Skip to main content

Abstract

Nanotoxicology is a branch of toxicology that is related to potential effects of nanoparticles of diameter less than 100 nm. Due to relatively small size, they are reported to enter through biological tissue barriers and cellular membranes leading to toxic effects. Release of nanoparticles on the target surface also induces high level of toxicity in target cells. The nanoparticles are usually cationic and are easily attracted to the anionic biological membrane, resulting in the destruction of the membrane and interaction with proteins, DNA, and enzymes of the host cell. The carcinogenicity of some multiwall carbon nanotubes and nanoparticles are also reported in recent researches. Various concerns about the usage of nanoparticles including systemic translocation, direct effects on the central nervous system, intestinal tract involvement, biocompatibility, deposition, and clearing are reported till date. In this book chapter, we will review the potent role of nanomaterials to confer their toxicity at cellular and subcellular levels. Efforts have been made to summarize the new aspects of interactions with other toxicants either by reducing or enhancing health risks and the potent negative effects associated with nanomaterial pollution.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Arias L, Pessan J, Vieira A, Lima T, Delbem A, Monteiro D (2018) Iron oxide nanoparticles for biomedical applications: a perspective on synthesis, drugs, antimicrobial activity, and toxicity. Antibiotics 7(2):46

    Article  CAS  PubMed Central  Google Scholar 

  • Ayangbenro A, Babalola O (2017) A new strategy for heavy metal polluted environments: a review of microbial biosorbents. Int J Environ Res Public Health 14(1):94

    Article  CAS  PubMed Central  Google Scholar 

  • Barua S, Mitragotri S (2014) Challenges associated with penetration of nanoparticles across cell and tissue barriers: a review of current status and future prospects. Nano Today 9(2):223–243

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Behzadi S, Serpooshan V, Tao W, Hamaly MA, Alkawareek MY, Dreaden EC, Brown D, Alkilany AM, Farokhzad OC, Mahmoudi M (2017) Cellular uptake of nanoparticles: journey inside the cell. Chem Soc Rev 46(14):4218–4244

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bergamaschi E (2012) Human biomonitoring of engineered nanoparticles: an appraisal of critical issues and potential biomarkers. J Nanomater 2012:564121

    Article  CAS  Google Scholar 

  • Bhati S, Kumar V, Singh S, Singh J (2019) Synthesis, biological activities and docking studies of piperazine incorporated 1,3,4-oxadiazole derivatives. J Mol Struct 1191:197–205

    Article  CAS  Google Scholar 

  • Brandenberger C, Rothen-Rutishauser B, Mühlfeld C, Schmid O, Ferron GA, Maier KL, Gehr P, Lenz AG (2010) Effects and uptake of gold nanoparticles deposited at the air-liquid interface of a human epithelial airway model. Toxicol Appl Pharmacol 242:56–65

    Article  CAS  PubMed  Google Scholar 

  • Buzea C, Pacheco II, Robbie K (2007) Nanomaterials and nanoparticles: sources and toxicity. Biointerphases 2(4):MR17–MR71

    Article  PubMed  Google Scholar 

  • Camargo PH, Satyanarayana KG, Wypych F (2009) Nanocomposites: synthesis, structure, properties and new application opportunities. Mater Res 12(1):1–39

    Article  CAS  Google Scholar 

  • Chander N, Khan AF, Thouti E, Sardana SK, Chandrasekhar PS, Dutta V, Komarala VK (2014) Size and concentration effects of gold nanoparticles on optical and electrical properties of plasmonic dye sensitized solar cells. Sol Energy 109:11–23

    Article  CAS  Google Scholar 

  • Chen Q, Xue Y, Sun J (2013) Kupffer cell-mediated hepatic injury induced by silica nanoparticles in vitro and in vivo. Int J Nanomed 8:1129–1140

    Google Scholar 

  • Cheng Y, Yang H, Yang Y, Huang J, Wu K, Chen Z, Wang X, Lin C, Lai Y (2018) Progress in TiO2 nanotube coatings for biomedical applications: a review. J Mater Chem B 6(13):1862–1886

