Skip to main content

Bioprotein Based IPN Nanoparticles as Potential Vehicles for Anticancer Drug Delivery: Fabrication Technology

  • Chapter
  • First Online:
Interpenetrating Polymer Network: Biomedical Applications

Abstract

The ever growing interest in bioactive biopolymers originated from natural sources and advances in extraction and purification of protein have led to the development of protein-polymer based targeted drug delivery system. Among them, interpenetrating polymer network (IPN) based nanoparticles have gained great attention in the last decades, mainly due to their biomedical applications. IPN nanoparticles based drug delivery system is basically designed to deliver drugs at a predetermined rate for a desired period of time with minimum fluctuation. A number of reports on the IPN based drug delivery systems showed that these carriers have emerged as a novel drug carrier in controlled delivery system. This chapter aims to give an overview of the recent design concepts of IPN based nanoparticles, methods of synthesis, some natural polymers especially protein widely used for IPN and also covers recent advances in IPN based nanoparticles system for pharmaceutical applications as well as in anticancer drug delivery system.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abigerges D (1995) Irinotecan (CPT-11) high-dose escalation using intensive high-dose loperamide to control diarrhea. J Clin Oncol 13:210

    Article  CAS  PubMed  Google Scholar 

  • Aggarwal BB, Banerjee S et al (2007) RETRACTED: curcumin induces the degradation of cyclin E expression through ubiquitin-dependent pathway and up-regulates cyclin-dependent kinase inhibitors p21 and p27 in multiple human tumor cell lines. Biochem Pharmacol 73:1024–1032. Elsevier

    Article  CAS  PubMed  Google Scholar 

  • Ahmed TA, Dare EV et al (2008) Fibrin: a versatile scaffold for tissue engineering applications. Tissue Eng Part B Rev 14(2):199–215

    Article  CAS  PubMed  Google Scholar 

  • Akpalo E, Bidault L et al (2011) Fibrin–polyethylene oxide interpenetrating polymer networks: new self-supported biomaterials combining the properties of both protein gel and synthetic polymer. Acta Biomater 7(6):2418–2427

    Article  CAS  PubMed  Google Scholar 

  • Altman GH, Diaz F et al (2003) Silk-based biomaterials. Biomaterials 24(3):401–416

    Article  CAS  PubMed  Google Scholar 

  • Anderson C, Rodriguez F et al (1979) Crosslinking aqueous poly (vinyl pyrrolidone) solutions by persulfate. J Appl Polym Sci 23(8):2453–2462

    Article  CAS  Google Scholar 

  • Ariëns RA, Lai T-S et al (2002) Role of factor XIII in fibrin clot formation and effects of genetic polymorphisms. Blood 100(3):743–754

    Article  PubMed  Google Scholar 

  • Aylsworth JW (1914, September) Plastic composition. US. US Patent 1111284

    Google Scholar 

  • Banerjee S, Chaurasia G et al (2010) Investigation on crosslinking density for development of novel interpenetrating polymer network (IPN) based formulation. J Sci Ind Res 69(10):777–784

    CAS  Google Scholar 

  • Bhattacharya SS, Shukla S et al (2013) Tailored IPN hydrogel bead of sodium carboxymethyl cellulose and sodium carboxymethyl xanthan gum for controlled delivery of diclofenac sodium. Polym-Plast Technol Eng 52(8):795–805

    Article  CAS  Google Scholar 

  • Blume G, Cevc G (1990) Liposomes for the sustained drug release in vivo. Biochim Biophys Acta 1029(1):91–97

    Article  CAS  PubMed  Google Scholar 

  • Brigger I, Dubernet C et al (2012) Nanoparticles in cancer therapy and diagnosis. Adv Drug Deliv Rev 64:24–36

    Article  Google Scholar 

  • Brown R, Links M (1999) Clinical relevance of the molecular mechanisms of resistance to anti-cancer drugs. Expert Rev Mol Med 1(15):1–21

