Skip to main content

Part of the book series: Springer Theses ((Springer Theses))

  • 519 Accesses

Abstract

Single-layer transition-metal dichalcogenides (TMDs) attract considerable attention due to their interesting physical properties and potential applications. Here, we demonstrate the epitaxial growth of high-quality monolayer platinum diselenide (PtSe2), a new member of the layered TMDs family, by a single step of direct selenization of a Pt(111) substrate. A combination of atomic-resolution experimental characterizations and first-principles theoretic calculations reveals the atomic structure of the monolayer PtSe2/Pt(111). Angle-resolved photoemission spectroscopy measurements confirm for the first time the semiconducting electronic structure of monolayer PtSe2 (in contrast to its semimetallic bulk counterpart). The photocatalytic activity of monolayer PtSe2 film is evaluated by a methylene-blue photodegradation experiment, demonstrating its practical application as a promising photocatalyst. Moreover, circular polarization calculations predict that monolayer PtSe2 also has potential applications in valleytronics.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Splendiani A et al (2010) Emerging photoluminescence in monolayer MoS2. Nano Lett 10:1271–1275. https://doi.org/10.1021/nl903868w

    Article  ADS  Google Scholar 

  2. Eda G et al (2011) Photoluminescence from chemically exfoliated MoS2. Nano Lett 11:5111–5116. https://doi.org/10.1021/nl201874w

    Article  ADS  Google Scholar 

  3. Tongay S et al (2012) Thermally driven crossover from indirect toward direct bandgap in 2D semiconductors: MoSe2 versus MoS2. Nano Lett 12:5576–5580. https://doi.org/10.1021/nl302584w

    Article  ADS  Google Scholar 

  4. Zhang Y et al (2014) Direct observation of the transition from indirect to direct bandgap in atomically thin epitaxial MoSe2. Nat Nanotechnol 9:111–115. https://doi.org/10.1038/Nnano.2013.277

    Article  ADS  Google Scholar 

  5. Ataca C, Sahin H, Ciraci S (2012) Stable, single-layer MX2 transition-metal oxides and dichalcogenides in a honeycomb-like structure. J Phys Chem C 116:8983–8999. https://doi.org/10.1021/jp212558p

    Article  Google Scholar 

  6. Chhowalla M et al (2013) The chemistry of two-dimensional layered transition metal dichalcogenide nanosheets. Nat Chem 5:263–275. https://doi.org/10.1038/nchem.1589

    Article  Google Scholar 

  7. Sipos B et al (2008) From Mott state to superconductivity in 1T-TaS(2). Nat Mater 7:960–965. https://doi.org/10.1038/nmat2318

    Article  ADS  Google Scholar 

  8. Yang JJ et al (2012) Charge-orbital density wave and superconductivity in the strong spin-orbit coupled IrTe2:Pd. Phys Rev Lett 108:116402. https://doi.org/10.1103/PhysRevLett.108.116402

    Article  ADS  Google Scholar 

  9. Tongay S et al (2014) Monolayer behaviour in bulk ReS2 due to electronic and vibrational decoupling. Nat Commun 5:3252

    Article  ADS  Google Scholar 

  10. Wang YL et al (2015) Monolayer PtSe2, a new semiconducting transition-metal-dichalcogenide, epitaxially grown by direct selenization of Pt. Nano Lett 15:4013–4018. https://doi.org/10.1021/acs.nanolett.5b00964

    Article  ADS  Google Scholar 

  11. Zhuang HLL, Hennig RG (2013) Computational search for single-layer transition-metal dichalcogenide photocatalysts. J Phys Chem C 117:20440–20445. https://doi.org/10.1021/jp405808a

    Article  Google Scholar 

  12. Guo G, Liang W (1986) The electronic structures of platinum dichalcogenides: PtS2, PtSe2 and PtTe2. J Phys C: Solid State Phys 19:995

    Article  ADS  Google Scholar 

  13. Dai D et al (2003) Trends in the structure and bonding in the layered platinum dioxide and dichalcogenides PtQ2 (Q=O, S, Se, Te). J Solid State Chem 173:114–121

    Article  ADS  Google Scholar 

  14. Houas A et al (2001) Photocatalytic degradation pathway of methylene blue in water. Appl Catal B 31:145–157

    Article  Google Scholar 

  15. Costi R, Saunders AE, Elmalem E, Salant A, Banin U (2008) Visible light-induced charge retention and photocatalysis with hybrid CdSe-Au nanodumbbells. Nano Lett 8:637–641

    Article  ADS  Google Scholar 

  16. Wilson JA, Yoffe AD (1969) The transition metal dichalcogenides discussion and interpretation of the observed optical, electrical and structural properties. Adv Phys 18:193

    Article  ADS  Google Scholar 

  17. Ullah K et al (2014) Synthesis and characterization of novel PtSe2/graphene nanocomposites and its visible light driven catalytic properties. J Mater Sci 49:4139–4147

    Article  ADS  Google Scholar 

  18. Asahi R, Morikawa T, Ohwaki T, Aoki K, Taga Y (2001) Visible-light photocatalysis in nitrogen-doped titanium oxides. Science 293:269–271. https://doi.org/10.1126/science.1061051

    Article  Google Scholar 

  19. Gole JL, Stout JD, Burda C, Lou YB, Chen XB (2004) Highly efficient formation of visible light tunable TiO2−xNx photocatalysts and their transformation at the nanoscale. J Phys Chem B 108:1230–1240. https://doi.org/10.1021/jp.030843n

    Article  Google Scholar 

  20. Cao T et al (2012) Valley-selective circular dichroism of monolayer molybdenum disulphide. Nat Commun 3:887

    Article  ADS  Google Scholar 

  21. Mak KF, He K, Shan J, Heinz TF (2012) Control of valley polarization in monolayer MoS2 by optical helicity. Nat Nanotechnol 7:494–498. https://doi.org/10.1038/nnano.2012.96

    Article  ADS  Google Scholar 

  22. Zeng H, Dai J, Yao W, Xiao D, Cui X (2012) Valley polarization in MoS2 monolayers by optical pumping. Nat Nanotechnol 7:490–493. https://doi.org/10.1038/nnano.2012.95

    Article  ADS  Google Scholar 

  23. Rycerz A, Tworzydło J, Beenakker C (2007) Valley filter and valley valve in graphene. Nat Phys 3:172–175

    Article  Google Scholar 

  24. Xiao D, Yao W, Niu Q (2007) Valley-contrasting physics in graphene: magnetic moment and topological transport. Phys Rev Lett 99:236809

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Linfei Li .

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Li, L. (2020). Monolayer PtSe2. In: Fabrication and Physical Properties of Novel Two-dimensional Crystal Materials Beyond Graphene: Germanene, Hafnene and PtSe2. Springer Theses. Springer, Singapore. https://doi.org/10.1007/978-981-15-1963-5_4

Download citation

Publish with us

Policies and ethics