    Article  CAS  PubMed  Google Scholar 

  • Cho WS, Kim S, Han BS, Son WC, Jeong J (2009) Comparison of gene expression profiles in mice liver following intravenous injection of 4 and 100 nm-sized PEG-coated gold nanoparticles. Toxicol Lett 191:96–102

    Article  CAS  PubMed  Google Scholar 

  • Chou CC, Hsiao HY, Hong QS, Chen CH, Peng YW, Chen HW, Yang PC (2008) Single-walled carbon nanotubes can induce pulmonary injury in mouse model. Nano Lett 8:437–445

    Article  CAS  PubMed  Google Scholar 

  • Cicek S, Nadaroglu H (2015) The use of nanotechnology in the agriculture. Adv Nano Res 3(4):207–223

    Article  Google Scholar 

  • Das R, Vecitis CD, Schulze A, Cao B, Ismail AF, Lu X, Chen J, Ramakrishna S (2017) Recent advances in nanomaterials for water protection and monitoring. Chem Soc Rev 46(22):6946–7020

    Article  CAS  PubMed  Google Scholar 

  • Dayem AA, Hossain MK, Lee SB, Kim K, Saha SK, Yang GM, Choi HY, Cho SG (2017) The role of reactive oxygen species (ROS) in the biological activities of metallic nanoparticles. Int J Mol Sci 18(1):120

    Article  CAS  Google Scholar 

  • Della Rocca J, Liu D, Lin W (2011) Nanoscale metal–organic frameworks for biomedical imaging and drug delivery. Acc Chem Res 44(10):957–968

    Article  CAS  PubMed  Google Scholar 

  • Deng ZJ, Liang M, Monteiro M, Toth I, Minchin RF (2011) Nanoparticle-induced unfolding of fibrinogen promotes Mac-1 receptor activation and inflammation. Nat Nanotechnol 6(1):39–44

    Article  CAS  PubMed  Google Scholar 

  • Dobrovolskaia MA, Shurin M, Shvedova AA (2016) Current understanding of interactions between nanoparticles and the immune system. Toxicol Appl Pharmacol 299:78–89

    Article  CAS  PubMed  Google Scholar 

  • Dong J, Ma Q (2016) Myofibroblasts and lung fibrosis induced by carbon nanotube exposure. Part Fibre Toxicol 1(13):1–22

    Google Scholar 

  • Dowling AP (2004) Development of nanotechnologies. Mater Today 7(12):30–35

    Article  Google Scholar 

  • Elsabahy M, Wooley KL (2013) Cytokines as biomarkers of nanoparticle immunotoxicity. Chem Soc Rev 42(12):5552–5576

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Elsaesser A, Howard CV (2012) Toxicology of nanoparticles. Adv Drug Deliv Rev 64:129–137

    Article  CAS  PubMed  Google Scholar 

  • Exbrayat J, Moudilou EN, Lapied E (2015) Harmful effects of nanoparticles on animals. J Nanotechnol 2015:861092

    Article  CAS  Google Scholar 

  • Fakruddin M, Hossain Z, Afroz H (2012) Prospects and applications of nanobiotechnology: a medical perspective. J Nanobiotechnol 10(1):31

    Article  Google Scholar 

  • Fröhlich E (2012) The role of surface charge in cellular uptake and cytotoxicity of medical nanoparticles. Int J Nanomedicine 7:5577–5591

    Article  PubMed  PubMed Central  Google Scholar 

  • Fu PP, Xia Q, Hwang HM, Ray PC, Yu H (2014) Mechanisms of nanotoxicity: generation of reactive oxygen species. J Food Drug Anal 22(1):64–75

    Article  CAS  PubMed  Google Scholar 

  • Fujita K, Morimoto Y, Ogami A, Myojyo T, Tanaka I, Shimada M, Wang WN, Endoh S, Uchida K, Nakazato T, Yamamoto K, Fukui H, Horie M, Yoshida Y, Iwahashi H, Nakanishi J (2009) Gene expression profiles in rat lung after inhalation exposure to C60 fullerene particles. Toxicol 258:47–55