    Article  Google Scholar 

  • Bryant SJ, Davis-Arehart KA et al (2004) Synthesis and characterization of photopolymerized multifunctional hydrogels: water-soluble poly (vinyl alcohol) and chondroitin sulfate macromers for chondrocyte encapsulation. Macromolecules 37(18):6726–6733

    Article  CAS  Google Scholar 

  • Chen HW, Huang HC (1998) Effect of curcumin on cell cycle progression and apoptosis in vascular smooth muscle cells. Br J Pharmacol 124(6):1029–1040

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chen G, Lin W et al (1994) Preparation of human serum albumin microspheres by a novel acetone-heat denaturation method. J Microencapsul 11(4):395–407

    Article  CAS  PubMed  Google Scholar 

  • Cheng D, Yong X et al (2016) Synthesis of protein nanoparticles for drug delivery. Eur J BioMed Res 2(2):8–11

    Article  Google Scholar 

  • Coester C, Langer K et al (2000) Gelatin nanoparticles by two step desolvation a new preparation method, surface modifications and cell uptake. J Microencapsul 17(2):187–193

    Article  CAS  PubMed  Google Scholar 

  • Cuenca AG, Jiang H et al (2006) Emerging implications of nanotechnology on cancer diagnostics and therapeutics. Cancer 107(3):459–466

    Article  CAS  PubMed  Google Scholar 

  • Demirel M, Yazan Y et al (2001) Formulation and in vitro-in vivo evaluation of piribedil solid lipid micro-and nanoparticles. J Microencapsul 18(3):359–371

    Article  CAS  PubMed  Google Scholar 

  • Dingler A, Blum R et al (1999) Solid lipid nanoparticles (SLNTM/LipopearlsTM) a pharmaceutical and cosmetic carrier for the application of vitamin E in dermal products. J Microencapsul 16(6):751–767

    Article  CAS  PubMed  Google Scholar 

  • Du J-Z, Du X-J et al (2011) Tailor-made dual pH-sensitive polymer–doxorubicin nanoparticles for efficient anticancer drug delivery. J Am Chem Soc 133(44):17560–17563

    Article  CAS  PubMed  Google Scholar 

  • Farokhzad OC, Langer R (2009) Impact of nanotechnology on drug delivery. ACS Nano 3(1):16–20

    Article  CAS  PubMed  Google Scholar 

  • Farokhzad OC, Karp JM et al (2006) Nanoparticle–aptamer bioconjugates for cancer targeting. Expert Opin Drug Deliv 3(3):311–324

    Article  CAS  PubMed  Google Scholar 

  • Fathollahipour S, Abouei Mehrizi A et al (2015) Electrospinning of PVA/chitosan nanocomposite nanofibers containing gelatin nanoparticles as a dual drug delivery system. J Biomed Mater Res A 103(12):3852–3862

    Article  CAS  PubMed  Google Scholar 

  • Feng S-S, Chien S (2003) Chemotherapeutic engineering: application and further development of chemical engineering principles for chemotherapy of cancer and other diseases. Chem Eng Sci 58(18):4087–4114

    Article  CAS  Google Scholar 

  • Fuchs S, Coester C et al (2010) Protein-based nanoparticles as a drug delivery system: chances, risks, perspectives. J Drug Deliv Sci Technol 20(5):331–342

    Article  CAS  Google Scholar 

  • Gil ES, Hudson SMJB (2007) Effect of silk fibroin interpenetrating networks on swelling/deswelling kinetics and rheological properties of poly (N-isopropylacrylamide) hydrogels. Biomacromolecules 8(1):258–264

    Article  CAS  PubMed  Google Scholar 

  • Gotoh Y, Tsukada M et al (1997) Synthesis of poly (ethylene glycol)-silk fibroin conjugates and surface interaction between L-929 cells and the conjugates. Biomaterials 18(3):267–271

