Skip to main content

Abstract

Staphylococcus aureus is a potent gram-positive bacterium. It is recognized as one of the major causative agents for the community- and hospital-acquired diseases. Therefore, it has long been considered as a concern for public health. It causes many types of human infections, mainly soft tissue, bone, skin, respiratory, joint, gastrointestinal, and endovascular disorders. S. aureus can adapt different environments inside the host to modulate virulence using complex regulatory networks to sense diverse signals. This bacterium has the capacity to cross all barriers of the host immune and defense system. Hence it also possesses a strong spectrum of virulence factors. It is the major cause behind biofilm-related infections of indwelling medical devices, which is key responsible for huge healthcare cost every year in the developed countries. S. aureus has various virulence factors that are implicated in their pathogenesis. It can produce various toxins such as super-antigens that result in causative agents in disease entities such as toxic-shock syndrome, staphylococcal scarlet fever, etc. and has developed acquired resistance to most of the used antibiotics. Methicillin-resistant S. aureus (MRSA) infections have reached epidemic levels in many parts of the world. MRSA causes severe healthcare-associated infections. It also induces various health related issues in dairy animals suffering from mastitis. This chapter describes the pathogenesis and antibiotic resistance of S. aureus. It also covers the recent advancement in the structural basis antibiotic multi-resistance acquisition and possible novel strategies for therapeutic intervention.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Aldred KJ, Kerns RJ, Osheroff N (2014) Mechanism of quinolone action and resistance. Biochemist 53(10):1565–1574

    Article  CAS  Google Scholar 

  • Archer NK, Mazaitis MJ, Costerton JW, Leid JG, Powers ME, Shirtliff ME (2011) Staphylococcus aureus biofilms: properties, regulation, and roles in human disease. Virulence 2(5):445–459

    Article  PubMed  PubMed Central  Google Scholar 

  • Arora S, Uhlemann AC, Lowy FD, Hook M (2016) A novel MSCRAMM subfamily in coagulase negative Staphylococcal species. Front Microbiol 7:540

    Google Scholar 

  • Bæk KT, Gründling A, Mogensen RG, Thøgersen L, Petersen A, Paulander W, Frees D (2014) β-Lactam resistance in methicillin-resistant Staphylococcus aureus USA300 is increased by inactivation of the ClpXP protease. Antimicrob Agents Chemother 58(8):4593–4603

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Balasubramanian D, Harper L, Shopsin B, Torres VJ (2017) Staphylococcus aureus pathogenesis in diverse host environments. Pathog Dis 75(1):ftx005

    Google Scholar 

  • Barber M (1961) Methicillin-resistant Staphylococci. J Clin Pathol 14(4):385–393

    Google Scholar 

  • Beceiro A, Tomás M, Bou G (2013) Antimicrobial resistance and virulence: a successful or deleterious association in the bacterial world? Clin Microbiol Rev 26(2):185–230

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bien J, Sokolova O, Bozko P (2011) Characterization of virulence factors of Staphylococcus aureus: novel function of known virulence factors that are implicated in activation of airway epithelial proinflammatory response. J Pathog 2011:601905

    Google Scholar 

  • Brescó MS, Harris LG, Thompson K, Stanic B, Morgenstern M, O’Mahony L, Richards RG, Moriarty TF (2017) Pathogenic mechanisms and host interactions in Staphylococcus epidermidis device-related infection. Front Microbiol 8:1401

    Google Scholar 

  • Brown AF, Leech JM, Rogers TR, McLoughlin RM (2014) Staphylococcus aureus colonization: modulation of host immune response and impact on human vaccine design. Front Immunol 4:507

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Centers for Disease Control and Prevention (CDC) (1999) Four pediatric deaths from community-acquired methicillin-resistant Staphylococcus aureus—Minnesota and North Dakota, 1997-1999. MMWR Morb Mortal Wkly Rep 48(32):707–710

    Google Scholar 

  • Chopra I, Roberts M (2001) Tetracycline antibiotics: mode of action, applications, molecular biology, and epidemiology of bacterial resistance. Microbiol Mol Biol Rev 65(2):232–260