    Google Scholar 

  • Gamucci O, Bertero A, Gagliardi M, Bardi G (2014) Biomedical nanoparticles: overview of their surface immune-compatibility. Coatings 4(1):139–159

    Article  CAS  Google Scholar 

  • Geiser M, Casaulta M, Kupferschmid B, Schulz H, Semmler-Behnke M, Kreyling W (2008) The role of macrophages in the clearance of inhaled ultrafine titanium dioxide particles. Am J Respir Cell Mol Biol 38:371–376

    Article  CAS  PubMed  Google Scholar 

  • Gendelman HE, Anantharam V, Bronich T, Ghaisas S, Jin H, Kanthasamy AG, Liu X, McMillan J, Mosley RL, Narasimhan B, Mallapragada SK (2015) Nanoneuromedicines for degenerative, inflammatory, and infectious nervous system diseases. Nanomed 11(3):751–767

    Google Scholar 

  • Ghodake G, Seo YD, Lee DS (2011) Hazardous phytotoxic nature of cobalt and zinc oxide nanoparticles assessed using Allium cepa. J Hazard Mater 186:952–955

    Article  CAS  PubMed  Google Scholar 

  • Giannakou C, Park MV, de Jong WH, van Loveren H, Vandebriel RJ, Geertsma RE (2016) A comparison of immunotoxic effects of nanomedicinal products with regulatory immunotoxicity testing requirements. Int J Nanomedicine 11:2935–2952

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gupta R, Xie H (2018) Nanoparticles in daily life: applications, toxicity and regulations. J Environ Pathol Toxicol Oncol 37(3):209–230

    Article  PubMed  PubMed Central  Google Scholar 

  • Gwinn MR, Vallyathan V (2006) Nanoparticles: health effects—pros and cons. Environ Health Perspect 114(12):1818–1825

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hasija V, Raizada P, Sudhaik A, Sharma K, Kumar A, Singh P, Jonnalagadda SB, Thakur VK (2019) Recent advances in noble metal free doped graphitic carbon nitride based nanohybrids for photocatalysis of organic contaminants in water: a review. Appl Mater Today 15:494–524

    Article  Google Scholar 

  • He H, Pham-Huy LA, Dramou P, Xiao D, Zuo P, Pham-Huy C (2013) Carbon nanotubes: applications in pharmacy and medicine. Biomed Res Int 2013:578290

    PubMed  PubMed Central  Google Scholar 

  • Herzog E, Byrne HJ, Casey A, Davoren M, Lenz AG, Maier KL, Duschl A, Oostingh GJ (2009) SWCNT suppress inflammatory mediator responses in human lung epithelium in vitro. Toxicol Appl Pharmacol 234:378–339

    Article  CAS  PubMed  Google Scholar 

  • Hutter E, Boridy S, Labrecque S, Lalancette-Hébert M, Kriz J, Winnik FM, Maysinger D (2010) Microglial response to gold nanoparticles. ACS Nano 4:2595–2606

    Article  CAS  PubMed  Google Scholar 

  • Iavicoli I, Leso V, Bergamaschi A (2012) Toxicological effects of titanium dioxide nanoparticles: a review of in vivo studies. J Nanomater 2012:5

    Google Scholar 

  • Inoue K, Takano H, Yanagisawa R, Koike E, Shimada A (2009) Size effects of latex nanomaterials on lung inflammation in mice. Toxicol Appl Pharmacol 234:68–76

    Article  CAS  PubMed  Google Scholar 

  • Jeevanandam J, Barhoum A, Chan YS, Dufresne A, Danquah MK (2018) Review on nanoparticles and nanostructured materials: history, sources, toxicity and regulations. Beilstein J Nanotechnol 9(1):1050–1074

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jeng HA, Swanson J (2006) Toxicity of metal oxide nanoparticles in mammalian cells. J Environ Sci Health A 41(12):2699–2711

    Article  CAS  Google Scholar 

  • Joo J, Lee M, Bae S, An SS (2013) Blood biomarkers: from nanotoxicity to neurodegeneration. SPIE Newsroom