    Article  CAS  PubMed  Google Scholar 

  • Gulfam M, Kim J-e et al (2012) Anticancer drug-loaded gliadin nanoparticles induce apoptosis in breast cancer cells. Langmuir 28(21):8216–8223

    Article  CAS  PubMed  Google Scholar 

  • Ha S-W, Park YH et al (2003) Dissolution of Bombyx m ori silk fibroin in the calcium nitrate tetrahydrate− methanol system and aspects of wet spinning of fibroin solution. Biomacromolecules 4(3):488–496

    Article  CAS  PubMed  Google Scholar 

  • Haider ZA, Arai M et al (1993) Mechanism of the gelation of fibroin solution. Biosci Biotechnol Biochem 57(11):1910–1912

    Article  Google Scholar 

  • Hakimi O, Knight DP et al (2007) Spider and mulberry silkworm silks as compatible biomaterials. Compos Part B 38(3):324–337

    Article  CAS  Google Scholar 

  • Hasan MM, Khan MN et al (2018) Novel alginate-di-aldehyde cross-linked gelatin/nano-hydroxyapatite bioscaffolds for soft tissue regeneration. Int J Biol Macromol 117:1110–1117

    Article  CAS  Google Scholar 

  • Hu LHSR (2014) Interpenetrating polymer networks. In: Leszek CW, Utracki A (eds) Polymer blends handbook. Springer, Dordrecht, pp 417–447

    Google Scholar 

  • Irache JM, Bergougnoux L et al (1995) Optimization and in vitro stability of legumin nanoparticles obtained by a coacervation method. Int J Pharm 126(1–2):103–109

    Article  CAS  Google Scholar 

  • Jain SK, Gupta Y et al (2008) Mannosylated gelatin nanoparticles bearing an anti-HIV drug didanosine for site-specific delivery. Nanomedicine 4(1):41–48

    Article  CAS  PubMed  Google Scholar 

  • Jain E, Srivastava A et al (2009) Macroporous interpenetrating cryogel network of poly (acrylonitrile) and gelatin for biomedical applications. J Mater Sci 20(1):173

    Google Scholar 

  • Janmey PA, Winer JP et al (2008) Fibrin gels and their clinical and bioengineering applications. J R Soc Interface 6(30):1–10

    Article  PubMed Central  CAS  Google Scholar 

  • Jin H-J, Kaplan DLJN (2003) Mechanism of silk processing in insects and spiders. Nature 424(6952):1057

    Article  CAS  PubMed  Google Scholar 

  • Juliano R (1976) The role of drug delivery systems in cancer chemotherapy. Prog Clin Biol Res 9:21–32

    CAS  PubMed  Google Scholar 

  • Kakde D, Jain D et al (2011) Cancer therapeutics-opportunities, challenges and advances in drug delivery. J Appl Pharm Sci 1(9):1–10

    Google Scholar 

  • Kaul G, Amiji M (2004) Biodistribution and targeting potential of poly (ethylene glycol)-modified gelatin nanoparticles in subcutaneous murine tumor model. J Drug Target 12(9–10):585–591

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Keane TE, El-galley RE et al (1998) Camptothecin analogues/cisplastin: an effective treatment of advanced bladder cancer in a preclinical in vivo model system. J Urol 160(1):252–256

    Article  CAS  PubMed  Google Scholar 

  • Klibanov AL, Maruyama K et al (1990) Amphipathic polyethyleneglycols effectively prolong the circulation time of liposomes. FEBS Lett 268(1):235–237

    Article  CAS  PubMed  Google Scholar 

  • Ko S, Gunasekaran S (2006) Preparation of sub-100-nm β-lactoglobulin (BLG) nanoparticles. J Microencapsul 23(8):887–898

    Article  CAS  PubMed  Google Scholar 

  • Kojima T, Bessho M et al (2004) Characterization of biopolymer hydrogels produced by γ-ray irradiation. Radiat Phys Chem 71(1–2):235–238

