  PubMed  PubMed Central  Google Scholar 

  • Foyer C, Harbinson J (1994) Oxygen metabolism and regulation of photosynthetic electron transport. In: Foyer C, Mulineaux P (eds) Photo-oxidative stresses in plants: causes and amelioration. CRC Press, Inc, Boca Raton, p 242

    Google Scholar 

  • Gillson L, Poulton C, Balcombe K, Page K (2004) Understanding the impact of cotton subsidies on developing countries. Online at http://mpra.ub.uni-muenchen.de/15373/. MPRA paper no. 15373, posted 25. May 2009 09:31 UTC

  • Hamayun M, Khan SA, Shinwari ZK, Khan AL, Ahmad N, Lee IJ (2010) Effect of polyethylene glycol induced drought stress on physio-hormonal attributes of soybean. Pak J Bot 42:977–986

    CAS  Google Scholar 

  • Hayat S, Masood A, Yusuf M, Fariduddin Q, Ahmad A (2009) Growth of Indian mustard (Brassica juncea L.) in response to salicylic acid under high-temperature stress. Braz J Plant Physiol 21:187–195

    Article  Google Scholar 

  • Hayat S, Hayat Q, Alyemeni MN, Wani AS, Pichtel J, Ahmad A (2012) Role of proline under changing environments: a review. Plant Signal Behav 7:1–11

    Article  CAS  Google Scholar 

  • Hossain A, Teixeira da Silva JA, Lozovskaya MV, Zvolinsky VP (2012a) High temperature combined with drought affect rainfed spring wheat and barley in South-Eastern Russia: I. Phenology and growth. Saudi J Biol Sci 19:473–487

    Article  PubMed  PubMed Central  Google Scholar 

  • Hossain A, Teixeira da Silva JA, Lozovskaya MV, Zvolinsky VP, Mukhortov VI (2012b) High temperature combined with drought affect rainfed spring wheat and barley in South-Eastern Russia: yield, relative performance and heat susceptibility index. J Plant Breed Crop Sci 4:184–196

    Google Scholar 

  • Hua J (2009) From freezing to scorching, transcriptional responses to temperature variations in plants. Curr Opin Plant Biol 12:568–573. https://doi.org/10.1016/j.pbi.2009.07.012

    Article  CAS  PubMed  Google Scholar 

  • ICAC (2009) Global warming and cotton production – part 2. ICAC Rec 27:9–13

    Google Scholar 

  • ICAC (International Cotton Advisory Committee) (2017) Cotton: world statistics. International Cotton Advisory Committee, Washington DC

    Google Scholar 

  • Jafari A, Paknejad F, Jami Al-Ahmadi M (2009) Evaluation of selection indices for drought tolerance of corn (Zea mays L.) hybrids. Int J Plant Prod 3:33–38

    Google Scholar 

  • Jaleel CA, Manivannan PA, Wahid A, Farooq M, Al-Juburi HJ, Somasundaram RA, Panneerselvam R (2009) Drought stress in plants: a review on morphological characteristics and pigments composition. Int J Agric Biol 11:100–105

    Google Scholar 

  • Jaspers P, Kangasjarvi J (2010) Reactive oxygen species in abiotic stress signalling. Physiol Plant 138:405–413

    Article  CAS  PubMed  Google Scholar 

  • Johnson DA (1980) Improvement of perennial herbaceous plants for drought-stressed western rangelands. In: Turner NC, Kramer PJ (eds) Adaptation of plants to water and high temperature stress. John Wiley & Sons, New York, pp 419–433

    Google Scholar 

  • Kakani VG, Reddy KR, Koti S, Wallace TP, Prasad PV, Reddy VR, Zhao D (2005) Differences in in vitro pollen germination and pollen tube growth of cotton cultivars in response to high temperature. Ann Bot 96(1):59–67

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kalteh M, Alipour ZT, Ashraf S, Aliabadi MM, Nosratabadi AF (2014) Effect of silica nanoparticles on basil (Ocimum basilicum) under salinity stress. J Chem Health Risks 4:49–55

    CAS  Google Scholar 

  • Kamal MA, Saleem MF, Wahid MA, Shakeel A (2017) Effects of ascorbic acid on membrane stability and yield of heat-stressed BT cotton. J Anim Plant Sci 27:192–199

    CAS  Google Scholar 

  • Karademir E, Karademir Ç, Ekinci R, Başbağ S, Başal H (2012) Screening cotton varieties (Gossypium hirsutum L.) for heat tolerance under field conditions. Afr J Agric Res 7:6335–6342

    Google Scholar 

  • Kazan K (2015) Diverse roles of jasmonates and ethylene in abiotic stress tolerance. Trends Plant Sci 20:219–229