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Coelho C, de Lencastre H, Aires-de-Sousa M (2017) Frequent occurrence of trimethoprim-sulfamethoxazole hetero-resistant Staphylococcus aureus isolates in different African countries. Eur J Clin Microbiol Infect Dis 36(7):1243–1252

    Article  CAS  PubMed  Google Scholar 

  • Cole AM, Tahk S, Oren A, Yoshioka D, Kim YH, Park A, Ganz T (2001) Determinants of Staphylococcus aureus nasal carriage. Clin Diagn Lab Immunol 8(6):1064–1069

    CAS  PubMed  PubMed Central  Google Scholar 

  • Cruciani M, Bassetti D (1994) The fluoroquinolones as treatment for infections caused by gram-positive bacteria. J Antimicrob Chemother 33(3):403–417

    Article  CAS  PubMed  Google Scholar 

  • David MZ, Daum RS (2010) Community-associated methicillin-resistant Staphylococcus aureus: epidemiology and clinical consequences of an emerging epidemic. Clin Microbiol Rev 23(3):616–687

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Derbise A, Dyke KG, El Solh N (1996) Characterization of a Staphylococcus aureus Transposon, Tn5405, located within Tn5404and carrying the aminoglycoside resistance genes, aphA-3andaadE. Plasmid 35(3):174–188

    Article  CAS  PubMed  Google Scholar 

  • Deurenberg RH, Stobberingh EE (2008) The evolution of Staphylococcus aureus. Infect Genet Evol 8(6):747–763

    Article  CAS  PubMed  Google Scholar 

  • Dowzicky M, Talbot GH, Feger C, Prokocimer P, Etienne J, Leclercq R (2000) Characterization of isolates associated with emerging resistance to quinupristin/dalfopristin (Synercid®) during a worldwide clinical program. Diagn Microbiol Infect Dis 37(1):57–62

    Article  CAS  PubMed  Google Scholar 

  • Eady EA, Cove JH (2003) Staphylococcal resistance revisited: community-acquired methicillin resistant Staphylococcus aureus-an emerging problem for the management of skin and soft tissue infections. Curr Opin Infect Dis 16(2):103–124

    Article  CAS  PubMed  Google Scholar 

  • Fair RJ, Tor Y (2014) Antibiotics and bacterial resistance in the 21st century. Perspect Medicin Chem 6:25–64

    Google Scholar 

  • Foster TJ, Geoghegan JA, Ganesh VK, Höök M (2014) Adhesion, invasion and evasion: the many functions of the surface proteins of Staphylococcus aureus. Nat Rev Microbiol 12(1):49–62

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fournier B, Philpott DJ (2005) Recognition of Staphylococcus aureus by the innate immune system. Clin Microbiol Rev 18(3):521–540

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fridkin SK, Hageman JC, Morrison M, Sanza LT, Como-Sabetti K, Jernigan JA, Harriman K, Harrison LH, Lynfield R, Farley MM (2005) Methicillin-resistant Staphylococcus aureus disease in three communities. N Engl J Med 352(14):1436–1444

    Article  CAS  PubMed  Google Scholar 

  • Gade ND, Qazi MS (2013) Fluoroquinolone therapy in Staphylococcus aureus infections: where do we stand? J Lab Physicians 5(2):109–112

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ghasemian A, Najar Peerayeh S, Bakhshi B, Mirzaee M (2015) The microbial surface components recognizing adhesive matrix molecules (MSCRAMMs) genes among clinical isolates of Staphylococcus aureus from hospitalized children. Iran J Pathol 10(4):258–264

    PubMed  PubMed Central  Google Scholar 

  • Ghuysen JM (1994) Molecular structures of penicillin-binding proteins and β-lactamases. Trends Microbiol 2(10):372–380

    Article  CAS  PubMed  Google Scholar 

  • Gordon RJ, Lowy FD (2008) Pathogenesis of methicillin-resistant Staphylococcus aureus infection. Clin Infect Dis 46(5):S350–S359