    Article  CAS  Google Scholar 

  • Koul V, Mohamed R et al (2011) Interpenetrating polymer network (IPN) nanogels based on gelatin and poly (acrylic acid) by inverse miniemulsion technique: synthesis and characterization. Colloids Surf B 83(2):204–213

    Article  CAS  Google Scholar 

  • Krishna R, Mayer LD (2000) Multidrug resistance (MDR) in cancer: mechanisms, reversal using modulators of MDR and the role of MDR modulators in influencing the pharmacokinetics of anticancer drugs. Eur J Pharm Sci 11(4):265–283

    Article  CAS  PubMed  Google Scholar 

  • Kudela V (1987) Hydrogels. In: Kroschwitz JI (ed) Encyclopedia of polymer science and engineering. Wiley, NewYork, pp 783–807

    Google Scholar 

  • Landfester K (2006) Synthesis of colloidal particles in miniemulsions. Annu Rev Mater Res 36:231–279

    Article  CAS  Google Scholar 

  • Langer K, Balthasar S et al (2003) Optimization of the preparation process for human serum albumin (HSA) nanoparticles. Int J Pharm 257(1–2):169–180

    Article  CAS  PubMed  Google Scholar 

  • Langer K, Anhorn M et al (2008) Human serum albumin (HSA) nanoparticles: reproducibility of preparation process and kinetics of enzymatic degradation. Int J Pharm 347(1–2):109–117

    Article  CAS  PubMed  Google Scholar 

  • Litvak DA, Papaconstantinou HT et al (1999) Inhibition of gastric cancer by camptothecin involves apoptosis and multiple cellular pathways. Surgery 126(2):223–230

    Article  CAS  PubMed  Google Scholar 

  • Liu Y, Chan-Park MB (2010) A biomimetic hydrogel based on methacrylated dextran-graft-lysine and gelatin for 3D smooth muscle cell culture. Biomaterials 31(6):1158–1170

    Article  CAS  PubMed  Google Scholar 

  • Liu Y, Cui Y (2011) Thermosensitive soy protein/poly (n-isopropylacrylamide) interpenetrating polymer network hydrogels for drug controlled release. J Appl Polym Sci 120(6):3613–3620

    Article  CAS  Google Scholar 

  • Liu Y-F, Huang K-L et al (2007) Preparation and characterization of glutaraldehyde cross-linked O-carboxymethylchitosan microspheres for controlled delivery of pazufloxacin mesilate. Int J Biol Macromol 41(1):87–93

    Article  CAS  PubMed  Google Scholar 

  • Liu D, Tian H et al (2008) Effects of calcium carbonate polymorph on the structure and properties of soy protein-based nanocomposites. Macromol Biosci 8(5):401–409

    Article  CAS  PubMed  Google Scholar 

  • Liu Y, Cui Y et al (2009) Synthesis, characterization, and drug release behaviour of novel soy protein/poly (acrylic acid) ipn hy-drogels. Iran Polym J 18:339–348

    Google Scholar 

  • Lohani A, Singh G et al (2014) Interpenetrating polymer networks as innovative drug delivery systems. J Drug Deliv 2014:1–11

    Article  CAS  Google Scholar 

  • Lohcharoenkal W, Wang L et al (2014) Protein nanoparticles as drug delivery carriers for cancer therapy. Biomed Res Int 2014:1–12

    Article  CAS  Google Scholar 

  • Lozinsky VI, Plieva FM et al (2001) The potential of polymeric cryogels in bioseparation. Bioseparation 10(4–5):163–188

    Article  CAS  PubMed  Google Scholar 

  • Lu J, Liong M et al (2007) Mesoporous silica nanoparticles as a delivery system for hydrophobic anticancer drugs. Small 3(8):1341–1346

