Skip to main content

Circularly Polarized Luminescence of Chirally Arranged Achiral Organic Luminophores by Covalent and Supramolecular Methods

  • Chapter
  • First Online:
Circularly Polarized Luminescence of Isolated Small Organic Molecules

Abstract

Circularly polarized luminescence (CPL) produced by achiral organic luminophores is described. Achiral organic luminophores can exhibit CPL by the chiral arrangement of the achiral luminophores. Chiral arrangement of achiral luminophores can be constructed through a covalently linked chiral spacer like a binaphthyl moiety. A helical supramolecular assembly also provides chiral environment on an achiral luminophore. The helically stacked assemblies of achiral luminophores are excellent for realizing CPL of the achiral luminophore since the highly assembled structure in the helical assembly provides good CPL activity. The stimuli-responsivity of supramolecular systems provides stimuli-responsive CPL.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Bünzli J-CG, Piguet C (2005) Taking advantage of luminescent lanthanide ions. Chem Soc Rev 34:1048–1077

    Article  PubMed  CAS  Google Scholar 

  2. Kumar J et al (2015) Circularly polarized luminescence in chiral molecules and supramolecular assemblies. J Phys Chem Lett 6:3445–3452

    Article  CAS  PubMed  Google Scholar 

  3. Sánchez-Carnerero EM et al (2015) Circularly polarized luminescence from simple organic molecules. Chem Eur J 21:13488–13500

    Article  PubMed  CAS  Google Scholar 

  4. Emeis CA, Oosterhoff LJ (1967) Emission of circularly-polarised radiation by optically-active compounds. Chem Phys Lett 1:129–132

    Article  CAS  Google Scholar 

  5. Satrijo A et al (2006) Probing a conjugated polymer’s transfer of organization-dependent properties from solutions to films. J Am Chem Soc 128:9030–9031

    Article  CAS  PubMed  Google Scholar 

  6. Wilson JN et al (2002) Chiroptical properties of poly(p-phenyleneethynylene) copolymers in thin films: large g-values. J Am Chem Soc 124:6830–6831

    Article  CAS  PubMed  Google Scholar 

  7. Zhao Y et al (2016) Supramolecular chirality in achiral polyfluorene: chiral gelation, memory of chirality, and chiral sensing property. Macromolecules 49:3214–3221

    Article  CAS  Google Scholar 

  8. Dekkers HPJM, Closs LE (1976) The optical activity of low-symmetry ketones in absorption and emission. J Am Chem Soc 98:2210–2219

    Article  CAS  Google Scholar 

  9. Schippers PH, Dekkers HPJM (1983) Circular polarization of luminescence as a probe for intramolecular 1nπ∗ energy transfer in meso-diketones. J Am Chem Soc 105:145–146

    Article  CAS  Google Scholar 

  10. Schippers PH et al (1983) Circular polarization in the fluorescence of β γ-enones: distortion in the 1nπ∗ state. J Am Chem Soc 105:84–89

    Article  CAS  Google Scholar 

  11. Steinberg N et al (1981) Measurement of the optical activity of triplet-singlet transitions. The circular polarization of phosphorescence of camphorquinone and benzophenone. J Am Chem Soc 103:1636–1640

    Article  CAS  Google Scholar 

  12. Phillips KES et al (2001) Synthesis and properties of an aggregating heterocyclic helicene. J Am Chem Soc 123:11899–11907

    Article  CAS  PubMed  Google Scholar 

  13. Field JE et al (2003) Circularly polarized luminescence from bridged triarylamine helicenes. J Am Chem Soc 125:11808–11809

    Article  CAS  PubMed  Google Scholar 

  14. Nakamura K et al (2014) Enantioselective synthesis and enhanced circularly polarized luminescence of S-shaped double azahelicenes. J Am Chem Soc 136:5555–5558

    Article  CAS  PubMed  Google Scholar 

  15. Sawada Y et al (2012) Rhodium-catalyzed enantioselective synthesis, crystal structures, and photophysical properties of helically chiral 1,1′-bitriphenylenes. J Am Chem Soc 134:4080–4083

    Article  CAS  PubMed  Google Scholar 

  16. Goto K et al (2012) Intermolecular oxidative annulation of 2-aminoanthracenes to diazaacenes and aza[7]helicenes. Angew Chem Int Ed 51:10333–10336

    Article  CAS  Google Scholar 

  17. Oyama H et al (2013) Facile synthetic route to highly luminescent sila[7]helicene. Org Lett 15:2104–2107

    Article  CAS  PubMed  Google Scholar 

  18. Kaseyama T et al (2011) Hierarchical assembly of a phthalhydrazide-functionalized helicene. Angew Chem Int Ed 50:3684–3687

    Article  CAS  Google Scholar 

  19. Amako T et al (2013) Solid-state circularly polarised luminescence and circular dichroism of viscous binaphthyl compounds. RSC Adv 3:23508–23513

    Article  CAS  Google Scholar 

  20. Amako T et al (2013) A comparison of circularly polarized luminescence (CPL) and circular dichroism (CD) characteristics of four axially chiral binaphthyl-2,2′-diyl hydrogen phosphate derivatives. Tetrahedron 69:2753–2757

    Article  CAS  Google Scholar 

  21. Amako T et al (2013) Dependence of circularly polarized luminescence due to the neighboring effects of binaphthyl units with the same axial chirality. RSC Adv 3:6939–6944

    Article  CAS  Google Scholar 

  22. Kimoto T et al (2012) Control of circularly polarized luminescence by using open- and closed-type binaphthyl derivatives with the same axial chirality. Chemistry 7:2836–2841