    Article  CAS  PubMed  Google Scholar 

  • Khalili M, Naghavi MR, Aboughadareh AP, Talebzadeh SJ (2012) Evaluating of drought stress tolerance based on selection indices in spring canola cultivars (Brassica napus L.). J Agric Sci 4:78–85

    Google Scholar 

  • Khaliq T, Mubeen M, Ali A, Ahmad A, Wajid A, Rasul F, Nasim W (2012) Effect of diverse irrigation regimes on growth parameters and yield of cotton under Faisalabad conditions. IPJST 2:81–85

    Google Scholar 

  • Khan AI, Khan IA, Sadaqat HA (2008) Heat tolerance is variable in cotton (Gossypium hirsutum L.) and can be exploited for breeding of better yielding cultivars under high temperature regimes. Pak J Bot 40:2053–2058

    Google Scholar 

  • Khatun S, Ali MB, Hahn EJ, Paek KY (2008) Copper toxicity in Withania somnifera: growth and antioxidant enzymes responses of in vitro grown plants. Environ Exp Bot 64(3):279–285

    Article  CAS  Google Scholar 

  • Kobeasy MI, El-Beltagi HS, El-Shazly MA, Khattab EA (2011) Induction of resistance in Arachis hypogaea L. against peanut mottle virus by nitric oxide and salicylic acid. Physiol Mol Plant Pathol 76:112–118

    Article  CAS  Google Scholar 

  • Lawlor DW, Cornic G (2002) Photosynthetic carbon assimilation and associated metabolism in relation to water deficits in higher plants. Plant Cell Environ 25(2):275–294

    Article  CAS  PubMed  Google Scholar 

  • Lawlor DW, Tezara W (2009) Causes of decreased photosynthetic rate and metabolic capacity in water-deficient leaf cells: a critical evaluation of mechanisms and integration of processes. Ann Bot 103:561–579

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lindemose S, O’Shea C, Jensen MK, Skriver K (2013) Structure, function and networks of transcription factors involved in abiotic stress responses. Int J Mol Sci 14:5842–5878

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liu J, Wisniewski M, Droby S, Vero S, Tian S, Hershkovitz V (2011) Glycine betaine improves oxidative stress tolerance and biocontrol efficacy of the antagonistic yeast Cystofilobasidium infirmominiatum. Int J Food Microbiol 146:76–83

    Article  CAS  PubMed  Google Scholar 

  • Llanes A, Andrade A, Alemano S, Luna V (2016) Alterations of endogenous hormonal levels in plants under drought and salinity. Am J Plant Sci 7:1357

    Article  CAS  Google Scholar 

  • Loka DA, Oosterhuis DM (2010) Effect of high night temperatures on cotton respiration, ATP levels and carbohydrate content. Environ Exp Bot 68:258–263

    Article  CAS  Google Scholar 

  • Lu X, Chen X, Mu M, Wang J, Wang X, Wang D, Yin Z, Fan W, Wang S, Guo L, Ye W (2016) Genome-wide analysis of long noncoding RNAs and their responses to drought stress in cotton (Gossypium hirsutum L.). PLoS One 11:e0156723

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Maestri E, Klueva N, Perrotta C, Gulli M, Nguyen HT, Marmiroli N (2002) Molecular genetics of heat tolerance and heat shock proteins in cereals. Plant Mol Biol 48:667–681. https://doi.org/10.1023/A:1014826730024

    Article  CAS  PubMed  Google Scholar 

  • Mahajan S, Tuteja N (2005) Cold, salinity and drought stresses: an overview. Arch Biochem Biophys 444:139–158

    Article  CAS  PubMed  Google Scholar 

  • Majumdar S, Ghosh S, Glick BR, Dumbroff EB (1991) Activities of chlorophyllase, phosphoenolpyruvate carboxylase and ribulose-1,5-bisphosphate carboxylase in the primary leaves of soybean during senescence and drought. Physiol Plant 81:473–480

    Article  CAS  Google Scholar 

  • Mattioni C, Lacerenza NG, Troccoli A, De Leonardis AM, Di Fonzo N (1997) Water and salt stress-induced alterations in proline metabolism of Triticum durum seedlings. Physiol Plant 101:787–792

    Article  CAS  Google Scholar 

  • Mert M (2005) Irrigation of cotton cultivars improves seed cotton yield, yield components and fibre properties in the Hatay region, Turkey. Acta Agric Scand Sect B Soil Plant Sci 55(1):44–50

    Google Scholar 

  • Mittler R, Blumwald E (2010) Genetic engineering for modern agriculture: challenges and perspectives. Annu Rev Plant Biol 61:443–462

