Skip to main content

Application to Partial Fractional Differential Equation

  • Chapter
  • First Online:
Numerical Methods for Fractional Differentiation

Part of the book series: Springer Series in Computational Mathematics ((SSCM,volume 54))

  • 1056 Accesses

Abstract

Numerical methods for fractional partial differential equations have also been intensively studied and many already published papers can be found in the literature. Due to their wider application in modelling complex real-world problems, several numerical schemes have been suggested. This chapter is devoted to the discussion underpinning the application of existing and newly established numerical schemes for solving partial fractional differential equations.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 139.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. J. Al-Omari, S.A. Gourley, Monotone travelling fronts in an age-structured reaction-diffusion model of a single species. J. Math. Biol. 45, 294–312 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  2. B. Al-Saqabi, L. Boyadjiev, Y. Luchko, Comments on employing the Riesz-Feller derivative in the Schrödinger equation. Eur. Phys. J. Spec. Topics 222, 1779–1794 (2013)

    Article  Google Scholar 

  3. P. Amore, F.M. Fernáandez, C.P. Hofmann, R.A. Sáenz, Collocation method for fractional quantum mechanics. J. Math. Phys. 51, 122101 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  4. A. Atangana, On the new fractional derivative and application to nonlinear Fisher’s reaction-diffusion equation. Appl. Math. Comput. 273, 948–956 (2016)

    MathSciNet  MATH  Google Scholar 

  5. A. Atangana, Derivative with a New Parameter: Theory, Methods and Applications (Academic Press, New York, 2016)

    Book  MATH  Google Scholar 

  6. A. Atangana, Fractional Operators with Constant and Variable Order with Application to Geo-Hydrology (Academic Press, New York, 2017)

    MATH  Google Scholar 

  7. A. Atangana, R.T. Alqahtani, Numerical approximation of the space-time Caputo-Fabrizio fractional derivative and application to groundwater pollution equation. Adv. Differ. Equ. 2016(1), 1–13 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  8. A. Atangana, J.J. Nieto, Numerical solution for the model of RLC circuit via the fractional derivative without singular kernel. Adv. Mech. Eng. 7, 1–6 (2015)

    Google Scholar 

  9. M.D. Bramson, Maximal displacement of branching brownian motion. Commu. Pure Appl. Math. 31, 531–581 (1978)

    Article  MathSciNet  MATH  Google Scholar 

  10. P.K. Brazhnik, J.J. Tyson, On traveling wave solutions of Fisher’s equation in two spatial dimensions. SIAM J. Appl. Math. 60, 371–391 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  11. N.F. Britton, Reaction-Diffusion Equations and Their Applications to Biology (Academic Press, London, 1986)

    MATH  Google Scholar 

  12. A. Bueno-Orovio, D. Kay, K. Burrage, Fourier spectral methods for fractional-in-space reaction-diffusion equations. BIT Numer. Math. 54, 937–954 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  13. M. Caputo, M. Fabrizio, A new definition of fractional derivative without singular kernel. Prog. Fract. Differ. Appl. 1, 73–85 (2015)

    Google Scholar 

  14. C. Celik, M. Duman, Crank-Nicolson method for the fractional diffusion equation with the Riesz fractional derivative. J. Comput. Phys. 231, 1743–1750 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  15. S.M. Cox, P.C. Matthews, Exponential time differencing for stiff systems. J. Comput. Phys. 176, 430–455 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  16. A. Doelman, T.J. Kaper, P.A. Zegeling, Pattern formation in the one-dimensional Gray-Scott model. J. Nonlinear Sci. 10, 523–563 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  17. Z. Feng, Traveling wave behavior for a generalized fisher equation. Chaos Solitons Fract. 38, 481–488 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  18. P.C. Fife, Mathematical Aspects of Reacting and Diffusing systems, vol. 28 (Lecture Notes in Biomathematics (Springer, New York, 1979)

    Book  MATH  Google Scholar 

  19. R.A. Fisher, The wave of advance of advantageous genes. Ann. Eugen. 7, 353–369 (1937)

    MATH  Google Scholar 

  20. S.A. Gourley, Travelling front solutions of a nonlocal Fisher equation. J. Math. Biol. 41, 272–284 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  21. P. Gray, S.K. Scott, Autocatalytic reactions in the isothermal, continuous stirred tank reactor: Isolas and other forms of multistability. Chem. Eng. Sci. 38, 29–43 (1983)

