Skip to main content

Nutraceutical-Loaded Chitosan Nanoparticles for Healthcare Applications

  • Chapter
  • First Online:
Nanomedicine for Bioactives

Abstract

Nutraceutical, a combination term of nutrition and pharmaceutical, refers to a wide variety of products including food and food-derived substances (polyphenols, vitamins, etc.). Nutraceuticals are seeking substantial attention because of their ostensible safety and nutritional and therapeutic value. They offer a substantial potential to improve the human health and well-being, together with the preclusion and cure of disease. But unfortunately they have low bioavailability, poor permeability and solubility, low absorption in the gastrointestinal tract (GIT) and lack long-term stability. In order to combat all these issues, nanotechnological approach is a groundbreaking method in the field of healthcare. Nanoencapsulation of nutraceuticals using biopolymeric nanoparticles such as chitosan has manifold advantages, viz., availability, biodegradability, biocompatibility, antimicrobial property, and nontoxicity, and hence is considered safe to be used in the healthcare sector.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. McClements DJ, Li F, Xiao H (2015) The nutraceutical bioavailability classification scheme: classifying nutraceuticals according to factors limiting their oral bioavailability. Annu Rev Food Sci Technol 6:299–327

    Article  CAS  PubMed  Google Scholar 

  2. Ting Y, Jiang Y, Ho CT, Huang Q (2014) Common delivery systems for enhancing in vivo bioavailability and biological efficacy of nutraceuticals. J Funct Foods 7:112–128

    Article  CAS  Google Scholar 

  3. Kumar K, Kumar S (2015) Role of nutraceuticals in health and disease prevention: a review. South Asian J Food Technol Environ 1:116–121

    Google Scholar 

  4. Surve DH, Paul AT, Jindal AB (2019) Nanotechnology based delivery of nutraceuticals. In: Environmental Nanotechnology. Springer, Cham, pp 63–107

    Chapter  Google Scholar 

  5. Nasri H, Baradaran A, Shirzad H, Rafieian-Kopaei M (2014) New concepts in nutraceuticals as alternative for pharmaceuticals. Int J Prev Med 5(12):1487

    PubMed  PubMed Central  Google Scholar 

  6. Rein MJ, Renouf M, Cruz-Hernandez C, Actis-Goretta L, Thakkar SK, da Silva Pinto M (2013) Bioavailability of bioactive food compounds: a challenging journey to bioefficacy. Br J Clin Pharmacol 75(3):588–602

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Acosta E (2009) Bioavailability of nanoparticles in nutrient and nutraceutical delivery. Curr Opin Colloid Interface Sci 14(1):3–15

    Article  CAS  Google Scholar 

  8. McClements DJ, Decker EA, Park Y, Weiss J (2009) Structural design principles for delivery of bioactive components in nutraceuticals and functional foods. Crit Rev Food Sci Nutr 49:577–606

    Article  CAS  PubMed  Google Scholar 

  9. Aklakur M, Asharf Rather M, Kumar N (2016) Nanodelivery: an emerging avenue for nutraceuticals and drug delivery. Crit Rev Food Sci Nutr 56(14):2352–2361

    Article  CAS  PubMed  Google Scholar 

  10. Huang Q, Yu H, Ru Q (2010) Bioavailability and delivery of nutraceuticals using nanotechnology. J Food Sci 75(1):R50–R57

    Article  CAS  PubMed  Google Scholar 

  11. Mora-Huertas CE, Fessi H, Elaissari A (2010) Polymer-based nanocapsules for drug delivery. Int J Pharm 385(1–2):113–142

    Article  CAS  PubMed  Google Scholar 

  12. Dhiman A, Bhalla D (2019) Development and evaluation of lycopene loaded chitosan nanoparticles. Curr Nanomed (Formerly: Recent Patents on Nanomedicine) 9(1):61–75

    Article  CAS  Google Scholar 

  13. Nallamuthu I, Devi A, Khanum F (2015) Chlorogenic acid loaded chitosan nanoparticles with sustained release property, retained antioxidant activity and enhanced bioavailability. Asian J Pharm Sci 10(3):203–211

    Article  Google Scholar 

  14. Thamaket P, Raviyan P (2015) Preparation and physical properties of carotenoids encapsulated in chitosan cross-linked tripolyphosphate nanoparticles. Food Appl Biosci J 3(1):69–84

    Google Scholar 

  15. Brower V (1998) Nutraceuticals: poised for a healthy slice of the healthcare market? Nat Biotechnol 16(8):728

    Article  CAS  PubMed  Google Scholar 

  16. Sapkale Anita P, Thorat Mangesh S, Vir Prasad R, Singh Meera C (2012) Nutraceuticals-global status and applications: a review. Int J Pharm Chem Sci 1(3):1166–1181

    Google Scholar 

  17. Tank Dharti S, Gandhi S, Shah M (2010) Nutraceuticals-portmanteau of science and nature. Int J Pharm Sci Rev Res 5(3):33–38

    Google Scholar 

  18. Mayne ST (1996) Beta-carotene, carotenoids, and disease prevention in humans. FASEB J 10(7):690–701

    Article  CAS  PubMed  Google Scholar 

  19. Holzapfel, N., Holzapfel, B., Champ, S., Feldthusen, J., Clements, J., & Hutmacher, D. (2013). The potential role of lycopene for the prevention and therapy of prostate cancer: from molecular mechanisms to clinical evidence. International journal of molecular sciences, 14(7), 14620–14646

    Google Scholar 

  20. Ambati R, Phang SM, Ravi S, Aswathanarayana R (2014) Astaxanthin: sources, extraction, stability, biological activities and its commercial applications—a review. Mar Drugs 12(1):128–152

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  21. Sharon O’Brienon. Lutein and zeaxanthin: benefits, dosage and food sources. July 11, 2018

    Google Scholar 

  22. Marrelli M, Conforti F, Araniti F, Statti G (2016) Effects of saponins on lipid metabolism: a review of potential health benefits in the treatment of obesity. Molecules 21(10):1404

    Article  PubMed Central  CAS  Google Scholar 

  23. David AVA, Arulmoli R, Parasuraman S (2016) Overviews of biological importance of quercetin: a bioactive flavonoid. Pharmacogn Rev 10(20):84

    Article  CAS  Google Scholar 

  24. Chen AY, Chen YC (2013) A review of the dietary flavonoid, kaempferol on human health and cancer chemoprevention. Food Chem 138(4):2099–2107