    Article  CAS  PubMed  Google Scholar 

  • Mallikarjuna Reddy K, Ramesh Babu V et al (2008) Temperature sensitive semi-IPN microspheres from sodium alginate and N-isopropylacrylamide for controlled release of 5-fluorouracil. J Appl Polym Sci 107(5):2820–2829

    Article  CAS  Google Scholar 

  • Mandal BB, Kapoor S et al (2009) Silk fibroin/polyacrylamide semi-interpenetrating network hydrogels for controlled drug release. Biomaterials 30(14):2826–2836

    Article  CAS  PubMed  Google Scholar 

  • Martens P, Anseth KJP (2000) Characterization of hydrogels formed from acrylate modified poly (vinyl alcohol) macromers. Polymer 41(21):7715–7722

    Article  CAS  Google Scholar 

  • Masters KS, Shah DN et al (2005) Crosslinked hyaluronan scaffolds as a biologically active carrier for valvular interstitial cells. Biomaterials 26(15):2517–2525

    Article  CAS  PubMed  Google Scholar 

  • Mayer G, Vogel V et al (2005) Oligonucleotide-protamine-albumin nanoparticles: protamine sulfate causes drastic size reduction. J Control Release 106(1–2):181–187

    Article  CAS  PubMed  Google Scholar 

  • Meinhart J, Fussenegger M et al (1999) Stabilization of fibrin-chondrocyte constructs for cartilage reconstruction. Ann Plast Surg 42(6):673–678

    Article  CAS  PubMed  Google Scholar 

  • Merodio M, Arnedo A et al (2001) Ganciclovir-loaded albumin nanoparticles: characterization and in vitro release properties. Eur J Pharm Sci 12(3):251–259

    Article  CAS  PubMed  Google Scholar 

  • Millar JR (1960) Interpenetrating polymer networks. Styrene–divinylbenzene copolymers with two and three interpenetrating networks, and their sulphonates. J Chem Soc 1:1311–1317

    Article  Google Scholar 

  • Miller KD, Soule SE et al (2004) A phase II study of 9-nitro-camptothecin in patients with previously treated metastatic breast cancer. Investig New Drugs 22(1):69–73

    Article  CAS  Google Scholar 

  • Nagaraj D, Rothenberg A et al (1987) Low molecular weight polyacrylamide-based polymers as modifiers in phosphate beneficiation. Int J Miner Process 20(3–4):291–308

    Article  Google Scholar 

  • Nahar M, Mishra D et al (2008) Development, characterization, and toxicity evaluation of amphotericin B–loaded gelatin nanoparticles. Nanomedicine 4(3):252–261

    Article  CAS  PubMed  Google Scholar 

  • Nazarov R, Jin H-J et al (2004) Porous 3-D scaffolds from regenerated silk fibroin. Biomacromolecules 5(3):718–726

    Article  CAS  PubMed  Google Scholar 

  • Neradovic D, Soga O et al (2004) The effect of the processing and formulation parameters on the size of nanoparticles based on block copolymers of poly (ethylene glycol) and poly (N-isopropylacrylamide) with and without hydrolytically sensitive groups. Biomaterials 25(12):2409–2418

    Article  CAS  PubMed  Google Scholar 

  • Peer D, Karp JM et al (2007) Nanocarriers as an emerging platform for cancer therapy. Nat Nanotechnol 2(12):751

    Article  CAS  PubMed  Google Scholar 

  • Pinto J, Müller R (1999) Pellets as carriers of solid lipid nanoparticles (SLN) for oral administration of drugs. Pharmazie 54(7):506–509

    CAS  Google Scholar 

  • Plieva FM, Karlsson M et al (2005) Pore structure in supermacroporous polyacrylamide based cryogels. Soft Matter 1(4):303–309

    Article  CAS  PubMed  Google Scholar 

  • Prestwich GD (2011) Hyaluronic acid-based clinical biomaterials derived for cell and molecule delivery in regenerative medicine. J Control Release 155(2):193–199