    Article  Google Scholar 

  22. P. Gray, S.K. Scott, Autocatalytic reactions in the isothermal, continuous stirred tank reactor: oscillations and instabilities in the system \(A+2B\rightarrow 3B; B\rightarrow C\). Chem. Eng. Sci. 39, 1087–1097 (1984)

    Article  Google Scholar 

  23. S. Hamdi, W.E. Schiesser, G.W. Griffiths, Method of lines. Scholarpedia 2(7), 2859 (2010)

    Article  Google Scholar 

  24. E. Hanert, A comparison of three Eulerian numerical methods for fractional-order transport models. Environ. Fluid Mech. 10, 7–20 (2010). https://doi.org/10.1007/s10652-009-9145-4

    Article  Google Scholar 

  25. E. Hanert, On the numerical solution of space-time fractional diffusion models. Comput. Fluids 46, 33–39 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  26. D.A.F. Kamenetskii, Diffusion and Heat Exchange in Chemical Kinetics (Princeton University Press, Princeton, NJ, 1955)

    Book  Google Scholar 

  27. A.K. Kassam, L.N. Trefethen, Fourth-order time-stepping for stiff PDEs. SIAM J. Sci. Comput. 26, 1214–1233 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  28. M.M. Khader, On the numerical solutions for the fractional diffusion equation. Commun. Nonlinear Sci. Numer. Simul. 16, 2535–2542 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  29. A.A. Kilbas, H. YuF Luchko, J.J.Trujillod Martínezc, Fractional Fourier transform in the framework of fractional calculus operators. Integral Transforms Spec. Funct. 21, 779–795 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  30. A.A. Kilbas, H.M. Srivastava, J.J. Trujillo, Theory and Applications of Fractional Differential Equations (Elsevier, Amsterdam, 2006)

    MATH  Google Scholar 

  31. A.N. Kolmogorov, I.G. Petrovskii, N.S. Piskunov, A study of diffusion equation with increase in the quantity of matter and its application to a biological problem. Mosc. Univ. Bull. Math. 1, 1–25 (1937)

    Google Scholar 

  32. M. Kot, Discrete-time travelling waves: ecological examples. J. Math. Biol. 30, 413–436 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  33. M. Kot, Elements of Mathematical Ecology (Cambridge University Press, Cambridge, 2001)

    Book  MATH  Google Scholar 

  34. M. Kot, W.M. Schaffer, Discrete-time growth-dispersal models. Math. Biosci. 80, 109–136 (1986)

    Article  MathSciNet  MATH  Google Scholar 

  35. S. Krogstad, Generalized integrating factor methods for stiff PDEs. J. Comput. Phys. 203, 72–88 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  36. Y.N. Kyrychko, K.B. Blyuss, Persistence of travelling waves in a generalized Fisher equation. Phys. Lett. A 373, 668–674 (2009)

    Article  MATH  Google Scholar 

  37. N. Laskin, Fractional Schrödinger equations. Phys. Rev. E 66, 056108 (2002)

    Article  MathSciNet  Google Scholar 

  38. X. Li, C. Xu, Existence and uniqueness of the weak solution of the space-time fractional diffusion equation and a spectral method approximation. Commun. Comput. Phys. 8, 1016–1051 (2010)

    MathSciNet  MATH  Google Scholar 

  39. A. Liemert, A. Kienle, Fractional Schrödinger equation in the presence of the linear potential. Mathematics 4(31) (2016). https://doi.org/10.3390/math4020031

    Article  MATH  Google Scholar 

  40. Y. Luchko, Fractional Schrödinger equation for a particle moving in a potential well. J. Math. Phys. 54, 012111 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  41. Y. Luchko, Fractional wave equation and damped waves. J. Math. Phys. 54, 031505 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  42. Y. Luchko, Wave-diffusion dualism of the neutral-fractional processes. J. Comput. Phys. 293, 40–52 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  43. G. Marchuk, Splitting and Alternating Direction Methods, in Handbook of Numerical Analysis (North Holland, Amsterdam, 1990)

    Google Scholar 

  44. M.M. Meerschaert, C. Tadjeran, Finite difference approximations for fractional advection-dispersion ow equations. J. Comput. Appl. Math. 172, 65–77 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  45. M.M. Meerschaert, C. Tadjeran, Finite difference approximations for two-sided space-fractional partial differential equations. Appl. Numer. Math. 56, 80–90 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  46. M.M. Meerschaert, H.P. Scheffler, C. Tadjeran, Finite difference methods for two-dimensional fractional dispersion equation. J. Comput. Phys. 211, 249–261 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  47. J.D. Murray, Lectures on Non-linear Differential Equations Models in Biology (Oxford University Press, London, 1977)