    Article  CAS  PubMed  Google Scholar 

  25. Li Y, Ding Y (2012) Minireview: therapeutic potential of myricetin in diabetes mellitus. Food Sci Human Wellness 1(1):19–25

    Article  Google Scholar 

  26. Patel K, Patel DK (2019) The beneficial role of rutin, a naturally occurring flavonoid in health promotion and disease prevention: a systematic review and update. In: Bioactive food as dietary interventions for arthritis and related inflammatory diseases. Academic Press, Cambridge, pp 457–479

    Chapter  Google Scholar 

  27. Rimm EB, Katan MB, Ascherio A, Stampfer MJ, Willett WC (1996) Relation between intake of flavonoids and risk for coronary heart disease in male health professionals. Ann Intern Med 125(5):384–389

    Article  CAS  PubMed  Google Scholar 

  28. Mani R, Natesan V (2018) Chrysin: Sources, beneficial pharmacological activities, and molecular mechanism of action. Phytochemistry 145:187–196

    Google Scholar 

  29. Ali F, Rahul, Naz F, Jyoti S, Siddique YH (2017) Health functionality of apigenin: a review. Int J Food Prop 20(6):1197–1238

    Article  CAS  Google Scholar 

  30. Gadkari PV, Balaraman M (2015) Catechins: sources, extraction and encapsulation: a review. Food Bioprod Process 93:122–138

    Article  CAS  Google Scholar 

  31. Spagnuolo C, Russo GL, Orhan IE, Habtemariam S, Daglia M, Sureda A, Nabavi SF, Devi KP, Loizzo MR, Tundis R, Nabavi SM (2015) Genistein and cancer: current status, challenges, and future directions. Adv Nutr 6(4):408–419

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Salehi B, Mishra A, Nigam M, Sener B, Kilic M, Sharifi-Rad M, PVT F, Martins N, Sharifi-Rad J (2018) Resveratrol: a double-edged sword in health benefits. Biomedicine 6(3):91

    CAS  Google Scholar 

  33. Hewlings S, Kalman D (2017) Curcumin: a review of its’ effects on human health. Foods 6(10):92

    Article  PubMed Central  CAS  Google Scholar 

  34. Tajik N, Tajik M, Mack I, Enck P (2017) The potential effects of chlorogenic acid, the main phenolic components in coffee, on health: a comprehensive review of the literature. Eur J Nutr 56(7):2215–2244

    Article  CAS  PubMed  Google Scholar 

  35. Rhonda Johansson. Cinnamic acid sources, health benefits and uses. September 12, 2017

    Google Scholar 

  36. McCarty MF, DiNicolantonio JJ, O’keefe JH (2015) Capsaicin may have important potential for promoting vascular and metabolic health. Open Heart 2(1):e000262

    Article  PubMed  PubMed Central  Google Scholar 

  37. Pratap SR, Gangadharappa HV, Mruthunjaya K (2017) Ginger: a potential nutraceutical, an updated review. Int J Pharmacogn Phytochem Res 9:1227–1238

    Google Scholar 

  38. Augustin MA, Sanguansri L (2012) Challenges in developing delivery systems for food additives, nutraceuticals and dietary supplements. In: Encapsulation technologies and delivery systems for food ingredients and nutraceuticals. Woodhead Publishing, Cambridge, pp 19–48

    Chapter  Google Scholar 

  39. Espín JC, García-Conesa MT, Tomás-Barberán FA (2007) Nutraceuticals: facts and fiction. Phytochemistry 68(22–24):2986–3008

    Article  PubMed  CAS  Google Scholar 

  40. Panozzo A, Lemmens L, Van Loey A, Manzocco L, Nicoli MC, Hendrickx M (2013) Microstructure and bioaccessibility of different carotenoid species as affected by high pressure homogenisation: a case study on differently coloured tomatoes. Food Chem 141(4):4094–4100

    Article  CAS  PubMed  Google Scholar 

  41. Rimbach G, Pallauf J, Moehring J, Kraemer K, Minihane AM (2008) Effect of dietary phytate and microbial phytase on mineral and trace element bioavailability: a literature review. Curr Top Nutraceut Res 6(3):131–144

    CAS  Google Scholar 

  42. Moelants KR, Lemmens L, Vandebroeck M, Van Buggenhout S, Van Loey AM, Hendrickx ME (2012) Relation between particle size and carotenoid bioaccessibility in carrot-and tomato-derived suspensions. J Agric Food Chem 60(48):11995–12003

    Article  CAS  PubMed  Google Scholar 

  43. Actis-Goretta L, Lévèques A, Rein M, Teml A, Schäfer C, Hofmann U, Li H, Schwab M, Eichelbaum M, Williamson G (2013) Intestinal absorption, metabolism, and excretion of (−)-epicatechin in healthy humans assessed by using an intestinal perfusion technique. Am J Clin Nutr 98(4):924–933

    Article  CAS  PubMed  Google Scholar 

  44. Carail, M., Goupy, P., Reynaud, E., Dangles, O., & Caris-Veyrat, C. (2013). Oxidative cleavage products of lycopene: production and reactivity in a biomimetic experimental model of oxidative stress. In Carotenoid Cleavage Products (pp. 191–205). American Chemical Society.

    Google Scholar 

  45. Chen Z, Zheng S, Li L, Jiang H (2014) Metabolism of flavonoids in human: a comprehensive review. Curr Drug Metab 15(1):48–61

    Article  CAS  PubMed  Google Scholar 

  46. Koga N, Ohta C, Kato Y, Haraguchi K, Endo T, Ogawa K et al (2011) In vitro metabolism of nobiletin, a polymethoxy-flavonoid, by human liver microsomes and cytochrome P450. Xenobiotica 41(11):927–933

    Article  CAS  PubMed  Google Scholar 

  47. Metzler M, Pfeiffer E, Schulz SI, Dempe JS (2013) Curcumin uptake and metabolism. Biofactors 39(1):14–20

    Article  CAS  PubMed  Google Scholar 

  48. Mohammed M, Syeda J, Wasan K, Wasan E (2017) An overview of chitosan nanoparticles and its application in non-parenteral drug delivery. Pharmaceutics 9(4):53

    Article  PubMed Central  CAS  Google Scholar 

  49. Peniche H, Peniche C (2011) Chitosan nanoparticles: a contribution to nanomedicine. Polym Int 60(6):883–889

    Article  CAS  Google Scholar 

  50. Muxika A, Etxabide A, Uranga J, Guerrero P, De La Caba K (2017) Chitosan as a bioactive polymer: processing, properties and applications. Int J Biol Macromol 105:1358–1368