    Google Scholar 

  • Kagan VE, Konduru NV, Feng W, Allen BL, Conroy J, Volkov Y, Vlasova II, Belikova NA, Yanamala N, Kapralov A, Tyurina YY, Shi J, Kisin ER, Murray AR, Franks J, Stolz D, Gou P, Klein-Seetharaman J, Fadeel B, Star A, Shvedova AA (2010) Carbon nanotubes degraded by neutrophil myeloperoxidase induce less pulmonary inflammation. Nat Nanotechnol 5:354–359

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kapoor D, Singh S, Kumar V, Romero R, Prasad R, Singh J (2019) Antioxidant enzymes regulation in plants in reference to reactive oxygen species (ROS) and reactive nitrogen species (RNS). Plant Gene 19:100182

    Article  CAS  Google Scholar 

  • Karimi S, Troeung M, Wang R, Draper R, Pantano P (2018) Acute and chronic toxicity of metal oxide nanoparticles in chemical mechanical planarization slurries with Daphnia magna. Environ Sci Nano 5(7):1670–1684

    Google Scholar 

  • Karlsson HL, Cronholm P, Gustafsson J, Moller L (2008) Copper oxide nanoparticles are highly toxic: a comparison between metal oxide nanoparticles and carbon nanotubes. Chem Res Toxicol 21(9):1726–1732

    Article  CAS  PubMed  Google Scholar 

  • Khan I, Saeed K, Khan I (2017) Nanoparticles: properties, applications and toxicities. Arab J Chem 12:908. https://doi.org/10.1016/j.arabjc.2017.05.011

    Article  CAS  Google Scholar 

  • Khanna P, Ong C, Bay B, Baeg G (2015) Nanotoxicity: an interplay of oxidative stress, inflammation and cell death. Nanomaterials 5(3):1163–1180

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kim KS, Lee D, Song CG, Kang PM (2015) Reactive oxygen species-activated nanomaterials as theranostic agents. Nanomed 10(17):2709–2723

    Google Scholar 

  • Koike E, Takano H, Inoue KI, Yanagisawa R, Sakurai M, Aoyagi H, Shinohara R, Kobayashi T (2008) Pulmonary exposure to carbon black nanoparticles increases the number of antigen-presenting cells in murine lung. Int J Immunopathol Pharmacol 21:35–42

    Article  CAS  PubMed  Google Scholar 

  • Kroll A, Dierker C, Rommel C, Hahn D, Wohlleben W, Schulze-Isfort C, Göbbert C, Voetz M, Hardinghaus F, Schnekenburger J (2011) Cytotoxicity screening of 23 engineered nanomaterials using a test matrix of ten cell lines and three different assays. Part Fibre Toxicol 8(1):9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kumar V, Singh S (2018a) Kinetics of dechlorination of atrazine using tin (SnII) at neutral pH conditions. Appl Chem Eng. https://doi.org/10.63019/ace.v1i4

  • Kumar V, Singh S (2018b) Interactions of acephate, glyphosate, monocrotophos and phorate with bovine serum albumin. Indian J Pharm Sci 80(6):1151

    Article  Google Scholar 

  • Kumar V, Singh S, Srivastava B, Bhadouria R, Singh R (2019a) Green synthesis of silver nanoparticles using leaf extract of Holoptelea integrifolia and preliminary investigation of its antioxidant, anti-inflammatory, antidiabetic and antibacterial activities. J Environ Chem Eng 2019:103094

    Article  CAS  Google Scholar 

  • Kumar V, Singh S, Singh R (2019b) Phytochemical constituents of guggul gum and their biological qualities. Mini-Rev Org Chem 16. https://doi.org/10.2174/1570193X16666190129161757

  • Kumar V, Singh S, Singh A, Subhose V, Prakash O (2019c) Assessment of heavy metal ions, essential metal ions, and antioxidant properties of the most common herbal drugs in Indian Ayurvedic hospital: for ensuring quality assurance of certain Ayurvedic drugs. Biocatal Agric Biotechnol 18:101018