    Google Scholar 

  48. J.D. Murray, Mathematical Biology (Springer, Berlin, 1989)

    Book  MATH  Google Scholar 

  49. J.D. Murray, Mathematical Biology, 19: Biomathematics Texts (Springer, Berlin, 1993)

    Book  Google Scholar 

  50. J.D. Murray, Mathematical Biology II: Spatial Models and Biomedical Applications (Springer-Verlag, Berlin, 2003)

    Book  MATH  Google Scholar 

  51. J.D. Murray, Mathematical Biology I: An Introduction (Springer, New York, 2003)

    Book  Google Scholar 

  52. Z.M. Odibat, S. Momani, Application of variational iteration method to nonlinear differential equation of fractional order. Int. J. Nonlinear Sci. Numer. Simul. 7, 27–34 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  53. K.B. Oldham, J. Spanier, The Fractional Calculus: Theory and Applications of Differentiation and Integration to Arbitrary Order (Dover Publication, New York, 2006)

    MATH  Google Scholar 

  54. M.D. Ortigueira, Fractional Calculus for Scientists and Engineers (Springer, New York, 2011)

    Book  MATH  Google Scholar 

  55. K.M. Owolabi, Efficient numerical simulation of non-integer-order space-fractional reaction-diffusion equation via the Riemann-Liouville operator. Eur. Phys. J. Plus 133, 98 (2018). (16 pages). https://doi.org/10.1140/epjp/i2018-11951-x

  56. K.M. Owolabi, Robust IMEX schemes for solving two-dimensional reaction-diffusion models. Int. J. Nonlinear Sci. Numer. Simul. 16, 271–284 (2015). https://doi.org/10.1515/ijnsns-2015-0004

    Article  MathSciNet  MATH  Google Scholar 

  57. K.M. Owolabi, Mathematical analysis and numerical simulation of patterns in fractional and classical reaction-diffusion systems. Chaos Solitons Fractals 93, 89–98 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  58. K.M. Owolabi, Efficient Numerical Methods for Reaction-Diffusion Problems (Saarbrücken, Deutschland/Germany, 2016)

    Google Scholar 

  59. K.M. Owolabi, Robust and adaptive techniques for numerical simulation of nonlinear partial differential equations of fractional order. Commun. Nonlinear Sci. Numer. Simul. 44, 304–317 (2017)

    Article  MathSciNet  Google Scholar 

  60. K.M. Owolabi, A. Atangana, Numerical solution of fractional-in-space nonlinear Schrödinger equation with the Riesz fractional derivative. Eur. Phys. J. Plus 131, 335 (2016). https://doi.org/10.1140/epjp/i2016-16335-8

    Article  Google Scholar 

  61. K.M. Owolabi, K.C. Patidar, Higher-order time-stepping methods for time-dependent reaction-diffusion equations arising in biology. Appl. Math. Comput. 240, 30–50 (2014)

    MathSciNet  MATH  Google Scholar 

  62. K.M. Owolabi, K.C. Patidar, Numerical solution of singular patterns in one-dimensional Gray-Scott-like models. Int. J. Nonlinear Sci. Numer. Simul. 15, 437–462 (2014). https://doi.org/10.1515/ijnsns-2013-0124

    Article  MathSciNet  MATH  Google Scholar 

  63. K.M. Owolabi, K.C. Patidar, Existence and permanence in a diffusive KiSS modelwith robust numerical simulations. Int. J. Differ. Equ. 2015(485860), 8 (2015). https://doi.org/10.1155/2015/485860

    Article  MATH  Google Scholar 

  64. K.M. Owolabi, K.C. Patidar, Numerical simulations of multicomponent ecological models with adaptive methods. Theor. Biol. Med. Model. 13, 1 (2016). https://doi.org/10.1186/s12976-016-0027-4

    Article  Google Scholar 

  65. K.M. Owolabi, K.C. Patidar, Effect of spatial configuration of an extended nonlinear Kierstead-Slobodkin reaction-transport model with adaptive numerical scheme. Springer Plus 5, 303 (2016). https://doi.org/10.1186/s40064-016-1941-y