    Article  CAS  PubMed  Google Scholar 

  51. Soutter W. Chitosan Nanoparticles - Properties and Applications. Available from: http://www.azonano.com/ article.aspx. [Last Accessed on 2015 Sep 18]

    Google Scholar 

  52. Divya K, Jisha MS (2018) Chitosan nanoparticles preparation and applications. Environ Chem Lett 16(1):101–112

    Article  CAS  Google Scholar 

  53. Baldrick P (2010) The safety of chitosan as a pharmaceutical excipient. Regul Toxicol Pharmacol 56(3):290–299

    Article  CAS  PubMed  Google Scholar 

  54. Kean T, Thanou M (2010) Biodegradation, biodistribution and toxicity of chitosan. Adv Drug Deliv Rev 62(1):3–11

    Article  CAS  PubMed  Google Scholar 

  55. Aljebory AM, Alsalman TM (2017) Chitosan nanoparticles. Imp J Interdiscip Res 3(7):10

    Google Scholar 

  56. Calvo P, Remunan-Lopez C, Vila-Jato JL, Alonso MJ (1997) Novel hydrophilic chitosan-polyethylene oxide nanoparticles as protein carriers. J Appl Polym Sci 63(1):125–132

    Article  CAS  Google Scholar 

  57.  Rajan, A., Gopukumar, S. T., & Praseetha, P. K. Journal of Global Trends in Pharmaceutical Sciences

    Google Scholar 

  58. Sinha VR, Singla AK, Wadhawan S, Kaushik R, Kumria R, Bansal K, Dhawan S (2004) Chitosan microspheres as a potential carrier for drugs. Int J Pharm 274(1–2):1–33

    CAS  PubMed  Google Scholar 

  59. Alishahi A, Mirvaghefi A, Tehrani MR, Farahmand H, Shojaosadati SA, Dorkoosh FA, Elsabee MZ (2011) Shelf life and delivery enhancement of vitamin C using chitosan nanoparticles. Food Chem 126(3):935–940

    Article  CAS  Google Scholar 

  60. Kumar MNVR (2000) Nano and microparticles as controlled drug delivery devices. J Pharm Pharm Sci 3(2):234–258

    Google Scholar 

  61. Mansouri S, Cuie Y, Winnik F, Shi Q, Lavigne P, Benderdour M, Beaumont E, Fernandes JC (2006) Characterization of folate-chitosan-DNA nanoparticles for gene therapy. Biomaterials 27(9):2060–2065

    Article  CAS  PubMed  Google Scholar 

  62. Qv XY, Zeng ZP, Jiang JG (2011) Preparation of lutein microencapsulation by complex coacervation method and its physicochemical properties and stability. Food Hydrocoll 25(6):1596–1603

    Article  CAS  Google Scholar 

  63. Alencastre JB, Bentley MVLB, Garcia FS, Moragas MD, Viladot JL, Marchetti JM (2006) A study of the characteristics and in vitro permeation properties of CMC/chitosan microparticles as a skin delivery system for vitamin E. Rev Bras Ciênc Farm 42(1):69–76

    Article  CAS  Google Scholar 

  64. Brunel F, Véron L, David L, Domard A, Delair T (2008) A novel synthesis of chitosan nanoparticles in reverse emulsion. Langmuir 24(20):11370–11377

    Article  CAS  PubMed  Google Scholar 

  65. Mansouri M, Khorram M, Samimi A, Osfouri S (2012) Preparation of bovine serum albumin loaded chitosan nanoparticles using reverse micelle method. Int J Polymer Mater 61:1079–1090

    Google Scholar 

  66. Agnihotri SA, Mallikarjuna NN, Aminabhavi TM (2004) Recent advances on chitosan-based micro-and nanoparticles in drug delivery. J Control Release 100(1):5–28

    Article  CAS  PubMed  Google Scholar 

  67. Chan CM, Hung CF (2014) Lycopene and retinal pigment epithelial cells: molecular aspects. In: Handbook of nutrition, diet and the eye. Academic Press, Cambridge, pp 587–598

    Chapter  Google Scholar 

  68. Başaran N, Bacanlı M, Başaran AA (2017) Lycopenes as antioxidants in gastrointestinal diseases. In: Gastrointestinal tissue. Academic Press, Cambridge, pp 355–362

    Chapter  Google Scholar 

  69. Shidfar F, Arjomand GN (2015) Glucose intake and utilization in pre-diabetes and diabetes: tomato and diabetes. In: Glucose intake and utilization in pre-diabetes and diabetes. Academic Press, Cambridge, pp 301–313

    Chapter  Google Scholar 

  70. da Silva GF, Rocha LW, Quintão NLM (2015) Nutraceuticals, dietary supplements, and functional foods as alternatives for the relief of neuropathic pain. In: Bioactive nutraceuticals and dietary supplements in neurological and brain disease. Academic Press, Cambridge, pp 87–93

    Chapter  Google Scholar 

  71. Nazemiyeh E, Eskandani M, Sheikhloie H, Nazemiyeh H (2016) Formulation and physicochemical characterization of lycopene-loaded solid lipid nanoparticles. Adv Pharm Bull 6(2):235

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Al-Eisa RA (2018) Synergistic antioxidant capacity of chitosan nanoparticles and lycopene against aging hepatotoxicity induced by D-galactose in male rats. Int J Pharmacol 14(6):811–825

    Article  CAS  Google Scholar 

  73. Khalaf NA, Shakya AK, Al-Othman A, El-Agbar Z, Farah H (2008) Antioxidant activity of some common plants. Turk J Biol 32(1):51–55

    Google Scholar 

  74. Komatsu Y, Suematsu S, Hisanobu Y, Saigo H, Matsuda R, Hara K (1993) Effects of pH and temperature on reaction kinetics of catechins in green tea infusion. Biosci Biotechnol Biochem 57(6):907–910

    Article  CAS  Google Scholar 

  75. Yoshida Y, Kiso M, Goto T (1999) Efficiency of the extraction of catechins from green tea. Food Chem 67(4):429–433

    Article  CAS  Google Scholar 

  76. Manikkam R, Pitchai D (2013) Catechin loaded chitosan nanoparticles as a novel drug delivery system for cancer–synthesis and in vitro and in vivo characterization. World J Pharm Pharm Sci 3:1553–1577