    Article  Google Scholar 

  • Lameijer MA, Tang J, Nahrendorf M, Beelen RH, Mulder WJ (2013) Monocytes and macrophages as nanomedicinal targets for improved diagnosis and treatment of disease. Expert Rev Mol Diagn 13(6):567–580

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Landa P, Vankova R, Andrlova J, Hodek J, Marsik P, Storchova H, White JC, Vanek T (2012) Nanoparticle-specific changes in Arabidopsis thaliana gene expression after exposure to ZnO, TiO2, and fullerene soot. J Hazard Mater 241:55–62

    Article  CAS  PubMed  Google Scholar 

  • Laux P, Tentschert J, Riebeling C, Braeuning A, Creutzenberg O, Epp A, Fessard V, Haas KH, Haase A, Hund-Rinke K, Jakubowski N (2018) Nanomaterials: certain aspects of application, risk assessment and risk communication. Arch Toxicol 92(1):121–141

    Article  CAS  PubMed  Google Scholar 

  • Lee JH, Ju JE, Kim BI, Pak PJ, Choi EK, Lee HS, Chung N (2014) Rod-shaped iron oxide nanoparticles are more toxic than sphere-shaped nanoparticles to murine macrophage cells. Environ Toxicol Chem 33(12):2759–2766

    Article  CAS  PubMed  Google Scholar 

  • Li W, Elzatahry A, Aldhayan D, Zhao D (2018) Core–shell structured titanium dioxide nanomaterials for solar energy utilization. Chem Soc Rev 47(22):8203–8237

    Article  CAS  PubMed  Google Scholar 

  • Li X, Hu Y, Jin Z, Jiang H, Wen J (2009) Silica-induced TNF-α and TGF-β 1 expression in RAW264. 7 cells are dependent on Src-ERK/AP-1 pathways. Toxicol Mech Methods 19(1):51–58

    Article  CAS  PubMed  Google Scholar 

  • Li X, Zhu J, Wei B (2016) Hybrid nanostructures of metal/two-dimensional nanomaterials for plasmon-enhanced applications. Chem Soc Rev 45(11):3145–3187

    Article  CAS  PubMed  Google Scholar 

  • Lim CT (2017) Nanofiber technology: current status and emerging developments. Prog Polym Sci 70:1–7

    Article  CAS  Google Scholar 

  • Liu Y, Hardie J, Zhang X, Rotello VM (2017) Effects of engineered nanoparticles on the innate immune system. Semin Immunol 34:25–32

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Look M, Bandyopadhyay A, Blum JS, Fahmy TM (2010) Application of nanotechnologies for improved immune response against infectious diseases in the developing world. Adv Drug Deliv Rev 62(4–5):378–393

    Article  CAS  PubMed  Google Scholar 

  • Manke A, Wang L, Rojanasakul Y (2013) Mechanisms of nanoparticle-induced oxidative stress and toxicity. Biomed Res Int 2013:942916

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Manolova V, Flace A, Bauer M, Schwarz K, Saudan P, Bachmann MF (2008) Nanoparticles target distinct dendritic cell populations according to their size. Eur J Immunol 38(5):1404–1413

    Article  CAS  PubMed  Google Scholar 

  • Morishige T, Yoshioka Y, Tanabe A, Yao X, Tsunoda S, Tsutsumi Y, Mukai Y, Okada N, Nakagawa S (2010) Titanium dioxide induces different levels of IL-1beta production dependent on its particle characteristics through caspase-1 activation mediated by reactive oxygen species and cathepsin B. Biochem Biophys Res Commun 392:160–165

    Article  CAS  PubMed  Google Scholar 

  • Müller L, Riediker M, Wick P, Mohr M, Gehr P, Rothen-Rutishauser B (2010) Oxidative stress and inflammation response after nanoparticle exposure: differences between human lung cell monocultures and an advanced three-dimensional model of the human epithelial airways. J R Soc Interface 7(Suppl 1):S27–S40