    Article  Google Scholar 

  66. J.E. Pearson, Complex patterns in a simple system. Science 261(1993), 189–192 (1993)

    Article  Google Scholar 

  67. E. Pindza, K.M. Owolabi, Fourier spectral method for higher order space fractional reaction-diffusion equations. Commun. Nonlinear Sci. Numer. Simul. 40, 112–128 (2016)

    Article  MathSciNet  Google Scholar 

  68. A.R. Plastino, C. Tsallis, Nonlinear Schrödinger equation in the presence of uniform acceleration. J. Math. Phys. 54, 041505 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  69. I. Podlubny, Fractional Differential Equations (Academic Press, San Diego, 1999)

    MATH  Google Scholar 

  70. W.N. Reynolds, J.E. Pearson, S. Ponce-Dawson, Dynamics of self-replicating patterns in reaction diffusion systems. Phys. Rev. Lett. 72, 1120–1123 (1994)

    Article  Google Scholar 

  71. R. Riaza, Time-domain properties of reactive dual circuits. Int. J. Circ. Theory Appl. 34, 317–340 (2006)

    Article  MATH  Google Scholar 

  72. S.G. Samko, B. Ross, Integration and differentiation to a variable fractional order. Integral Transforms Spec. Funct. 1, 277–300 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  73. S. Samko, A. Kilbas, O. Marichev, Fractional Integrals and Derivatives: Theory and Applications (Gordon and Breach, Amsterdam, 1993)

    MATH  Google Scholar 

  74. G. Strang, On the construction and comparison of difference schemes. SIAM J. Numer. Anal. 5, 506–517 (1968)

    Article  MathSciNet  MATH  Google Scholar 

  75. L.N. Trefethen, Spectral Methods in MATLAB (SIAM, Philadelphia, 2000)

    Book  MATH  Google Scholar 

  76. J.A.C. Weideman, S.C. Reddy, A MATLAB differenciation suite. Trans. Math. Softw. 26, 465–519 (2001)

    Article  Google Scholar 

  77. F.A. Williams, Combustion Theory (Addison-Wesley, Reading, MA, 1965)

    Google Scholar 

  78. F. Zeng, F. Liu, C. Li, K. Burrage, I. Turner, V. Anh, A Crank-Nicolson ADI spectral method for a two-dimensional riesz space fractional nonlinear reaction-diffusion equation. SIAM J. Numer. Anal. 52, 2599–2622 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  79. F. Zeng, C. Li, F. Liu, I. Turner, Numerical algorithms for time-fractional subdiffusion equation with second-order accuracy. SIAM J. Sci. Comput. 37, A55–A78 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  80. Y. Zhang, X. Liu, M.R. Belić, W. Zhong, Y. Zhang, M. Xiao, Propagation dynamics of a light beam in a fractional Schrödinger equation. Phys. Rev. Lett. 115, 180403 (2015)

    Google Scholar 

  81. M. Zheng, F. Liu, I. Turner, V. Anh, A novel high order space-time spectral method for the time fractional Fokker-Planck equation. SIAM J. Sci. Comput. 37, A701–A724 (2015)

    Article  MathSciNet  MATH  Google Scholar 

Bibliography

  1. B.S.T. Alkahtani, A. Atangana, Chaos on the Vallis model for El Niño with fractional operators. Entropy 18(4) (2016) 17 pages. https://doi.org/10.3390/e18040100

    Article  Google Scholar 

  2. H. Bahouri, J.Y. Chemin, R. Danchin, Fourier Analysis and Nonlinear Partial Differential Equations (Springer, Berlin, 2011)

    Book  MATH  Google Scholar 

  3. A. Cloot, J.F. Botha, A generalised groundwater flow equation using the concept of non-integer order derivatives. Water SA 32, 1–7 (2006)

    Google Scholar 

  4. J.G. Charney, R. Fjörtoft, J. Von Neumann, Numerical integration of the barotropic vorticity equation. Sven. Geofys. Fören. 2, 237–254 (1950)

    MathSciNet  Google Scholar 

  5. R. Courant, K. Friedrichs, H. Lewy, On partial difference equations of mathematical physics. IBM J. Res. Dev. 11, 215–234 (1967)

    Article  MathSciNet  MATH  Google Scholar 

  6. J. Crank, E. Nicolson, A practical method for numerical integration of solutions of partial differential equations of heat-conduction type. Proc. Camb. Philos. Soc. 43, 50–67 (1963)