    Google Scholar 

  77. Dudhani AR, Kosaraju SL (2010) Bioadhesive chitosan nanoparticles: preparation and characterization. Carbohydr Polym 81(2):243–251

    Article  CAS  Google Scholar 

  78. Hu B, Pan C, Sun Y, Hou Z, Ye H, Hu B, Zeng X (2008) Optimization of fabrication parameters to produce chitosan− tripolyphosphate nanoparticles for delivery of tea catechins. J Agric Food Chem 56(16):7451–7458

    Article  CAS  PubMed  Google Scholar 

  79. Tang DW, Yu SH, Ho YC, Huang BQ, Tsai GJ, Hsieh HY, Sung H-W, Mi FL (2013) Characterization of tea catechins-loaded nanoparticles prepared from chitosan and an edible polypeptide. Food Hydrocoll 30(1):33–41

    Article  CAS  Google Scholar 

  80. Zhang H, Jung J, Zhao Y (2016) Preparation, characterization and evaluation of antibacterial activity of catechins and catechins–Zn complex loaded β-chitosan nanoparticles of different particle sizes. Carbohydr Polym 137:82–91

    Article  CAS  PubMed  Google Scholar 

  81. Yang J, Liu RH (2013) The phenolic profiles and antioxidant activity in different types of tea. Int J Food Sci Technol 48(1):163–171

    Article  CAS  Google Scholar 

  82. Wang H, Bian S, Yang CS (2011) Green tea polyphenol EGCG suppresses lung cancer cell growth through upregulating miR-210 expression caused by stabilizing HIF-1α. Carcinogenesis 32(12):1881–1889

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Wu D, Guo Z, Ren Z, Guo W, Meydani SN (2009) Green tea EGCG suppresses T cell proliferation through impairment of IL-2/IL-2 receptor signaling. Free Radic Biol Med 47(5):636–643

    Article  CAS  PubMed  Google Scholar 

  84. Hu B, Ting Y, Zeng X, Huang Q (2013) Bioactive peptides/chitosan nanoparticles enhance cellular antioxidant activity of (−)-epigallocatechin-3-gallate. J Agric Food Chem 61(4):875–881

    Article  CAS  PubMed  Google Scholar 

  85. Hong Z, Xu Y, Yin JF, Jin J, Jiang Y, Du Q (2014) Improving the effectiveness of (−)-epigallocatechin gallate (EGCG) against rabbit atherosclerosis by EGCG-loaded nanoparticles prepared from chitosan and polyaspartic acid. J Agric Food Chem 62(52):12603–12609

    Article  CAS  PubMed  Google Scholar 

  86. Dube A, Nicolazzo JA, Larson I (2011) Chitosan nanoparticles enhance the plasma exposure of (−)-epigallocatechin gallate in mice through an enhancement in intestinal stability. Eur J Pharm Sci 44(3):422–426

    Article  CAS  PubMed  Google Scholar 

  87. Bertelli AA, Migliori M, Panichi V, Origlia N, Filippi C, Das DK, Giovannini L (2002) Resveratrol, a component of wine and grapes, in the prevention of kidney disease. Ann N Y Acad Sci 957(1):230–238

    Article  CAS  PubMed  Google Scholar 

  88. Falchi M, Bertelli A, Galazzo R, Viganò P, Dib B (2010) Central antalgic activity of resveratrol. Arch Ital Biol 148(4):389–396

    PubMed  Google Scholar 

  89. Olas B, Wachowicz B (2005) Resveratrol, a phenolic antioxidant with effects on blood platelet functions. Platelets 16(5):251–260

    Article  CAS  PubMed  Google Scholar 

  90. Torres-López JE, Ortiz MI, Castañeda-Hernández G, Alonso-López R, Asomoza-Espinosa R, Granados-Soto V (2002) Comparison of the antinociceptive effect of celecoxib, diclofenac and resveratrol in the formalin test. Life Sci 70(14):1669–1676

    Article  PubMed  Google Scholar 

  91. Das DK, Maulik N (2006) Resveratrol in cardioprotection: a therapeutic promise of alternative medicine. Mol Interv 6(1):36

    Article  CAS  PubMed  Google Scholar 

  92. Marambaud P, Zhao H, Davies P (2005) Resveratrol promotes clearance of Alzheimer’s disease amyloid-β peptides. J Biol Chem 280(45):37377–37382

    Article  CAS  PubMed  Google Scholar 

  93. Sessa M, Tsao R, Liu R, Ferrari G, Donsì F (2011) Evaluation of the stability and antioxidant activity of nanoencapsulated resveratrol during in vitro digestion. J Agric Food Chem 59(23):12352–12360

    Article  CAS  PubMed  Google Scholar 

  94. Zupančič Š, Lavrič Z, Kristl J (2015) Stability and solubility of trans-resveratrol are strongly influenced by pH and temperature. Eur J Pharm Biopharm 93:196–204

    Article  PubMed  CAS  Google Scholar 

  95. Wu J, Wang Y, Yang H, Liu X, Lu Z (2017) Preparation and biological activity studies of resveratrol loaded ionically cross-linked chitosan-TPP nanoparticles. Carbohydr Polym 175:170–177

    Article  CAS  PubMed  Google Scholar 

  96. Min JB, Kim ES, Lee JS, Lee HG (2018) Preparation, characterization, and cellular uptake of resveratrol-loaded trimethyl chitosan nanoparticles. Food Sci Biotechnol 27(2):441–450

    CAS  PubMed  Google Scholar 

  97. Iglesias N, Galbis E, Díaz-Blanco MJ, Lucas R, Benito E, de-Paz M (2019) Nanostructured chitosan-based biomaterials for sustained and colon-specific resveratrol release. Int J Mol Sci 20(2):398

    Article  PubMed Central  CAS  Google Scholar 

  98. Aggarwal BB, Kumar A, Bharti AC (2003) Anticancer potential of curcumin: preclinical and clinical studies. Anticancer Res 23(1/A):363–398

    CAS  PubMed  Google Scholar 

  99. Lin J, Rexrode KM, Hu F, Albert CM, Chae CU, Rimm EB, Stampfer MJ, Manson JE (2007a) Dietary intakes of flavonols and flavones and coronary heart disease in US women. Am J Epidemiol 165(11):1305–1313

    Article  PubMed  Google Scholar 

  100. Lin YG, Kunnumakkara AB, Nair A, Merritt WM, Han LY, Armaiz-Pena GN, Kamat AA, Spannuth WA, Gershenson DM, Lutgendorf SK, Aggarwal BB (2007b) Curcumin inhibits tumor growth and angiogenesis in ovarian carcinoma by targeting the nuclear factor-κB pathway. Clin Cancer Res 13(11):3423–3430