    Article  CAS  PubMed  Google Scholar 

  • Mubeen M, Khaliq T, Ahmad A, Ali A, Rasul F, Hussain J (2012) Quantification of seed cotton yield and water use efficiency of cotton under variable irrigation schedules. Crop Environ 3:54–57

    Google Scholar 

  • Nonami H (1998) Plant water relations and control of cell elongation at low water potentials. J Plant Res 111(3):373–382

    Article  Google Scholar 

  • Oosterhuis DM (2002) Day or night high temperatures: a major cause of yield variability. Cotton Grow 46:8–9

    Google Scholar 

  • Oosterhuis DM, Bourland FM, Bibi AC, Gonias ED, Loka D, Storch D (2009) Screening for temperature tolerance in cotton. Summaries of Arkansas cotton research in 2008, AAES Research Series 573. Available: http://arkansasagnews.uark.edu/573-5.pdf

  • Oosterhuis DM, Snider JL (2011) High temperature stress on floral development and yield of cotton. In: Oosterhuis DM (ed) Stress physiology in cotton, vol 7. The Cotton Foundation, Cordova, pp 1–24

    Google Scholar 

  • Pandey DM, Goswami CL, Kumar B (2003) Physiological effects of plant hormones in cotton under drought. Biol Plant 47:535–540

    Article  CAS  Google Scholar 

  • Patil MD, Biradar DP, Patil VC, Janagoudar BS (2011) Response of cotton genotypes to drought mitigation practices. American-Eurasian J Agric Environ Sci 11:360–364

    CAS  Google Scholar 

  • Peleg Z, Blumwald E (2011) Hormone balance and abiotic stress tolerance in crop plants. Curr Opin Plant Biol 14:290–295

    Article  CAS  PubMed  Google Scholar 

  • Pirzad A, Shakiba MR, Zehtab-Salmasi S, Mohammadi SA, Darvishzadeh R, Samadi A (2011) Effect of water stress on leaf relative water content, chlorophyll, proline and soluble carbohydrates in Matricaria chamomilla L. J Med Plant Res 5:2483–2488

    CAS  Google Scholar 

  • Poór P, Kovács J, Szopkó D, Tari I (2013) Ethylene signaling in salt stress-and salicylic acid-induced programmed cell death in tomato suspension cells. Protoplasma 250:273–284. https://doi.org/10.1007/s00709-012-0408-4

    Article  CAS  PubMed  Google Scholar 

  • Qin LX, Nie XY, Hu R, Li G, Xu WL, Li XB (2016) Phosphorylation of serine residue modulates cotton Di19-1 and Di19-2 activities for responding to high salinity stress and abscisic acid signaling. Sci Rep 6:20371

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Racchi ML (2013) Antioxidant defenses in plants with attention to prunus and citrus spp. Antioxidants 2:340–369

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rahman S, Shaheen MS, Rahman M, Malik TA (2000) Evaluation of excised leaf water loss and relative water content as screening techniques for breeding drought resistant wheat. Pak J Biol Sci 3:663–665

    Article  Google Scholar 

  • Ramu VS, Paramanantham A, Ramegowda V, Mohan-Raju B, Udayakumar M, Senthil-Kumar M (2016) Transcriptome analysis of sunflower genotypes with contrasting oxidative stress tolerance reveals individual- and combined- biotic and abiotic stress tolerance mechanisms. PLoS One 11:e0157522. https://doi.org/10.1371/journal.pone.0157522

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Raza MA, Saleem MF, Shah GM, Khan IH, Raza A (2014) Exogenous application of glycine betaine and potassium for improving water relations and grain yield of wheat under drought. J Soil Sci Plant Nutr 14:348–364

    Google Scholar 

  • Reddi GHS, Reddy TY (1995) Irrigation efficiencies and water use efficiency: efficient use of irrigation water. Kalyani Publishers, New Delhi, pp 199–218

    Google Scholar 

  • Reddy AR, Chaitanya KV, Vivekanandan M (2004) Drought induced responses of photosynthesisand antioxidant metabolism in higher plants. J Plant Physiol 161:1189–1202

    Google Scholar 

  • Rizhsky L, Liang H, Shuman J, Shulaev V, Davletova S, Mittler R (2004) When defense pathways collide. The response of Arabidopsis to a combination of drought and heat stress. Plant Physiol 134:1683–1696

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rontein D, Basset G, Hanson AD (2002) Metabolic engineering of osmoprotectant accumulation in plants. Metab Eng 4(1):49–56