    PubMed  Google Scholar 

  • Murphy K (2008) Nanotechnology: agriculture’s next “industrial” revolution. Spring (Financial partner, yankee farm credit, ACA), Williston, pp 3–5

    Google Scholar 

  • Nemmar A, Melghit K, Ali BH (2008) The acute proinflammatory and prothrombotic effects of pulmonary exposure to rutile TiO2 nanorods in rats. Exp Biol Med (Maywood) 233:610–619

    Article  CAS  Google Scholar 

  • Nishimori H, Kondoh M, Isoda K, Tsunoda S, Tsutsumi Y, Yagi K (2009) Silica nanoparticles as hepatotoxicants. Eur J Pharm Biopharm 72:496–501

    Article  CAS  PubMed  Google Scholar 

  • Niwa Y, Hiura Y, Sawamura H, Iwai N (2008) Inhalation exposure to carbon black induces inflammatory response in rats. Circ J 72:144–149

    Article  CAS  PubMed  Google Scholar 

  • Oberdörster G (2010) Safety assessment for nanotechnology and nanomedicine: concepts of nanotoxicology. J Intern Med 267(1):89–105

    Article  CAS  PubMed  Google Scholar 

  • Panyam J, Labhasetwar V (2003) Biodegradable nanoparticles for drug and gene delivery to cells and tissue. Adv Drug Deliv Rev 55:329–347

    Article  CAS  PubMed  Google Scholar 

  • Park EJ, Kim H, Kim Y, Yi J, Choi K, Park K (2010a) Inflammatory responses may be induced by a single intratracheal instillation of iron nanoparticles in mice. Toxicology 275(1–3):65–71

    Article  CAS  PubMed  Google Scholar 

  • Park YH, Kim JN, Jeong SH, Choi JE, Lee SH, Choi BH, Lee JP, Sohn KH, Park KL, Kim MK, Son SW (2010b) Assessment of dermal toxicity of nanosilica using cultured keratinocytes, a human skin equivalent model and an in vivo model. Toxicol 267:178–181

    Google Scholar 

  • Qiu H, Cui B, Li G, Yang J, Peng H, Wang Y, Li N, Gao R, Chang Z, Wang Y (2014) Novel Fe3O4@ ZnO@ mSiO2 nanocarrier for targeted drug delivery and controllable release with microwave irradiation. J Phys Chem C 118(27):14929–14937

    Article  CAS  Google Scholar 

  • Rajasulochana P, Preethy V (2016) Comparison on efficiency of various techniques in treatment of waste and sewage water–a comprehensive review. Resour Efficient Technol 2(4):175–184

    Article  Google Scholar 

  • Riehemann K, Schneider SW, Luger TA, Godin B, Ferrari M, Fuchs H (2009) Nanomedicine—challenge and perspectives. Angew Chem Int Ed 48(5):872–897

    Article  CAS  Google Scholar 

  • Ryman-Rasmussen JP, Cesta MF, Brody AR, Shipley-Phillips JK, Everitt JI, Tewksbury EW, Moss OR, Wong BA, Dodd DE, Andersen ME, Bonner JC (2009) Inhaled carbon nanotubes reach the subpleural tissue in mice. Nat Nanotechnol 4:747–751

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sanchez C, Belleville P, Popall M, Nicole L (2011) Applications of advanced hybrid organic–inorganic nanomaterials: from laboratory to market. Chem Soc Rev 40(2):696–753

    Article  CAS  PubMed  Google Scholar 

  • Schanen BC, Das S, Reilly CM, Warren WL, Self WT, Seal S, Drake DR III (2013) Immunomodulation and T helper TH1/TH2 response polarization by CeO2 and TiO2 nanoparticles. PLoS One 8(5):e62816

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schipper ML, Nakayama-Ratchford N, Davis CR, Kam NW, Chu P, Liu Z, Sun X, Dai H, Gambhir SS (2008) A pilot toxicology study of single-walled carbon nanotubes in a small sample of mice. Nat Nanotechnol 3(4):216–221

