Skip to main content

Systemic Evaluation Approach to Meet the Challenges of Complexity

  • Chapter
  • First Online:
Society as an Interaction Space

Part of the book series: Translational Systems Sciences ((TSS,volume 22))

Abstract

Traditional linear evaluation approaches are not able to address the dynamic interrelationships and feedback mechanisms involved in the increasingly complex social environment. To meet the challenges of complexity, new evaluation approaches are required. This chapter contributes to this discussion by suggesting a new integrative evaluation approach which combines foresight, multi-criteria evaluation and system dynamic modelling into the evaluation process. The developed methodology is applied in the evaluation of the Finnish Innovation Fund, Sitra.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 129.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    https://media.sitra.fi/2017/11/29120141/Selvityksia127.pdf

  2. 2.

    See more of Sitra at https://www.sitra.fi/en/.

  3. 3.

    Sitra law (only in Finnish) Laki Suomen itsenäisyyden juhlarahastosta. 24.8.1990/717 http://www.finlex.fi/fi/laki/ajantasa/1990/19900717

  4. 4.

    https://www.sitra.fi/en/topics/facts-about-sitra/

  5. 5.

    The more detailed results are published in the evaluation report (executive summary is available in English; the whole report is available only in Finnish) and publicly available at https://media.sitra.fi/2017/11/29120141/Selvityksia127.pdf.

  6. 6.

    Before formulating the comprehensive system dynamic model, two narrower models were created to describe the dynamics of the two selected case areas. These models helped to create the comprehensive model.

References

  • Autio, E., & Thomas, L. D. W. (2013). Innovation ecosystems. In M. Dodgson, D. Gann, & N. Phillips (Eds.), Oxford handbook of innovation management (pp. 204–288). Oxford: Oxford University Press.

    Google Scholar 

  • Berkhout, F., Smith, A., & Stirling, A. (2004). Socio-technical regimes and transition contexts. In B. Elzen, F. W. Geels, & K. Green (Eds.), System innovation and the transition to sustainability (pp. 48–75). Cheltenham: Edward Elgar. https://doi.org/10.4337/9781845423421.00013.

    Chapter  Google Scholar 

  • Cabrera, D., Colosi, L., & Lobdell, C. (2008). Systems thinking. Evaluation and Program Planning, 31, 299–310.

    Article  Google Scholar 

  • Castells, M. (1996). The rise of the network society, the information age: Economy, society and culture (Vol. I). Cambridge and Oxford: Blackwell.

    Google Scholar 

  • Chen, H. T. (2005). Theory driven evaluation. In S. Mathison (Ed.), Encyclopedia of evaluation (pp. 415–419). Thousand Oaks: Sage.

    Google Scholar 

  • Cozzens, S., & Melkers, J. (1997). Use and usefulness of performance measurement in state science and technology programs. Policy Studies Journal, 25(3), 425–435.

    Article  Google Scholar 

  • Denzin, N. (2006). Sociological methods: A sourcebook (5th ed.). Piscataway: Aldine Transaction.

    Google Scholar 

  • Djellal, F., & Gallouj, F. (2013). The productivity challenge in services: Measurement and strategic perspectives. The Service Industries Journal, 33(3–4), 282–299.

    Article  Google Scholar 

  • Dyehouse, M., Bennett, D., Harbor, J., Childress, A., & Dark, M. (2009). A comparison of linear and systems thinking approaches for program evaluation illustrated using Indiana Interdisciplinary GK-12. Evaluation and Program Planning, 32, 187–196.

    Article  Google Scholar 

  • Edquist, C. (2005). Reflections on the systems of innovation approach. Science and Public Policy, 31(6), 485–489.

    Article  Google Scholar 

  • Elzen, B., Geels, F. W., & Green, K. (2004). System innovation and the transition to sustainability. Cheltenham and Northampton: Edward Elgar.

    Book  Google Scholar 

  • Eoyang, G., & Holladay, R. (2013). Adaptive action: Leveraging uncertainty in your organization. Stanford: Stanford University Press.

    Google Scholar 

  • Forrester, J. W. (2007). System dynamics—The next fifty years. System Dynamics Review, 23(2/3), 359–370.

    Article  Google Scholar 

  • Forss, K., Marra, M., & Schwartz, R. (2011). Evaluating the complex: Attribution, contribution, and beyond. London: Transaction Publishers.