    Article  CAS  PubMed  Google Scholar 

  • Saifullah A, Rajput MT, Khan MA, Sial MA, Tahir SS (2015) Screening of cotton (Gossypium hirsutum L.) genotypes for heat tolerance. Pak J Bot 47:2085–2091

    Google Scholar 

  • Saneoka H, Moghaieb REA, Premachandra GS, Fujita K (2004) Nitrogen nutrition and water stress effects on cell membrane stability and leaf water relation in Agrostis palustris Huds. Environ Exp Bot 52:131–138

    Article  CAS  Google Scholar 

  • Schrader SM, Wise RR, Wacholtz WF, Ort DR, Sharkey TD (2004) Thylakoid membrane responses to moderately high leaf temperature in Pima cotton. Plant Cell Environ 27(6):725–735

    Article  CAS  Google Scholar 

  • Shahenshah, Isoda A (2010) Effects of water stress on leaf temperature and chlorophyll fluorescence parameters in cotton and peanut. Plant Prod Sci 13:269–278

    Article  Google Scholar 

  • Shao HB, Chu LY, Jaleel CA, Zhao CX (2008) Water-deficit stress-induced anatomical changes in higher plants. Comptes Rendus Biologies 331(3):215–225

    Article  PubMed  Google Scholar 

  • Sharkey TD (2005) Effects of moderate heat stress on photosynthesis: importance of thylakoid reactions, rubisco deactivation, reactive oxygen species, and thermo-tolerance provided by isoprene. Plant Cell Environ 28:269–277

    Google Scholar 

  • Sibet T, Birol T (2007) Some physiological responses of drought stress in wheat genotypes with different ploidity in Turkey. World J Agric Sci 3:178–183

    Google Scholar 

  • Silva MA, Jifon JL, Silva JAG, Sharma V (2007) Use of physiological parameters as fast tools to screen for drought tolerance in sugarcane. Braz J Plant Physiol 19(3):193–201

    Article  Google Scholar 

  • Silva RLO, Ferreira Neto JRC, Pandolfi V, Chabregas SM, Burnquist WL, Benko-Iseppon AM, Kido EA (2011) Transcriptomics of sugarcane osmoprotectants under drought. In: Vasanthaiah HKN, Kambiranda D (eds) Plants and environment. In Tech, Rijeka, pp 779–786

    Google Scholar 

  • Singh RP, Prasad PVV, Sunita K, Giri SN, Reddy KR (2007) Influence of high temperature and breeding for heat tolerance in cotton: a review. Adv Agron 3:313–385

    Article  CAS  Google Scholar 

  • Snider JL, Oosterhuis DM (2012) Heat stress and pollen-pistil interaction. In: Oosterhuis DM, Cothren JT (eds) Flowering and fruiting in cotton. The Cotton Foundation, Cordova, pp 59–78

    Google Scholar 

  • Snider JL, Oosterhuis DM, Skulman BW, Kawakami EM (2009) Heat stress-induced limitations to reproductive success in Gossypium hirsutum. Physiol Plant 137:125–138

    Article  CAS  PubMed  Google Scholar 

  • Snider JL, Oosterhuis DM, Kawakami EM (2010) Genotypic differences in thermotolerance are dependent upon pre-stress capacity for antioxidant protection of the photosynthetic apparatus in Gossypium hirsutum. Physiol Plant 138:268–277

    Article  CAS  PubMed  Google Scholar 

  • Snider JL, Oosterhuis DM, Kawakami EM (2011) Diurnal pollen tube growth rate is slowed by high temperature in field-grown Gossypium hirsutum pistils. J Plant Physiol 168:441–448

    Article  CAS  PubMed  Google Scholar 

  • Sofo A, Scopa A, Nuzzaci M, Vitti A (2015) Ascorbate peroxidase and catalase activities and their genetic regulation in plants subjected to drought and salinity stresses. Int J Mol Sci 16:13561–13578. https://doi.org/10.3390/ijms160613561

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Soomro AR, Anjum R, Soomro AW, Memmon AM, Bano S (2001) Optimum sowing time for new commercial cotton variety, Marvi (CRIS-5A). Pakistan Cottons 45:25–28

    Google Scholar 

  • Taiz L, Zeiger E (2006) Plant physiology, 4th edn. Sinauer Associates Inc. Publishers, Sunderland

    Google Scholar 

  • Tariq M, Yasmeen A, Ahmad S, Hussain N, Afzal MN, Hasanuzzaman M (2017) Shedding of fruiting structures in cotton: factors, compensation and prevention. Trop Subtrop Agroecosyst 20:251–262