    Article  CAS  PubMed  Google Scholar 

  101. Marchiani A, Rozzo C, Fadda A, Delogu G, Ruzza P (2014) Curcumin and curcumin-like molecules: from spice to drugs. Curr Med Chem 21(2):204–222

    Article  CAS  PubMed  Google Scholar 

  102. Panahi Y, Hosseini MS, Khalili N, Naimi E, Simental-Mendía LE, Majeed M, Sahebkar A (2016) Effects of curcumin on serum cytokine concentrations in subjects with metabolic syndrome: a post-hoc analysis of a randomized controlled trial. Biomed Pharmacother 82:578–582

    Article  CAS  PubMed  Google Scholar 

  103. Henrotin Y, Priem F, Mobasheri A (2013) Curcumin: a new paradigm and therapeutic opportunity for the treatment of osteoarthritis: curcumin for osteoarthritis management. Springerplus 2(1):56

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  104. Yallapu MM, Jaggi M, Chauhan SC (2012) Curcumin nanoformulations: a future nanomedicine for cancer. Drug Discov Today 17(1–2):71–80

    Article  CAS  PubMed  Google Scholar 

  105. Gunes H, Gulen D, Mutlu R, Gumus A, Tas T, Topkaya AE (2016) Antibacterial effects of curcumin: an in vitro minimum inhibitory concentration study. Toxicol Ind Health 32(2):246–250

    Article  CAS  PubMed  Google Scholar 

  106. Hlavačková L, Janegová A, Uličná O, Janega P, Černá A, Babál P (2011) Spice up the hypertension diet-curcumin and piperine prevent remodeling of aorta in experimental L-NAME induced hypertension. Nutr Metab 8(1):72

    Article  CAS  Google Scholar 

  107. Mohammadi A, Sahebkar A, Iranshahi M, Amini M, Khojasteh R, Ghayour-Mobarhan M, Ferns GA (2013) Effects of supplementation with curcuminoids on dyslipidemia in obese patients: a randomized crossover trial. Phytother Res 27(3):374–379

    Article  CAS  PubMed  Google Scholar 

  108. Na LX, Li Y, Pan HZ, Zhou XL, Sun DJ, Meng M, Li XX, Sun CH (2013) Curcuminoids exert glucose-lowering effect in type 2 diabetes by decreasing serum free fatty acids: a double-blind, placebo-controlled trial. Mol Nutr Food Res 57(9):1569–1577

    Article  CAS  PubMed  Google Scholar 

  109. Sahebkar A (2014) Curcuminoids for the management of hypertriglyceridaemia. Nat Rev Cardiol 11(2):123

    Article  CAS  PubMed  Google Scholar 

  110. Vijayakurup V, Thulasidasan AT, Retnakumari AP, Nandan CD, Somaraj J, Antony J, Alex VV, Vinod BS, Liju VB, Sundaram S, Kumar GV (2019) Chitosan encapsulation enhances the bioavailability and tissue retention of curcumin and improves its efficacy in preventing B [a] P-induced lung carcinogenesis. Cancer Prev Res 12(4):225–236

    Article  Google Scholar 

  111. Samrot AV, Burman U, Philip SA, Shobana N, Chandrasekaran K (2018) Synthesis of curcumin loaded polymeric nanoparticles from crab shell derived chitosan for drug delivery. Informatics in Medicine Unlocked 10:159–182

    Article  Google Scholar 

  112. Mirnejad R, Jahromi M, Ali M, Al-Musawi S, Pirestani M, Fasihi Ramandi M, Ahmadi K, Rajayi H, Hassan ZM, Kamali M (2014) Curcumin-loaded chitosan tripolyphosphate nanoparticles as a safe, natural and effective antibiotic inhibits the infection of Staphylococcus aureus and Pseudomonas aeruginosa in vivo. Iran J Biotechnol 12(3):1–8

    Article  Google Scholar 

  113. Nair RS, Morris A, Billa N, Leong CO (2019) An evaluation of curcumin-encapsulated chitosan nanoparticles for transdermal delivery. AAPS PharmSciTech 20(2):69

    Article  PubMed  CAS  Google Scholar 

  114. Khan MA, Zafaryab M, Mehdi SH, Ahmad I, Rizvi M, Moshahid A (2018) Physicochemical characterization of curcumin loaded chitosan nanoparticles: implications in cervical cancer. Anticancer Agents Med Chem (Formerly Current Medicinal Chemistry-Anti-Cancer Agents) 18(8):1131–1137

    Article  CAS  Google Scholar 

  115. Duse L, Baghdan E, Pinnapireddy SR, Engelhardt KH, Jedelská J, Schaefer J, Quendt P, Bakowsky U (2018) Preparation and characterization of curcumin loaded chitosan nanoparticles for photodynamic therapy. Phys Status Solidi A 215(15):1700709

    Article  CAS  Google Scholar 

  116. Baghel SS, Shrivastava N, Baghel RS, Agrawal P, Rajput S (2012) A review of quercetin: antioxidant and anticancer properties. World J Pharm Pharm Sci 1(1):146–160

    CAS  Google Scholar 

  117. Lakhanpal P, Rai DK (2007) Quercetin: a versatile flavonoid. Internet J Med Update 2(2):22–37

    Google Scholar 

  118. Mitchell AE, Hong YJ, Koh E, Barrett DM, Bryant DE, Denison RF, Kaffka S (2007) Ten-year comparison of the influence of organic and conventional crop management practices on the content of flavonoids in tomatoes. J Agric Food Chem 55(15):6154–6159

    Article  CAS  PubMed  Google Scholar 

  119. Russo M, Spagnuolo C, Tedesco I, Bilotto S, Russo GL (2012) The flavonoid quercetin in disease prevention and therapy: facts and fancies. Biochem Pharmacol 83(1):6–15

    Article  CAS  PubMed  Google Scholar 

  120. Hertog MG, Feskens EJ, Kromhout D, Hollman PCH, Katan MB (1993) Dietary antioxidant flavonoids and risk of coronary heart disease: the Zutphen Elderly Study. Lancet 342(8878):1007–1011

    Article  CAS  PubMed  Google Scholar 

  121. Alrawaiq NS, Abdullah A (2014) A review of flavonoid quercetin: metabolism, bioactivity and antioxidant properties. Int J Pharm Tech Res 6(3):933–941

