Skip to main content

Software-Aided Design of Idealised Programmable Nucleic Acid Circuits

  • Chapter
  • First Online:
Advances in Synthetic Biology

Abstract

The idea to use nucleic acid as a substrate for design of programmable biomolecular circuits was first introduced almost four decades ago; however, up till now, the field of DNA computing holds many challenges and uncertainties to be discovered. This chapter describes the historical evolution of DNA programming along with its most noticeable breakthroughs till the current days, describes the basics of such important theoretical concepts as DNA strand displacement and Abstract Chemical Reaction Networks, and finally, familiarises the reader with various platforms for in silico synthesis and simulation of genetic circuits.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Adleman LM (1998) Computing with DNA. Sci Am, 54–61

    Google Scholar 

  • Andrianantoandro E et al (2006) Synthetic biology: new engineering rules for an emerging discipline. Mol Syst Biol 2(1):2006.0028

    Article  Google Scholar 

  • Anosova I et al (2016) The structural diversity of artificial genetic polymers. Nucleic Acids Res 44(3):1007–1021

    Article  CAS  Google Scholar 

  • Bennett CH (1982) The thermodynamics of computation – a review. Int J Theor Phys 21(12):905–940

    Article  CAS  Google Scholar 

  • Chen Y-J et al (2013) Programmable chemical controllers made from DNA. Nat Nanotechnol 8:755–762

    Article  CAS  Google Scholar 

  • Daniel R et al (2013) Synthetic analog computation in living cells. Nature 497:619–623

    Article  CAS  Google Scholar 

  • Delebecque CJ et al (2013) Organization of intracellular reactions with rationally designed RNA assemblies. Science 333:470–474

    Article  Google Scholar 

  • Douglas SM et al (2012) A logic gated nanorobot for targeted transport of molecular payloads. Science 335:831–834

    Article  CAS  Google Scholar 

  • Elowitz MB et al (2000) A synthetic oscillatory network of transcriptional regulators. Nature 403(6767):335–338

    Article  CAS  Google Scholar 

  • Franco E (2012) Analysis, design, and in vitro implementation of robust biochemical networks. PhD dissertation, California Institute of Technology

    Google Scholar 

  • Fujii T et al (2013) Predator–prey molecular ecosystems. ACS Nano 7:27–34

    Article  CAS  Google Scholar 

  • Gardner TS et al (2000) Construction of a genetic toggle switch in Escherichia coli. Nature 403(6767):339–342

    Article  CAS  Google Scholar 

  • Hartwell L et al (1999) From molecular to modular cell biology. Nature 402:C47–C52

    Article  CAS  Google Scholar 

  • Kim J et al (2011) Synthetic in vitro transcriptional oscillators. Mol Syst Biol 7:465

    Article  Google Scholar 

  • Jinek M et al (2012) A programmable dual-RNA-guided DNA endonuclease in adaptive bacterial immunity. Science 337:816–821

    Article  CAS  Google Scholar 

  • Lakin MR et al (2011) Visual DSD: a design and analysis tool for DNA strand displacement systems. Bioinformatics 27(22):3211–3213

    Article  CAS  Google Scholar 

  • Lakin MR et al (2012) Abstractions for DNA circuit design. J R Soc Interface 9(68):470–486

    Article  Google Scholar 

  • Lakin M et al (2016) Supervised learning in adaptive DNA strand displacement networks. ACS Synth Biol 5(8):885–897

    Article  CAS  Google Scholar 

  • Lauffenburger D (2000) Cell signaling pathways as control modules: complexity for simplicity? Proc Natl Acad Sci U S A 97(10):5031–5033

    Article  CAS  Google Scholar 

  • Li J et al (2018) Exploring the speed limit of toehold exchange with a cartwheeling DNA acrobat. Nat Nanotechnol 13:723–729

    Article  CAS  Google Scholar 

  • Monod J et al (1961) Teleonomic mechanisms in cellular metabolism, growth, and differentiation. Cold Spring Harbor Sympos Quantit biol 26:389–401