    Article  MATH  Google Scholar 

  7. D.R. Durran, Numerical Methods for Fluids Dynamics with Applications to Geophysics (Springer Science+Business Media, New York, 2010)

    Book  MATH  Google Scholar 

  8. E.F. Doungmo Goufo, Application of the Caputo-Fabrizio fractional derivative without singular kernel to Korteweg-de Vries-Burgers equation. Math. Model. Anal. 21, 188–198 (2016)

    Google Scholar 

  9. B. Fornberg, Calculation of weights in finite difference formulas. SIAM Rev. 40, 685–691 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  10. S.D. Gedney, Introduction to the Finite-Difference Time-Domain (FDTD)-Method for Electromagnetics (Morgan and Claypool Publishers, Arizona, 2011)

    Book  MATH  Google Scholar 

  11. J.D. Hoffman, Numerical Methods for Engneers and Scientists (Marcel Dekker Inc., New York, 2001)

    Google Scholar 

  12. H. Holden, K.H. Karlsen, Nonlinear Partial Differential Equations (Springer, Berlin, 2012). The Abel symposium

    Google Scholar 

  13. R.K. Jain, Numerical Solution of Differential Equations, 2nd edn. (Wiley Eastern Limited, New Delhi, 1984)

    MATH  Google Scholar 

  14. R.J. Leveque, Finite Difference Methods for Ordinary and Partial Differential Equations (SIAM, Philadelphia, 2007)

    Book  MATH  Google Scholar 

  15. J. Liouville, Mémoire sur l’integration de l’équation: \((mx^2+nx+p)d^2x/dx^2 +(qx+pr)dy/dx+sy=0\) à l’aide des diffr?entielles indices quelconques. J. l’Ecole Roy. Polytéchn. 13, 163–186 (1832)

    Google Scholar 

  16. J. Liouville, Mémoire sur le théoréme des fonctions complémentaires. J. Reine Angew. Math. 11, 119 (1934)

    MathSciNet  Google Scholar 

  17. J. Liouville, Mémoire sur une formule d’analyse. J. Reine Angew. Math. 12, 273–287 (1834)

    MathSciNet  Google Scholar 

  18. J. Liouville, Mémoire sur le changement de la variable indépendante dans le calcul des différentielles indices quelconques. J. l’Ecole Roy. Polytéchn. 15, 1754 (1835)

    Google Scholar 

  19. J. Liouville, Mémoire sur l’usage que l’on peut faire de la formule de fourier, dan le calcul des différentielles à indices quelconques. J. Reine Angew. Math. 13, 219–232 (1835)

    MathSciNet  Google Scholar 

  20. J.H. Mathews, K.D. Fink, Numerical Methods Using MATLAB (Prentice Hall, New Jersey, 1999)

    Google Scholar 

  21. M. Riesz, Potentiels de divers ordres et leurs fonctions de Green. C. R. Congrés Intern. Math. 2, 62–63 (1936)

    Google Scholar 

  22. M. Riesz, L’intégrales de Riemann-Liouville et potentiels. Acta Litt. Acad. Sci. Szeged 9, 1–42 (1938)

    MATH  Google Scholar 

  23. G. Sewell, The Numerical Solution of Ordinary and Partial Differential Equations (Wiley, Hoboken, New Jersey, 2005)

    Book  MATH  Google Scholar 

  24. J.W. Thomas, Numerical Partial Differential Equations-Finite Difference Methods (Springer, New York, 1995)

    Book  MATH  Google Scholar 

  25. J.W. Thomas, Numerical Partial Differential Equations: Conservation Laws and Elliptic Equations (Springer, New York, 1999)

    Book  MATH  Google Scholar 

  26. L.N. Trefethen, M. Embere, Spectra and Pseudospectra: the Behavior of Nonnormal Matrices and Operators (Princeton University Press, New Jersey, 2005)

    Google Scholar 

  27. G.K. Vallis, El Niño: a chaotic dynamical system? Science 232, 243–255 (1986)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Owolabi, K.M., Atangana, A. (2019). Application to Partial Fractional Differential Equation. In: Numerical Methods for Fractional Differentiation. Springer Series in Computational Mathematics, vol 54. Springer, Singapore. https://doi.org/10.1007/978-981-15-0098-5_8

Download citation

Publish with us

Policies and ethics