    CAS  Google Scholar 

  122. Adewole SO, Caxton-Martins EA, Ojewole JA (2007) Protective effect of quercetin on the morphology of pancreatic β-cells of streptozotocin-treated diabetic rats. Afr J Tradit Complement Altern Med 4(1):64–74

    Article  CAS  Google Scholar 

  123. Li M, Xu Z (2008) Quercetin in a lotus leaves extract may be responsible for antibacterial activity. Arch Pharm Res 31(5):640–644

    Article  CAS  PubMed  Google Scholar 

  124. Kaşıkcı MB, Bağdatlıoğlu N (2016) Bioavailability of quercetin. Curr Res Nutr Food Sci J 4(Special Issue Nutrition in Conference October 2016):146–151

    Article  Google Scholar 

  125. Zhang Y, Yang Y, Tang K, Hu X, Zou G (2008) Physicochemical characterization and antioxidant activity of quercetin-loaded chitosan nanoparticles. J Appl Polym Sci 107(2):891–897

    Article  CAS  Google Scholar 

  126. Tzankova V, Aluani D, Kondeva-Burdina M, Yordanov Y, Odzhakov F, Apostolov A, Yoncheva K (2017) Hepatoprotective and antioxidant activity of quercetin loaded chitosan/alginate particles in vitro and in vivo in a model of paracetamol-induced toxicity. Biomed Pharmacother 92:569–579

    Article  CAS  PubMed  Google Scholar 

  127. Nan W, Ding L, Shi X, Sui XB (2018) Topical use of quercetin-loaded chitosan nanoparticles against ultraviolet B radiation. Front Pharmacol 9:826

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  128. Baksi R, Singh DP, Borse SP, Rana R, Sharma V, Nivsarkar M (2018) In vitro and in vivo anticancer efficacy potential of Quercetin loaded polymeric nanoparticles. Biomed Pharmacother 106:1513–1526

    Article  CAS  PubMed  Google Scholar 

  129. Rahigude A, Bhutada P, Kaulaskar S, Aswar M, Otari K (2012) Participation of antioxidant and cholinergic system in protective effect of naringenin against type-2 diabetes-induced memory dysfunction in rats. Neuroscience 226:62–72

    Article  CAS  PubMed  Google Scholar 

  130. Felgines C, Texier O, Morand C, Manach C, Scalbert A, Régerat F, Rémésy C (2000) Bioavailability of the flavanone naringenin and its glycosides in rats. Am J Physiol Gastrointest Liver Physiol 279(6):G1148–G1154

    Article  CAS  PubMed  Google Scholar 

  131. Kim JH, Lee JK (2015) Naringenin enhances NK cell lysis activity by increasing the expression of NKG2D ligands on Burkitt’s lymphoma cells. Arch Pharm Res 38(11):2042–2048

    Article  CAS  PubMed  Google Scholar 

  132. Lee YS, Reidenberg MM (1998) A method for measuring naringenin in biological fluids and its disposition from grapefruit juice by man. Pharmacology 56(6):314–317

    Article  CAS  PubMed  Google Scholar 

  133. Middleton E Jr, Kandaswami C (1992) Effects of flavonoids on immune and inflammatory cell functions. Biochem Pharmacol 43(6):1167–1179

    Article  CAS  PubMed  Google Scholar 

  134. Verbeek R, Plomp AC, van Tol EA, van Noort JM (2004) The flavones luteolin and apigenin inhibit in vitro antigen-specific proliferation and interferon-gamma production by murine and human autoimmune T cells. Biochem Pharmacol 68(4):621–629

    Article  CAS  PubMed  Google Scholar 

  135. Winarti, L., Sari, K., Ruma, L. O., & Nugroho, A. E. (2015). NARINGENIN-LOADED CHITOSAN NANOPARTICLES FORMULATION, AND ITS IN VITRO EVALUATION AGAINST T47D BREAST CANCER CELL LINE. Indonesian Journal of Pharmacy/Majalah Farmasi Indonesia, 26(3)

    Google Scholar 

  136. Malathy S, Iyer PR (2018) Naringin loaded chitosan nanoparticle for bone regeneration: a preliminary in vitro study. J Nanomed Nanotechnol 9:507

    Google Scholar 

  137. Kumar SP, Birundha K, Kaveri K, Devi KR (2015) Antioxidant studies of chitosan nanoparticles containing naringenin and their cytotoxicity effects in lung cancer cells. Int J Biol Macromol 78:87–95

    Article  CAS  PubMed  Google Scholar 

  138. Kreft S, Knapp M, Kreft I (1999) Extraction of rutin from buckwheat (Fagopyrum esculentum Moench) seeds and determination by capillary electrophoresis. Journal of agricultural and food chemistry 47(11):4649–4652

    Article  CAS  PubMed  Google Scholar 

  139. Harborne JB (1986) Nature, distribution and function of plant flavonoids. Prog Clin Biol Res 213:15–24

    CAS  PubMed  Google Scholar 

  140. Ganeshpurkar A, Saluja AK (2017) The pharmacological potential of rutin. Saudi Pharm J 25(2):149–164

    Article  PubMed  Google Scholar 

  141. Javed H, Khan MM, Ahmad A, Vaibhav K, Ahmad ME, Khan A, Ashafaq M, Islam F, Siddiqui MS, Safhi MM (2012) Rutin prevents cognitive impairments by ameliorating oxidative stress and neuroinflammation in rat model of sporadic dementia of Alzheimer type. Neuroscience 210:340–352

    Article  CAS  PubMed  Google Scholar 

  142. Fernández SP, Wasowski C, Loscalzo LM, Granger RE, Johnston GA, Paladini AC, Marder M (2006) Central nervous system depressant action of flavonoid glycosides. Eur J Pharmacol 539(3):168–176

    Article  PubMed  CAS  Google Scholar 

  143. Hsu CY, Shih HY, Chia YC, Lee CH, Ashida H, Lai YK, Weng CF (2014) Rutin potentiates insulin receptor kinase to enhance insulin-dependent glucose transporter 4 translocation. Mol Nutr Food Res 58(6):1168–1176

    Article  CAS  PubMed  Google Scholar 

  144. Nagem TJ, Pinto AS, Albino LF, Pinto JG (2001) Hypocholesterolemic effect of naringin and rutin flavonoids. Arch Latinoam Nutr 51(3):258–264