    Article  CAS  Google Scholar 

  • Montagne K et al (2011) Programming an in vitro DNA oscillator using a molecular networking strategy. Mol Syst Biol 7:466

    Article  Google Scholar 

  • Nielsen AK et al (2016) Genetic circuit design automation. Science 112(6281):aac7341

    Article  Google Scholar 

  • Oishi K et al (2011) Biomolecular implementation of linear I/O systems. IET Syst Biol 5(4):252–260

    Article  CAS  Google Scholar 

  • Padirac A et al (2013) Nucleic acids for the rational design of reaction circuits. Curr Opin Biotechnol 24:575–580

    Article  CAS  Google Scholar 

  • Phillips A et al (2009) A programming language for composable DNA circuits. J R Soc Interface 6(Suppl 4):S419–S436

    CAS  PubMed  PubMed Central  Google Scholar 

  • Purnick P et al (2009) The second wave of synthetic biology: from modules to systems. Nat Rev Mol Cell Biol 10(6):410–422

    Article  CAS  Google Scholar 

  • Qian L et al (2011) Scaling up digital circuit computation with DNA strand displacement cascades. Science 332(6034):1196–1201

    Article  CAS  Google Scholar 

  • Rothemund PWK (2006) Folding DNA to create nanoscale shapes and patterns. Nature 440:297–302

    Article  CAS  Google Scholar 

  • Seelig G et al (2006) Enzyme-free nucleic acid logic circuits. Science 314(5805):1585–1588

    Article  CAS  Google Scholar 

  • Soloveichik D et al (2010) DNA as a universal substrate for chemical kinetics. PNAS 107(12):5393–5398

    Article  CAS  Google Scholar 

  • Song T et al (2016) Analog computation by DNA strand displacement circuits. ACS Synth Biol 5(8):898–912

    Article  CAS  Google Scholar 

  • Thubagere J et al (2017) A cargo-sorting DNA robot. Science 357:1112

    Article  CAS  Google Scholar 

  • Weitz M et al (2014) Diversity in the dynamical behavior of a compartmentalized programmable biochemical oscillator. Nat Chem 6:295–302

    Article  CAS  Google Scholar 

  • Xie Z et al (2011) Multi-input RNAi-based logic circuit for identification of specific cancer cells. Science 333(6047):1307–1311

    Article  CAS  Google Scholar 

  • Yin P et al (2004) A unidirectional DNA walker that moves autonomously along a track. Angew Chem Int Ed 43:4906–4911

    Article  CAS  Google Scholar 

  • Yordanov B et al (2014) Computational design of nucleic acid feedback control circuits. ACS Synth Biol 3:600–616

    Article  CAS  Google Scholar 

  • Yurke B et al (2000) A DNA-fuelled molecular machine made of DNA. Nature 406(6796):605–608

    Article  CAS  Google Scholar 

  • Zhang DY et al (2011) Dynamic DNA nanotechnology using strand-displacement reactions. Nat Chem 3:103–113

    Article  CAS  Google Scholar 

  • Zhang Q et al (2014) DNA origami as an in vivo drug delivery vehicle for cancer therapy. ACS Nano 8(7):6633–6643

    Google Scholar 

  • Zhou C et al (2017) Four-analog computation based on DNA strand displacement. ACS Omega 2(8):4143–4160

    Article  Google Scholar 

Download references

Acknowledgements

This research is supported, in parts, by the EPSRC INDUSTRIAL CASE AWARD (CASE Voucher 16000070), Microsoft Research, and the EPSRC/BBSRC grant BB/M017982/1 to the Warwick Integrative Synthetic Biology Centre.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vishwesh Kulkarni .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Zarubiieva, I., Kulkarni, V. (2020). Software-Aided Design of Idealised Programmable Nucleic Acid Circuits. In: Singh, V. (eds) Advances in Synthetic Biology. Springer, Singapore. https://doi.org/10.1007/978-981-15-0081-7_8

Download citation

Publish with us

Policies and ethics