    Google Scholar 

  • Freeman, C., & Louca, F. (2002). As time goes by: From the industrial revolutions to the information revolution. Oxford: Oxford University Press.

    Book  Google Scholar 

  • Funnel, S. C., & Rogers, P. J. (2011). Purposeful program theory: Effective use of theories of change and logic models. San Francisco: Jossey-Bass.

    Google Scholar 

  • Geels, F. W. (2002). Technological transitions as evolutionary reconfiguration processes: A multi-level perspective and a case-study. Research Policy, 31, 1257–1274.

    Article  Google Scholar 

  • Geels, F. W. (2004). From sectoral systems of innovation to socio-technical systems. Insights about dynamics and change from sociology and institutional theory. Research Policy, 33, 897–920.

    Article  Google Scholar 

  • Geels, F. W. (2005). System innovation and the transition to sustainability. Theory, evidence and policy. Cheltenham: Edward Elgar.

    Google Scholar 

  • Geels, F. W., & Kemp, R. (2007). Dynamics in socio-technical systems: Typology of change processes and contrasting case studies. Technology in Society, 29(4), 441–455.

    Article  Google Scholar 

  • Geels, F. W., & Schot, J. (2007). Typology of sociotechnical transition pathways. Research Policy, 36, 399–417.

    Article  Google Scholar 

  • Hansson, F. (2006). Organisational use of evaluation. Evaluation, 12(2), 159–178.

    Article  Google Scholar 

  • Hargreaves, M. B., & Podems, D. (2012). Advancing systems thinking in evaluation: A review of four publications. American Journal of Evaluation, 33, 462–470.

    Article  Google Scholar 

  • Holland, J. H. (1995). Hidden order: How adaptation builds complexity. New York: Basic Books.

    Google Scholar 

  • Holling, C. S. (2001). Understanding the complexity of economic, ecological, and social systems. Ecosystems, 4(5), 390–405. https://doi.org/10.1007/s10021-001-0101-5.

    Article  Google Scholar 

  • Hyytinen, K. (2017). Supporting service innovation via evaluation: A future oriented, systemic and multi-actor approach. Doctoral dissertation 14/2017, Aalto University publication series. VTT Science 146. Retrieved from http://www.vtt.fi/inf/pdf/science/2017/S146.pdf

  • Hyytinen, K., Ruutu, S., Nieminen, M., Gallouj, F., & Toivonen, M. (2014). A system dynamic and multi-criteria evaluation of innovations in environmental services. Economics and Policy of Energy and the Environment, 3, 29–52.

    Google Scholar 

  • Kellogg Foundation. (2004). Using logic models to bring together planning, evaluation & action logic model development guide. Battle Creek: Kellogg Foundation. Retrieved from https://www.wkkf.org/resource-directory/resource/2010/w-k-kellogg-foundation-evaluation-handbook.

    Google Scholar 

  • Kemp, R., Rip, A., & Schot, J. (2001). Constructing transition paths through the management of niche. In R. Garud & P. Karnoe (Eds.), Path dependency and creation (pp. 269–299). Mahwah: Lawrence Erlbaum.

    Google Scholar 

  • Kemp, R., & Rotmans, J. (2004). Managing the transition to sustainable mobility. In B. Elzen, F. Geels, & K. Green (Eds.), System innovation and the transition to sustainability: Theory, evidence and policy (pp. 137–167). Cheltenham: Edgar Elgar.

    Google Scholar 

  • Kemp, R., Schot, J., & Hoogma, R. (1998). Regime shifts to sustainability through processes of niche formation. The approach of strategic niche management. Technology Analysis and Strategic Management, 10(2), 175–195.

    Article  Google Scholar 

  • Kivisaari, S., Lovio, R., & Väyrynen, E. (2004). Managing experiments for transition: Examples of societal embedding in energy and health care sectors. In B. Elzen, F. W. Geels, & K. Green (Eds.), System innovation and the transition to sustainability. Theory, evidence and policy (pp. 223–250). Cheltenham: Edward Elgar.

    Google Scholar 

  • Lawrence, K. (2013). Developing leaders in VUCA environment. Retrieved January 24, 2017, from http://www.growbold.com/2013/developing-leaders-in-a-vuca-environment_UNC.2013.pdf

  • Martin, B. R. (2010). The origins of the concept of ‘foresight’ in science and technology: An insider’s perspective. Technological Forecasting and Social Change, 77, 1438–1447.