    PubMed  Google Scholar 

  145. Kim DW, Hwang IK, Lim SS, Yoo KY, Li H, Kim YS, Kwon DY, Moon WK, Kim DW, Won MH (2009) Germinated buckwheat extract decreases blood pressure and nitrotyrosine immunoreactivity in aortic endothelial cells in spontaneously hypertensive rats. Phytother Res 23(7):993–998

    Article  CAS  PubMed  Google Scholar 

  146. Chan APE, Hegde A, Chen X (2009) Effect of rutin on warfarin anticoagulation and pharmacokinetics of warfarin enantiomers in rats. J Pharm Pharmacol 61(4):451–458

    Article  CAS  PubMed  Google Scholar 

  147. Chen WM, Jin M, Wu W (2002) Experimental study on inhibitory effect of rutin against platelet activation induced by platelet activating factor in rabbits. Zhongguo Zhong Xi Yi Jie He Za Zhi 22(4):283–285

    PubMed  Google Scholar 

  148. Isai M, Sakthivel M, Ramesh E, Thomas PA, Geraldine P (2009) Prevention of selenite-induced cataractogenesis by rutin in Wistar rats. Mol Vis 15:2570

    CAS  PubMed  PubMed Central  Google Scholar 

  149. Johann S, Mendes BG, Missau FC, Resende MAD, Pizzolatti MG (2011) Antifungal activity of five species of Polygala. Braz J Microbiol 42(3):1065–1075

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  150. Jung CH, Lee JY, Cho CH, Kim CJ (2007) Anti-asthmatic action of quercetin and rutin in conscious guinea-pigs challenged with aerosolized ovalbumin. Arch Pharm Res 30(12):1599

    Article  CAS  PubMed  Google Scholar 

  151. Dubey S, Ganeshpurkar A, Shrivastava A, Bansal D, Dubey N (2013) Rutin exerts antiulcer effect by inhibiting the gastric proton pump. Indian J Pharmacol 45(4):415

    Article  PubMed  PubMed Central  Google Scholar 

  152. Horcajada-Molteni MN, Crespy V, Coxam V, Davicco MJ, Rémésy C, Barlet JP (2000) Rutin inhibits ovariectomy-induced osteopenia in rats. J Bone Miner Res 15(11):2251–2258

    Article  CAS  PubMed  Google Scholar 

  153. Patil AG, Jobanputra AH (2015) Rutin-chitosan nanoparticles: fabrication, characterization and application in dental disorders. Polym-Plast Technol Eng 54(2):202–208

    Article  CAS  Google Scholar 

  154. Mujtaba MA, Hassan KA, Imran M (2018) Chitosan-alginate nanoparticles as a novel drug delivery system for rutin. Int J Adv Biotechnol Res 9(1):1895–1903

    CAS  Google Scholar 

  155. Ahmad N, Ahmad R, Naqvi AA, Alam MA, Ashafaq M, Samim M, Iqbal Z, Ahmad FJ (2016) Rutin-encapsulated chitosan nanoparticles targeted to the brain in the treatment of Cerebral Ischemia. Int J Biol Macromol 91:640–655

    Article  CAS  PubMed  Google Scholar 

  156. Calderon-Montano JM, Burgos-Morón E, Pérez-Guerrero C, López-Lázaro M (2011) A review on the dietary flavonoid kaempferol. Mini Rev Med Chem 11(4):298–344

    Article  CAS  PubMed  Google Scholar 

  157. Wang L, Tu YC, Lian TW, Hung JT, Yen JH, Wu MJ (2006) Distinctive antioxidant and antiinflammatory effects of flavonols. J Agric Food Chem 54(26):9798–9804

    Article  CAS  PubMed  Google Scholar 

  158. Willerson JT, Ridker PM (2004) Inflammation as a cardiovascular risk factor. Circulation 109(21_suppl_1):II–I2

    Article  Google Scholar 

  159. Tu YC, Lian TW, Yen JH, Chen ZT, Wu MJ (2007) Antiatherogenic effects of kaempferol and rhamnocitrin. J Agric Food Chem 55(24):9969–9976

    Article  CAS  PubMed  Google Scholar 

  160. Knekt P, Kumpulainen J, Järvinen R, Rissanen H, Heliövaara M, Reunanen A, Hakulinen T, Aromaa A (2002) Flavonoid intake and risk of chronic diseases. Am J Clin Nutr 76(3):560–568

    Article  CAS  PubMed  Google Scholar 

  161. Hannum SM (2004) Potential impact of strawberries on human health: a review of the science. Crit Rev Food Sci Nutr 44(1):1–17

    Article  CAS  PubMed  Google Scholar 

  162. Smith JA, Poteet-Smith CE, Xu Y, Errington TM, Hecht SM, Lannigan DA (2005) Identification of the first specific inhibitor of p90 ribosomal S6 kinase (RSK) reveals an unexpected role for RSK in cancer cell proliferation. Cancer Res 65(3):1027–1034

    CAS  PubMed  Google Scholar 

  163. Tang X, Zhu X, Liu S, Nicholson RC, Ni X (2008) Phytoestrogens induce differential estrogen receptor β-mediated responses in transfected MG-63 cells. Endocrine 34(1–3):29–35

    Article  CAS  PubMed  Google Scholar 

  164. Luo H, Jiang B, Li B, Li Z, Jiang BH, Chen YC (2012) Kaempferol nanoparticles achieve strong and selective inhibition of ovarian cancer cell viability. Int J Nanomedicine 7:3951

    CAS  PubMed  PubMed Central  Google Scholar 

  165. Ilk S, Saglam N, Özgen M (2017a) Kaempferol loaded lecithin/chitosan nanoparticles: Preparation, characterization, and their potential applications as a sustainable antifungal agent. Artificial Cells Nanomed Biotechnol 45(5):907–916

    Article  CAS  Google Scholar 

  166. Ilk S, Sağlam N, Özgen M, Korkusuz F (2017b) Chitosan nanoparticles enhances the anti-quorum sensing activity of kaempferol. Int J Biol Macromol 94:653–662

    Article  CAS  PubMed  Google Scholar 

  167. Dzoyem JP, McGaw LJ, Kuete V, Bakowsky U (2017) Anti-inflammatory and anti-nociceptive activities of African medicinal spices and vegetables. In: Medicinal spices and vegetables from Africa. Academic Press, Cambridge, pp 239–270

    Chapter  Google Scholar 

  168. Taqvi SIH, Shah AJ, Gilani AH (2008) Blood pressure lowering and vasomodulator effects of piperine. J Cardiovasc Pharmacol 52(5):452–458