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rao KM, Rao KK et al (2015) Curcumin encapsulated pH sensitive gelatin based interpenetrating polymeric network nanogels for anti cancer drug delivery. Int J Pharm 478(2):788–795

    Article  CAS  Google Scholar 

  • Rosiak J, Burozak K et al (1983) Polyacrylamide hydrogels as sustained release drug delivery dressing materials. Radiat Phys Chem 22(3–5):907–915

    CAS  Google Scholar 

  • Shenoy DB, Chawla JS et al (2004) Biodegradable polymeric nanoparticles for tumor-selective tamoxifen delivery: in vitro and in vivo studies. MRS Online Proc Libr Arch 845:369–374

    Google Scholar 

  • Shewry PR, Napier JA et al (1995) Seed storage proteins: structures and biosynthesis. Plant Cell 7(0):945

    CAS  PubMed  PubMed Central  Google Scholar 

  • Shikanov A, Xu M et al (2009) Interpenetrating fibrin–alginate matrices for in vitro ovarian follicle development. Biomaterials 30(29):5476–5485

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Singh D, Choudhary V et al (2007) Radiation synthesis of interpenetrating polymer networks based on N-vinyl pyrrolidone–acrylic acid copolymer and gelatin. I. Swelling, morphology, and thermal characterization for biomedical applications. J Mater Sci 104(3):1456–1463

    CAS  Google Scholar 

  • Snyders R, Shingel KI et al (2007) Mechanical and microstructural properties of hybrid poly (ethylene glycol)–soy protein hydrogels for wound dressing applications. J Biomed Mater Res A 83(1):88–97

    Article  PubMed  CAS  Google Scholar 

  • Srivastava A, Jain E et al (2007) The physical characterization of supermacroporous poly (N-isopropylacrylamide) cryogel: mechanical strength and swelling/de-swelling kinetics. Mater Sci Eng A 464(1–2):93–100

    Article  CAS  Google Scholar 

  • Stanciu LIA (2003) Advanced polymers: interpenetrating polymer networks. In: Vasile C (ed) Handbook of polymer blends and composites, vol 3. Rapra Technology, Shrewsbury, pp 275–280

    Google Scholar 

  • Stella B, Arpicco S et al (2000) Design of folic acid-conjugated nanoparticles for drug targeting. J Pharm Sci 89(11):1452–1464

    Article  CAS  PubMed  Google Scholar 

  • Sussman EM, Clarke MB et al (2007) Single-step process to produce surface-functionalized polymeric nanoparticles. Langmuir 23(24):12275–12279

    Article  CAS  PubMed  Google Scholar 

  • Syedain ZH, Bjork J et al (2009) Controlled compaction with ruthenium-catalyzed photochemical cross-linking of fibrin-based engineered connective tissue. Biomaterials 30(35):6695–6701

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Takiguchi S, Shimazoe T et al (1994) Antitumor effect of camptothecin analog on liver metastatic model of human colon cancer in nude mice. Gan To Kagaku Ryoho 21(5):705

    CAS  PubMed  Google Scholar 

  • Thiering R, Dehghani F et al (2001) Current issues relating to anti-solvent micronisation techniques and their extension to industrial scales. J Supercrit Fluids 21(2):159–177

    Article  CAS  Google Scholar 

  • Torchilin VP (2007) Micellar nanocarriers: pharmaceutical perspectives. Pharm Res 24(1):1

    Article  CAS  PubMed  Google Scholar 

  • Vaz CM, Van Doeveren P et al (2003) Development and design of double-layer co-injection moulded soy protein based drug delivery devices. Polymer 44(19):5983–5992

    Article  CAS  Google Scholar 

  • Vaz CM, de Graaf LA et al (2004) pH-sensitive soy protein films for the controlled release of an anti-inflammatory drug. Mater Res Innov 8(3):149–150