    Article  Google Scholar 

  • Martin, B. R., & Irvine, J. (1989). Research foresight: Priority-setting in science. London and New York: Pinter Publishers.

    Google Scholar 

  • Mayne, J. (2012). Contribution analysis: Coming of age? Evaluation, 18, 270–280.

    Article  Google Scholar 

  • Meadows, D. H. (2008). Thinking in systems. A primer. Chelsea Green, White River Junction.

    Google Scholar 

  • Merril, J. A., Deegan, M., Wilson, R., Kaushal, R., & Frederiks, K. (2013). A system dynamics evaluation model: Implementation of health information exchange for public health reporting. Journal of the American Medical Informatics Association, 20, 131–138.

    Article  Google Scholar 

  • Miles, I. (2013). Interactive impacts—Foresight as a product, service and coproduction process. In D. Dirk Meissner, L. Gokhberg, & A. Sokolov (Eds.), Technology and innovation policy for the future: Potentials and limits of foresight studies (pp. 63–82). Berlin: Springer.

    Chapter  Google Scholar 

  • Mitleton-Kelly, E. (Ed.). (2007). Complex systems and evolutionary perspectives on organizations. The application of complexity theory to organizations. Bingley, UK: Emerald.

    Google Scholar 

  • Mowles, C. (2014). Complex, but not quite complex enough: The turn to the complexity sciences in evaluation scholarship. Evaluation, 20(2), 160–175. https://doi.org/10.1177/1356389014527885.

    Article  Google Scholar 

  • Nieminen, M., & Hyytinen, K. (2015). Future-oriented impact assessment: Supporting strategic decision-making in complex socio-technical environments. Evaluation, 21(4), 448–461.

    Article  Google Scholar 

  • Patton, M. Q. (2011). Developmental evaluation: Applying complexity concepts to enhance innovation and use. New York: Guilford.

    Google Scholar 

  • Rip, A., & Kemp, R. (1998). Technological change. In S. Rayner & E. J. Malone (Eds.), Human choice and climate change: Vol. 2. Resources and technology (pp. 327–399). Battelle Press: Columbus.

    Google Scholar 

  • Rip, A. (2003). Societal challenges for R&D evaluation. In P. Shapira & S. Kuhlmann (Eds.), Learning from science and technology policy evaluation: Experiences from the United States and Europe (pp. 35–59). Cheltenham: Edward Elgar.

    Google Scholar 

  • Ritala, P., Armila, L., & Blomqvist, K.-M. (2009). Innovation orchestration capability—Defining the organizational and individual level determinants. International Journal of Innovation Management, 13(4), 569–591.

    Article  Google Scholar 

  • Rittel, H., & Webber Melvin, M. (1973). Dilemmas in a general theory of planning. Policy Sciences, 4, 155–169.

    Article  Google Scholar 

  • Rotmans, J., & Loorbach, D. (2009). Complexity and transition management. Journal of Industrial Ecology, 13(2), 184–196.

    Article  Google Scholar 

  • Sterman, J. D. (2001). System dynamics modeling: Tools for learning in a complex world. California Management Review, 43(4), 8–25.

    Article  Google Scholar 

  • Tait, J., & Williams, R. (1999). Policy approaches to research and development: foresight, framework and competitiveness. Science and Public Policy, 26(2), 101–112.

    Article  Google Scholar 

  • van der Knaap, P. (2006). Performance evaluation and performance management. Overcoming the downsides of policy objectives and performance indicators. Evaluation, 12(3), 278–293.

    Article  Google Scholar 

  • Williams, B., & Hummelbrunner, R. (2011). Systems concepts in action. A practitioner’s Toolkit. Stanford: Stanford University Press.

    Google Scholar 

  • Williams, B., & Imam, I. (Eds.). (2007). Systems concepts in evaluation: An expert anthology. Point Reyes: Edge Press of Inverness.

    Google Scholar 

  • Windrum, P., & García-Goñi, M. (2008). A neo-Schumpeterian model of health services innovation. Research Policy, 37(4), 649–672.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mika Nieminen .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Nieminen, M., Hyytinen, K., Salminen, V., Ruutu, S. (2020). Systemic Evaluation Approach to Meet the Challenges of Complexity. In: Lehtimäki, H., Uusikylä, P., Smedlund, A. (eds) Society as an Interaction Space. Translational Systems Sciences, vol 22. Springer, Singapore. https://doi.org/10.1007/978-981-15-0069-5_5

Download citation

Publish with us

Policies and ethics