    Article  CAS  PubMed  Google Scholar 

  169. Manoharan S, Balakrishnan S, Menon VP, Alias LM, Reena AR (2009) Chemopreventive efficacy of curcumin and piperine during 7, 12-dimethylbenz (a) anthracene-induced hamster buccal pouch carcinogenesis. Singap Med J 50(2):139

    CAS  Google Scholar 

  170. Parganiha R, Verma S, Chandrakar S, Pal S, Sawarkar HA, Kashyap P (2011) In vitro anti-asthmatic activity of fruit extract of Piper nigrum (Piperaceae). Inter J Herbal Drug Res 1:15–18

    Google Scholar 

  171. Matsuda H, Ninomiya K, Morikawa T, Yasuda D, Yamaguchi I, Yoshikawa M (2008) Protective effects of amide constituents from the fruit of Piper chaba on d-galactosamine/TNF-α-induced cell death in mouse hepatocytes. Bioorg Med Chem Lett 18(6):2038–2042

    Article  CAS  PubMed  Google Scholar 

  172. Anissian D, Ghasemi-Kasman M, Khalili-Fomeshi M, Akbari A, Hashemian M, Kazemi S, Moghadamnia AA (2018) Piperine-loaded chitosan-STPP nanoparticles reduce neuronal loss and astrocytes activation in chemical kindling model of epilepsy. Int J Biol Macromol 107:973–983

    Article  CAS  PubMed  Google Scholar 

  173. Elnaggar YS, Etman SM, Abdelmonsif DA, Abdallah OY (2015) Intranasal piperine-loaded chitosan nanoparticles as brain-targeted therapy in Alzheimer’s disease: optimization, biological efficacy, and potential toxicity. J Pharm Sci 104(10):3544–3556

    Article  CAS  PubMed  Google Scholar 

  174. Sangeetha KS, Umamaheswari S, Reddy CUM, Kalkura SN (2017) Chrysin loaded chitosan nanoparticle: formulation and in-vitro characterization. Int J Pharm Sci Res 8(3):1102–1109

    CAS  Google Scholar 

  175. Picinelli A, Dapena E, Mangas JJ (1995) Polyphenolic pattern in apple tree leaves in relation to scab resistance. A preliminary study. Journal of Agricultural and Food Chemistry 43(8):2273–2278

    Article  CAS  Google Scholar 

  176. Crespy V, Aprikian O, Morand C, Besson C, Manach C, Demigné C, Rémésy C (2001) Bioavailability of phloretin and phloridzin in rats. The Journal of nutrition 131(12):3227–3230

    Article  CAS  PubMed  Google Scholar 

  177. Ma L, Wang R, Nan Y, Li W, Wang Q, Jin F (2016) Phloretin exhibits an anticancer effect and enhances the anticancer ability of cisplatin on non-small cell lung cancer cell lines by regulating expression of apoptotic pathways and matrix metalloproteinases. Int J Oncol 48(2):843–853

    Article  CAS  PubMed  Google Scholar 

  178. Schaefer S, Baum M, Eisenbrand G, Dietrich H, Will F, Janzowski C (2006) Polyphenolic apple juice extracts and their major constituents reduce oxidative damage in human colon cell lines. Mol Nutr Food Res 50(1):24–33

    Article  CAS  PubMed  Google Scholar 

  179. Mariadoss AVA, Vinayagam R, Xu B, Venkatachalam K, Sankaran V, Vijayakumar S, Bakthavatsalam SR, Mohamed AS, David E (2019) Phloretin loaded chitosan nanoparticles enhance the antioxidants and apoptotic mechanisms in DMBA induced experimental carcinogenesis. Chem Biol Interact 308:11–19

    Article  PubMed  CAS  Google Scholar 

  180. Huang H, Li L, Shi W, Liu H, Yang J, Yuan X, Wu L (2016) The multifunctional effects of nobiletin and its metabolites in vivo and in vitro. Evid Based Complement Alternat Med 2016:2918796

    PubMed  PubMed Central  Google Scholar 

  181. Luque-Alcaraz AG, Lizardi J, Goycoolea FM, Valdez MA, Acosta AL, Iloki-Assanga SB, Higuera-Ciapara I, Argüelles-Monal W (2012) Characterization and antiproliferative activity of nobiletin-loaded chitosan nanoparticles. J Nanomater 2012:100

    Article  CAS  Google Scholar 

  182. Srinivasan M, Sudheer AR, Menon VP (2007) Ferulic acid: therapeutic potential through its antioxidant property. J Clin Biochem Nutr 40(2):92–100

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  183. Panwar R, Sharma AK, Kaloti M, Dutt D, Pruthi V (2016) Characterization and anticancer potential of ferulic acid-loaded chitosan nanoparticles against ME-180 human cervical cancer cell lines. Appl Nanosci 6(6):803–813

    Article  CAS  Google Scholar 

  184. Clifford MN (2000) Chlorogenic acids and other cinnamates–nature, occurrence, dietary burden, absorption and metabolism. J Sci Food Agric 80(7):1033–1043

    Article  CAS  Google Scholar 

  185. Perrone D, Donangelo R, Donangelo CM, Farah A (2010) Modeling weight loss and chlorogenic acids content in coffee during roasting. J Agric Food Chem 58(23):12238–12243

    Article  CAS  PubMed  Google Scholar 

  186. Kasai H (1997) Analysis of a form of oxidative DNA damage, 8-hydroxy-2′-deoxyguanosine, as a marker of cellular oxidative stress during carcinogenesis. Mutation Research/Reviews in Mutation Research 387(3):147–163

    Article  CAS  Google Scholar 

  187. Lee K, Lee JS, Jang HJ, Kim SM, Chang MS, Park SH, Kim KS, Bae J, Park JW, Lee B, Choi HY (2012) Chlorogenic acid ameliorates brain damage and edema by inhibiting matrix metalloproteinase-2 and 9 in a rat model of focal cerebral ischemia. Eur J Pharmacol 689(1–3):89–95

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Hanan, E., Ahmad, F.J. (2020). Nutraceutical-Loaded Chitosan Nanoparticles for Healthcare Applications. In: Rahman, M., Beg, S., Kumar, V., Ahmad, F. (eds) Nanomedicine for Bioactives . Springer, Singapore. https://doi.org/10.1007/978-981-15-1664-1_8

Download citation

Publish with us

Policies and ethics