    Article  CAS  PubMed  Google Scholar 

  • Harkins C, Pichon B, Doumith M, Parkhill J, Westh H, Tomasz A, de Lencastre H, Bentley S, Kearns A, Holden M (2017) Methicillin-resistant Staphylococcus aureus emerged long before the introduction of methicillin into clinical practice. Genome Biol 18(1):1–30

    Article  Google Scholar 

  • Hiramatsu K, Hanaki H, Ino T, Yabuta K, Oguri T, Tenover F (1997) Methicillin-resistant Staphylococcus aureus clinical strain with reduced vancomycin susceptibility. J Antimicrob Chemother 40(1):135–136

    Article  CAS  PubMed  Google Scholar 

  • Hiramatsu K, Cui L, Kuroda M, Ito T (2001) The emergence and evolution of methicillin-resistant Staphylococcus aureus. Trends Microbiol 9(10):486–493

    Article  CAS  PubMed  Google Scholar 

  • Jevons MP (1961) “Celbenin”-resistant Staphylococci. Br Med J 1(5219):124–125

    Google Scholar 

  • Johannessen M, Sollid JE, Hanssen AM (2012) Host-and microbe determinants that may influence the success of S. aureus colonization. Front Cell Infect Microbiol 2:56

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Josse J, Laurent F, Diot A (2017) Staphylococcal adhesion and host cell invasion: fibronectin-binding and other mechanisms. Front Microbiol 8:2433

    Article  PubMed  PubMed Central  Google Scholar 

  • Kahl BC, Becker K, Löffler B (2016) Clinical significance and pathogenesis of Staphylococcal small colony variants in persistent infections. Clin Microbiol Rev 29(2):401–427

    Google Scholar 

  • Katayama Y, Ito T, Hiramatsu K (2000) A new class of genetic element, staphylococcus cassette chromosome mec, encodes methicillin resistance in Staphylococcus aureus. Antimicrob Agents Chemother 44(6):1549–1555

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kim SJ, Chang J, Singh M (2015) Peptidoglycan architecture of gram-positive bacteria by solid-state NMR. Biochim Biophys Acta Biomembr 1848(1):350–362

    Article  CAS  Google Scholar 

  • Kobayashi SD, Malachowa N, DeLeo FR (2015) Pathogenesis of Staphylococcus aureus abscesses. Am J Pathol 185(6):1518–1527

    Article  PubMed  PubMed Central  Google Scholar 

  • Kong KF, Schneper L, Mathee K (2010) Beta-lactam antibiotics: from antibiosis to resistance and bacteriology. APMIS 118(1):1–36

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kong C, Neoh HM, Nathan S (2016) Targeting Staphylococcus aureus toxins: a potential form of anti-virulence therapy. Toxins 8(3):72

    Article  CAS  PubMed Central  Google Scholar 

  • Lacey K, Geoghegan J, McLoughlin R (2016) The role of Staphylococcus aureus virulence factors in skin infection and their potential as vaccine antigens. Pathogens 5(1):22

    Article  CAS  PubMed Central  Google Scholar 

  • Laurent F, Lelièvre H, Cornu M, Vandenesch F, Carret G, Etienne J, Flandrois J-P (2001) Fitness and competitive growth advantage of new gentamicin-susceptible MRSA clones spreading in French hospitals. J Antimicrob Chemother 47(3):277–283

    Article  CAS  PubMed  Google Scholar 

  • Leclercq R, Courvalin P (1991) Bacterial resistance to macrolide, lincosamide, and streptogramin antibiotics by target modification. Antimicrob Agents Chemother 35(7):1267

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lee JC (1996) The prospects for developing a vaccine against Staphylococcus aureus. Trends Microbiol 4(4):162–166

    Article  CAS  PubMed  Google Scholar 

  • Lee AS, de Lencastre H, Garau J, Kluytmans J, Malhotra-Kumar S, Peschel A, Harbarth S (2018) Methicillin-resistant Staphylococcus aureus. Nat Rev Disease 4:18033

    Google Scholar 

  • Leonard FC, Markey BK (2008) Methicillin-resistant Staphylococcus aureus in animals: a review. Vet J 175(1):27–36