    Article  CAS  Google Scholar 

  • Wang G, Uludag H (2008) Recent developments in nanoparticle-based drug delivery and targeting systems with emphasis on protein-based nanoparticles. Expert Opin Drug Deliv 5(5):499–515

    Article  CAS  PubMed  Google Scholar 

  • Wang G, Siggers K et al (2008) Preparation of BMP-2 containing bovine serum albumin (BSA) nanoparticles stabilized by polymer coating. Pharm Res 25(12):2896–2909

    Article  CAS  PubMed  Google Scholar 

  • Weiss RB, Donehower R et al (1990) Hypersensitivity reactions from taxol. J Clin Oncol 8(7):1263–1268

    Article  CAS  PubMed  Google Scholar 

  • Wu W, Li W et al (2006) Synthesis and characterization of pH-and temperature-sensitive silk sericin/poly (N-isopropylacrylamide) interpenetrating polymer networks. Polym Int 55(5):513–519

    Article  CAS  Google Scholar 

  • Wu Y, MacKay JA et al (2008) Fabrication of elastin-like polypeptide nanoparticles for drug delivery by electrospraying. Biomacromolecules 10(1):19–24

    Article  CAS  Google Scholar 

  • Wu W, Wang D-S et al (2010) A fast pH-responsive IPN hydrogel: synthesis and controlled drug delivery. React Funct Polym 70(9):684–691

    Article  CAS  Google Scholar 

  • Xiao K, Luo J et al (2009) A self-assembling nanoparticle for paclitaxel delivery in ovarian cancer. Biomaterials 30(30):6006–6016

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Xue W, Hamley IW et al (2002) Rapid swelling and deswelling of thermoreversible hydrophobically modified poly (N-isopropylacrylamide) hydrogels prepared by freezing polymerisation. Polymer 43(19):5181–5186

    Article  CAS  Google Scholar 

  • Yang L, Cui F et al (2007) Preparation, characterization and biodistribution of the lactone form of 10-hydroxycamptothecin (HCPT)-loaded bovine serum albumin (BSA) nanoparticles. Int J Pharm 340(1–2):163–172

    Article  CAS  PubMed  Google Scholar 

  • Ye Q, Zünd G et al (2000) Fibrin gel as a three dimensional matrix in cardiovascular tissue engineering. Eur J Cardiothorac Surg 17(5):587–591

    Article  CAS  PubMed  Google Scholar 

  • Zhang GQ, Zha LS et al (2005) Preparation and characterization of pH-and temperature-responsive semi–interpenetrating polymer network hydrogels based on linear sodium alginate and crosslinked poly (N-isopropylacrylamide). J Appl Polym Sci 97(5):1931–1940

    Article  CAS  Google Scholar 

  • Zheng H, Zhou Z et al (2007) pH-sensitive alginate/soy protein microspheres as drug transporter. J Appl Polym Sci 106(2):1034–1041

    Article  CAS  Google Scholar 

  • Zhou C-Z, Confalonieri F et al (2000) Fine organization of Bombyx mori fibroin heavy chain gene. Nucleic Acids Res 28(12):2413–2419

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhou Y, Yang D et al (2007) Electrospun water-soluble carboxyethyl chitosan/poly (vinyl alcohol) nanofibrous membrane as potential wound dressing for skin regeneration. Biomacromolecules 9(1):349–354

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Nuruzzaman Khan .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Hasan, M.M., Chisty, A.H., Rahman, M.M., Khan, M.N. (2020). Bioprotein Based IPN Nanoparticles as Potential Vehicles for Anticancer Drug Delivery: Fabrication Technology. In: Jana, S., Jana, S. (eds) Interpenetrating Polymer Network: Biomedical Applications. Springer, Singapore. https://doi.org/10.1007/978-981-15-0283-5_7

Download citation

Publish with us

Policies and ethics