    Article  CAS  PubMed  Google Scholar 

  • Setyawati MI, Tay CY, Docter D, Stauber RH, Leong DT (2015) Understanding and exploiting nanoparticles’ intimacy with the blood vessel and blood. Chem Soc Rev 44(22):8174–8199

    Article  CAS  PubMed  Google Scholar 

  • Sharma M, Salisbury RL, Maurer EI, Hussain SM, Sulentic CE (2013) Gold nanoparticles induce transcriptional activity of NF-κB in a B-lymphocyte cell line. Nanoscale 5(9):3747–3756

    Article  CAS  PubMed  Google Scholar 

  • Sidhu GK, Singh S, Kumar V, Dhanjal DS, Datta S, Singh J (2019) Toxicity, monitoring and biodegradation of organophosphate pesticides: a review. Crit Rev Environ Sci Technol 49:1–53

    Article  CAS  Google Scholar 

  • Singh N (2009) Conference scene-nanotoxicology: health and environmental impacts. Nanomed 4(4):385–390

    Google Scholar 

  • Singh R, Lillard JW Jr (2009) Nanoparticle-based targeted drug delivery. Exp Mol Pathol 86(3):215–223

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Singh S, Kumar V, Singh J (2019a) Kinetic study of the biodegradation of glyphosate by indigenous soil bacterial isolates in presence of humic acid, Fe (III) and Cu (II) ions. J Environ Chem Eng 2019:103098

    Article  CAS  Google Scholar 

  • Singh S, Kumar V, Sidhu GK, Datta S, Dhanjal DS, Koul B, Singh J (2019b) Plant growth promoting rhizobacteria from heavy metal contaminated soil promote growth attributes of Pisum sativum L. Biocatal Agric Biotechnol 17:665–671

    Article  Google Scholar 

  • Singh S, Kumar V, Singh S, Singh J (2019c) Influence of humic acid, iron and copper on microbial degradation of fungicide Carbendazim. Biocatal Agric Biotechnol 2019:101196

    Google Scholar 

  • Skovgaard K, Mortensen S, Boye M, Poulsen KT, Campbell FM, Eckersall PD, Heegaard PM (2009) Rapid and widely disseminated acute phase protein response after experimental bacterial infection of pigs. Vet Res 40(3):1–2

    Article  Google Scholar 

  • Sonvico F, Clementino A, Buttini F, Colombo G, Pescina S, Stanisçuaski Guterres S, Raffin Pohlmann A, Nicoli S (2018) Surface-modified nanocarriers for nose-to-brain delivery: from bioadhesion to targeting. Pharmaceutics 10(1):34

    Article  CAS  PubMed Central  Google Scholar 

  • Srinivas A, Rao PJ, Selvam G, Goparaju A, Murthy BP, Reddy NP (2012) Oxidative stress and inflammatory responses of rat following acute inhalation exposure to iron oxide nanoparticles. Hum Exp Toxicol 31(11):1113–1131

    Article  CAS  PubMed  Google Scholar 

  • Suh WH, Suslick KS, Stucky GD, Suh YH (2009) Nanotechnology, nanotoxicology, and neuroscience. Prog Neurobiol 87(3):133–170

    Article  CAS  PubMed  Google Scholar 

  • Sukhanova A, Bozrova S, Sokolov P, Berestovoy M, Karaulov A, Nabiev I (2018) Dependence of nanoparticle toxicity on their physical and chemical properties. Nanoscale Res Lett 13(1):44

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Taghavi SM, Momenpour M, Azarian M, Ahmadian M, Souri F, Taghavi SA, Sadeghain M, Karchani M (2013) Effects of nanoparticles on the environment and outdoor workplaces. Electron Physician 5(4):706–712

    PubMed  PubMed Central  Google Scholar 

  • Tarafdar JC (2015) Nanoparticle production, characterization and its application to horticultural crops. Compendium of winter school on utilization of degraded land and soil through horticultural crops for improving agricultural productivity and environmental quality. NRCSS, Ajmer, India, pp 222–229

    Google Scholar 

  • Upadhyay RK, Soin N, Roy SS (2014) Role of graphene/metal oxide composites as photocatalysts, adsorbents and disinfectants in water treatment: a review. RSC Adv 4(8):3823–3851