    Article  CAS  PubMed  Google Scholar 

  • Leong HN, Kurup A, Tan MY, Kwa AL, Liau KH, Wilcox MH (2018) Management of complicated skin and soft tissue infections with a special focus on the role of newer antibiotics. Infect Drug Resist 11:1959–1974

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liu C, Bayer A, Cosgrove SE, Daum RS, Fridkin SK, Gorwitz RJ, Kaplan SL, Karchmer AW, Levine DP, Murray BE, Rybak MJ (2011) Clinical practice guidelines by the Infectious Diseases Society of America for the treatment of methicillin-resistant Staphylococcus aureus infections in adults and children. Clin Infect Dis 52(3):e18–e55

    Article  PubMed  Google Scholar 

  • Livermore DM (2000) Antibiotic resistance in Staphylococci. Int J Antimicrob Agents 16:3–10

    Google Scholar 

  • Loewen K, Schreiber Y, Kirlew M, Bocking N, Kelly L (2017) Community-associated methicillin-resistant Staphylococcus aureus infection: literature review and clinical update. Can Fam Physician 63(7):512–520

    PubMed  PubMed Central  Google Scholar 

  • Loomba PS, Taneja J, Mishra B (2010) Methicillin and vancomycin resistant S. aureus in hospitalized patients. J Glob Infect Dis 2(3):275

    Article  PubMed  PubMed Central  Google Scholar 

  • Lowy FD (2003) Antimicrobial resistance: the example of Staphylococcus aureus. J Clin Invest 111(9):1265–1273

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • McGuinness WA, Malachowa N, DeLeo FR (2017) Vancomycin resistance in Staphylococcus aureus. Yale J Biol Med 90(2):269–281

    CAS  PubMed  PubMed Central  Google Scholar 

  • McKee CM, Houck CL (1943) Induced resistance to penicillin of cultures of Staphylococci, Pneumococci and Streptococci. Proc Soc Exp Biol Med 53(1):33–34

    Google Scholar 

  • Mitchell D, Howden B (2005) Diagnosis and management of Staphylococcus aureus bacteraemia. Intern Med J 35:S17–S24

    Article  PubMed  Google Scholar 

  • Munita JM, Arias CA (2016) Mechanisms of antibiotic resistance. Microbiol Spectr 4(2). VMBF-0016-2015

    Google Scholar 

  • Murdoch DR, Corey GR, Hoen B, Miró JM, Fowler VG, Bayer AS, Karchmer AW, Olaison L, Pappas PA, Moreillon P (2009) Clinical presentation, etiology, and outcome of infective endocarditis in the 21st century: the international collaboration on endocarditis–prospective cohort study. Arch Intern Med 169(5):463–473

    Article  PubMed  PubMed Central  Google Scholar 

  • Murray R (2005) Staphylococcus aureus infective endocarditis: diagnosis and management guidelines. Intern Med J 35:S25–S44

    Article  PubMed  Google Scholar 

  • Naimi TS, LeDell KH, Como-Sabetti K, Borchardt SM, Boxrud DJ, Etienne J, Johnson SK, Vandenesch F, Fridkin S, O’Boyle C (2003) Comparison of community-and health care–associated methicillin-resistant Staphylococcus aureus infection. JAMA 290(22):2976–2984

    Article  CAS  PubMed  Google Scholar 

  • Novick RP (1990) The staphylococcus as a molecular genetic system. In: Molecular biology of the Staphylococci, vol 204. VCH, New York, pp 1–37, 587–636

    Google Scholar 

  • O’Riordan K, Lee JC (2004) Staphylococcus aureus capsular polysaccharides. Clin Microbiol Rev 17(1):218–234

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ortega E, Abriouel H, Lucas R, Gálvez A (2010) Multiple roles of Staphylococcus aureus enterotoxins: pathogenicity, superantigenic activity, and correlation to antibiotic resistance. Toxins 2(8):2117–2131

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Otto M (2014) Staphylococcus aureus toxins. Curr Opin Microbiol 17:32–37

    Article  CAS  PubMed  Google Scholar 

  • Pinchuk IV, Beswick EJ, Reyes VE (2010) Staphylococcal enterotoxins. Toxins 2(8):2177–2197