    Google Scholar 

  • Tariq M, Ahmad S, Fahad S, Abbas G, Hussain S, Fatima Z, Nasim W, Mubeen M, Rehman MHU, Khan MA, Adnan M, Wilkerson CJ, Hoogenboom G (2018) The impact of climate warming and crop management on phenology of sunflower-based cropping systems in Punjab, Pakistan. Agric For Meteorol 256–257:270–282

    Article  Google Scholar 

  • Tian J, Belanger FC, Huang B (2009) Identification of heat stress-responsive genes in heat-adapted thermal Agrostis scabra by suppression subtractive hybridization. J Plant Physiol 166:588–601. https://doi.org/10.1016/j.jplph.2008.09.003

    Article  CAS  PubMed  Google Scholar 

  • Ullah A, Sun H, Yang X, Zhang X (2017) Drought coping strategies in cotton: increased crop per drop. Plant Biotechnol J 15:271–284. https://doi.org/10.1111/pbi.12688

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Vollenweider P, Günthardt-Goerg MS (2005) Diagnosis of abiotic and biotic stress factors using the visible symptoms in foliage. Environ Pollut 137:455–465

    Article  CAS  PubMed  Google Scholar 

  • Wahid A (2007) Physiological implications of metabolite biosynthesis for net assimilation and heat-stress tolerance of sugarcane (Saccharum officinarum) sprouts. J Plant Res 120:219–228. https://doi.org/10.1007/s10265-006-0040-5

    Article  PubMed  Google Scholar 

  • Wahid A, Gelani S, Ashraf M, Foolad MR (2007) Heat tolerance in plants: an overview. Environ Exp Bot 61:99–223

    Article  Google Scholar 

  • Wang LJ, Li SH (2006) Salicylic acid-induced heat or cold tolerance in relation to Ca2+ homeostasis and antioxidant systems in young grape plants. Plant Sci 170:685–694

    Article  CAS  Google Scholar 

  • Weis E, Berry JA (1988) Plants and high temperature stress. Symp Soc Exp Biol 42:329–346

    CAS  PubMed  Google Scholar 

  • Xu X, Tian S (2008) Salicylic acid alleviated pathogen–induced oxidative stress in harvested sweet cherry fruit. Postharvest Biol Technol 49:379–385

    Article  CAS  Google Scholar 

  • Yildiz-Aktas L, Dagnon S, Gurel A, Gesheva E, Edreva A (2009) Drought tolerance in cotton: involvement of non-enzymatic ROS-scavenging compounds. J Agron Crop Sci 195(4):247–253

    Article  CAS  Google Scholar 

  • You J, Chan Z (2015) ROS regulation during abiotic stress responses in crop plants. Front Plant Sci 6:1092. https://doi.org/10.3389/fpls.2015.01092

    Article  PubMed  PubMed Central  Google Scholar 

  • Yuncai H, Schmidhalter U (2005) Drought and salinity: a comparison of the effects of drought and salinity. J Plant Nutr Soil Sci 168:541–549

    Article  CAS  Google Scholar 

  • Zahid KR, Ali F, Shah F, Younas M, Shah T, Shahwar D, Hassan W, Ahmad Z, Qi C, Lu Y, Iqbal A (2016) Response and tolerance mechanism of cotton (Gossypium hirsutum L.) to elevated temperature stress: a review. Front Plant Sci 7:937. https://doi.org/10.3389/fpls.2016.00937

    Article  PubMed  PubMed Central  Google Scholar 

  • Zhang L, Ma H, Chen T, Pen J, Yu S, Zhao X (2014) Morphological and physiological responses of cotton (Gossypium hirsutum L.) plants to salinity. PLoS One 9:e112807. https://doi.org/10.1371/journal.pone.0112807

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhu Z, Wei G, Li J, Qian Q, Yu J (2004) Silicon alleviates salt stress and increases antioxidant enzymes activity in leaves of salt-stressed cucumber (Cucumis sativus L.). Plant Sci 167:527–533

    Article  CAS  Google Scholar 

Download references

Conflict of Interest

The authors declare that there is no conflict of interest regarding the publication of this work.

Disclaimer

We hereby declare that the review contains no materials which have been accepted for the award of any degree or diploma in any university/institute. To the best of our knowledge and belief, the manuscript contains no copy of any material previously published or written by another person except where due reference is made in the text.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ayman EL Sabagh .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

EL Sabagh, A. et al. (2020). Drought and Heat Stress in Cotton (Gossypium hirsutum L.): Consequences and Their Possible Mitigation Strategies. In: Hasanuzzaman, M. (eds) Agronomic Crops. Springer, Singapore. https://doi.org/10.1007/978-981-15-0025-1_30

Download citation

Publish with us

Policies and ethics