    Article  CAS  Google Scholar 

  • Wagner JA, Atkinson AJ Jr (2015) Measuring biomarker progress. Clin Pharmacol Ther 98(1):2–5

    Article  CAS  PubMed  Google Scholar 

  • Wang EC, Wang AZ (2013) Nanoparticles and their applications in cell and molecular biology. Integr Biol 6(1):9–26

    Article  CAS  Google Scholar 

  • Wang L, Hu C, Shao L (2017) The antimicrobial activity of nanoparticles: present situation and prospects for the future. Int J Nanomed 12:1227–1249

    Google Scholar 

  • Warheit DB, Sayes CM, Reed KL, Swain KA (2008) Health effects related to nanoparticle exposures. Environmental, health and safety considerations for assessing hazards and risks. Pharmacol Ther 120:35–42

    Article  CAS  PubMed  Google Scholar 

  • Wu H, Zhang J (2018) Chitosan-based zinc oxide nanoparticle for enhanced anticancer effect in cervical cancer: a physicochemical and biological perspective. Saudi Pharm J 26:205–210

    Article  PubMed  Google Scholar 

  • Xia T, Kovochich M, Liong M, Zink JI, Nel AE (2008a) Cationic polystyrene nanosphere toxicity depends on cell-specific endocytic and mitochondrial injury pathways. ACS Nano 2:85–96

    Article  CAS  PubMed  Google Scholar 

  • Xia T, Kovochich M, Liong M, Mädler L, Gilbert B, Shi H, Yeh JI, Zink JI, Nel AE (2008b) Comparison of the mechanism of toxicity of zinc oxide and cerium oxide nanoparticles based on dissolution and oxidative stress properties. ACS Nano 2:2121–2134

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Xu Y, Sherwood JA, Lackey KH, Qin Y, Bao Y (2016) The responses of immune cells to iron oxide nanoparticles. J Appl Toxicol 36(4):543–553

    Article  CAS  PubMed  Google Scholar 

  • Yanagisawa R, Takano H, Inoue K, Koike E, Kamachi T, Sadakane K, Ichinose T (2009) Titanium dioxide nanoparticles aggravate atopic dermatitis-like skin lesions in NC/Nga mice. Exp Biol Med 234:314–322

    Article  CAS  Google Scholar 

  • Ye SF, Wu YH, Hou ZQ, Zhang QQ (2009) ROS and NF-kappaB are involved in upregulation of IL-8 in A549 cells exposed to multi-walled carbon nanotubes. Biochem Biophys Res Commun 379:643–648

    Article  CAS  PubMed  Google Scholar 

  • Yildirimer L, Thanh NT, Loizidou M, Seifalian AM (2011) Toxicology and clinical potential of nanoparticles. Nano Today 6(6):585–607

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yola ML, Eren T, Atar N (2014) A novel efficient photocatalyst based on TiO2 nanoparticles involved boron enrichment waste for photocatalytic degradation of atrazine. Chem Eng J 250:288–294

    Article  CAS  Google Scholar 

  • Yuan Q, Hein S, Misra RDK (2010) New generation of chitosan-encapsulated ZnO quantum dots loaded with drug: synthesis, characterization and in vitro drug delivery response. Acta Biomater 6:2732–2739

    Article  CAS  PubMed  Google Scholar 

  • Zhong CY, Zhou YM, Smith KR, Kennedy IM, Chen CY, Aust AE, Pinkerton KE (2010) Oxidative injury in the lungs of neonatal rats following short-term exposure to ultrafine iron and soot particles. J Toxicol Environ Health A 73:837–847

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Joginder Singh .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Singh, S. et al. (2020). Challenges and Future Perspectives of Nanotoxicology. In: Siddhardha, B., Dyavaiah, M., Kasinathan, K. (eds) Model Organisms to Study Biological Activities and Toxicity of Nanoparticles. Springer, Singapore. https://doi.org/10.1007/978-981-15-1702-0_22

Download citation

Publish with us

Policies and ethics