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Proctor RA, Kriegeskorte A, Kahl BC, Becker K, Löffler B, Peters G (2014) Staphylococcus aureus small Colony variants (SCVs): a road map for the metabolic pathways involved in persistent infections. Front Cell Infect Microbiol 4:99

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rammelkamp CH, Maxon T (1942) Resistance of Staphylococcus aureus to the action of penicillin. Proc Soc Exp Biol Med 51(3):386–389

    Article  CAS  Google Scholar 

  • Roberts S, Chambers S (2005) Diagnosis and management of Staphylococcus aureus infections of the skin and soft tissue. Intern Med J 35:S97–S105

    Article  PubMed  Google Scholar 

  • Rouch DA, Byrne ME, Kong YC, Skurray RA (1987) The aacA-aphD gentamicin and kanamycin resistance determinant of Tn4001 from Staphylococcus aureus: expression and nucleotide sequence analysis. J Gen Microbiol 133(11):3039–3052

    CAS  PubMed  Google Scholar 

  • Santajit S, Indrawattana N (2016) Mechanisms of antimicrobial resistance in ESKAPE pathogens. Biomed Res Int 2016:2475067

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schaberg DR, Zervos MJ (1986) Intergeneric and interspecies gene exchange in gram-positive cocci. Antimicrob Agents Chemother 30(6):817–822

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Speziale P, Pietrocola G, Foster TJ, Geoghegan JA (2014) Protein-based biofilm matrices in Staphylococci. Front Cell Infect Microbiol 4:171

    Google Scholar 

  • Teng TS, Ji AL, Ji XY, Li YZ (2017) Neutrophils and immunity: from bactericidal action to being conquered. J Immunol Res 2017:9671604

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tibavizco D, Rodríguez JY, Silva E, Cuervo SI, Cortés JA (2007) Therapeutic approach to Staphylococcus aureus bacteremia. Biomedica 27(2):294–307

    Article  PubMed  Google Scholar 

  • Tong SY, Davis JS, Eichenberger E, Holland TL, Fowler VG (2015) Staphylococcus aureus infections: epidemiology, pathophysiology, clinical manifestations, and management. Clin Microbiol Rev 28(3):603–661

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Vandenesch F, Naimi T, Enright MC, Lina G, Nimmo GR, Heffernan H, Liassine N, Bes M, Greenland T, Reverdy M-E (2003) Community-acquired methicillin-resistant Staphylococcus aureus carrying Panton-valentine leukocidin genes: worldwide emergence. Emerging Infect Dis 9(8):978–984

    Article  Google Scholar 

  • Voyich JM, Braughton KR, Sturdevant DE, Whitney AR, Saïd-Salim B, Porcella SF, Long RD, Dorward DW, Gardner DJ, Kreiswirth BN (2005) Insights into mechanisms used by Staphylococcus aureus to avoid destruction by human neutrophils. J Immunol 175(6):3907–3919

    Article  CAS  PubMed  Google Scholar 

  • Wertheim HF, Melles DC, Vos MC, van Leeuwen W, van Belkum A, Verbrugh HA, Nouwen JL (2005) The role of nasal carriage in Staphylococcus aureus infections. Lancet Infect Dis 5(12):751–762

    Article  PubMed  Google Scholar 

  • Wilkinson BJ (1997) Biology. In: Crossley KB, Archer GL (eds) The Staphylococci in human diseases. Churchill Livingstone, New York, pp. 1–37

    Google Scholar 

  • Wilson R, Cockcroft WH (1952) Penicillin resistant staphylococcal infection. Can Med Assoc J 66(6):548–551

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Joginder Singh .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Kumar, S. et al. (2020). Pathogenesis and Antibiotic Resistance of Staphylococcus aureus. In: Siddhardha, B., Dyavaiah, M., Syed, A. (eds) Model Organisms for Microbial Pathogenesis, Biofilm Formation and Antimicrobial Drug Discovery. Springer, Singapore. https://doi.org/10.1007/978-981-15-1695-5_7

Download citation

Publish with us

Policies and ethics