    CAS  Google Scholar 

  23. Kinuta T et al (2011) Solid-state chiral optical properties of axially chiral binaphthyl acid derivatives. J Photochem Photobiol A Chem 220:134–138

    Article  CAS  Google Scholar 

  24. Kinuta T et al (2012) Control of circularly polarized photoluminescent property via dihedral angle of binaphthyl derivatives. Tetrahedron 68:4791–4796

    Article  CAS  Google Scholar 

  25. Kitayama Y et al (2014) Enhancing circularly polarised luminescence by extending the π-conjugation of axially chiral compounds. Org Biomol Chem 12:4342–4346

    Article  CAS  PubMed  Google Scholar 

  26. Kitayama Y et al (2015) Circularly polarized luminescence of biaryl atropisomers: subtle but significant structural dependency. RSC Adv 5:410–415

    Article  CAS  Google Scholar 

  27. Nakabayashi K et al (2014) Nonclassical dual control of circularly polarized luminescence modes of binaphthyl–pyrene organic fluorophores in fluidic and glassy media. Chem Commun 50:13228–13230

    Article  CAS  Google Scholar 

  28. Tsumatori H et al (2010) Observation of chiral aggregate growth of perylene derivative in opaque solution by circularly polarized luminescence. Org Lett 12:2362–2365

    Article  CAS  PubMed  Google Scholar 

  29. Feuillastre S et al (2016) Design and synthesis of new circularly polarized thermally activated delayed fluorescence emitters. J Am Chem Soc 138:3990–3993

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Morisaki Y et al (2014) Planar chiral tetrasubstituted [2.2]paracyclophane: optical resolution and functionalization. J Am Chem Soc 136:3350–3353

    Article  CAS  PubMed  Google Scholar 

  31. Gon M et al (2017) Enhancement and controlling the signal of circularly polarized luminescence based on a planar chiral tetrasubstituted [2.2]paracyclophane framework in aggregation system. Macromolecules 50:1790–1802

    Article  CAS  Google Scholar 

  32. De Greef TFA et al (2009) Supramolecular polymerization. Chem Rev 109:5687–5754

    Article  PubMed  CAS  Google Scholar 

  33. Haino T (2015) Supramolecular polymerization engineered with molecular recognition. Chem Rec 15:837–853

    Article  CAS  PubMed  Google Scholar 

  34. Hoeben FJM et al (2005) About supramolecular assemblies of pi-conjugated systems. Chem Rev 105:1491–1546

    Article  CAS  PubMed  Google Scholar 

  35. Sato S et al (2017) Chiral intertwined spirals and magnetic transition dipole moments dictated by cylinder helicity. Proc Natl Acad Sci U S A 114:13097–13101

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Yashima E et al (2016) Supramolecular helical systems: helical assemblies of small molecules, foldamers, and polymers with chiral amplification and their functions. Chem Rev 116:13752–13990

    Article  CAS  PubMed  Google Scholar 

  37. Gopal A et al (2012) Thermally assisted photonic inversion of supramolecular handedness. Angew Chem Int Ed 51:10505–10509

    Article  CAS  Google Scholar 

  38. Anetai H et al (2018) Circular polarized luminescence of hydrogen-bonded molecular assemblies of chiral pyrene derivatives. J Phys Chem C 122:6323–6331

    Article  CAS  Google Scholar 

  39. Ikeda T, Haino T (2017) Supramolecular polymeric assemblies of pi-conjugated molecules possessing phenylisoxazoles. Polymer 128:243–256

    Article  CAS  Google Scholar 

  40. Haino T, Saito H (2009) A new organogelator based on 1,3,5-tris(phenylisoxazolyl)benzene. Synth Met 159:821–826

    Article  CAS  Google Scholar 

  41. Tanaka M et al (2011) Self-assembly and gelation behavior of tris(phenylisoxazolyl)benzenes. J Org Chem 76:5082–5091

    Article  CAS  PubMed  Google Scholar 

  42. Ikeda T et al (2012) Circular dichroism and circularly polarized luminescence triggered by self-assembly of tris(phenylisoxazolyl) benzenes possessing a perylenebisimide moiety. Chem Commun 48:6025–6027

    Article  CAS  Google Scholar 

  43. Eryazici I et al (2008) Square-planar Pd(II), Pt(II), and Au(III) terpyridine complexes: their syntheses, physical properties, supramolecular constructs, and biomedical activities. Chem Rev 108:1834–1895

    Article  CAS  PubMed  Google Scholar 

  44. Wong KM-C, Yam VW-W (2011) Self-assembly of luminescent alkynylplatinum(II) terpyridyl complexes: modulation of photophysical properties through aggregation behavior. Acc Chem Res 44:424–434

    Article  CAS  PubMed  Google Scholar 

  45. Ikeda T et al (2015) Novel helical assembly of a Pt(II) phenylbipyridine complex directed by metal-metal interaction and aggregation-induced circularly polarized emission. Dalton Trans 44:13156–13162

    Article  CAS  PubMed  Google Scholar 

  46. Spano FC et al (2007) Probing excitation delocalization in supramolecular chiral stacks by means of circularly polarized light: experiment and modeling. J Am Chem Soc 129:7044–7054

    Article  CAS  PubMed  Google Scholar 

  47. Liu J et al (2012) What makes efficient circularly polarised luminescence in the condensed phase: aggregation-induced circular dichroism and light emission. Chem Sci 3:2737–2747

    Article  CAS  Google Scholar 

  48. Hayasaka H et al (2010) Helically π-stacked conjugated polymers bearing photoresponsive and chiral moieties in side chains: reversible photoisomerization-enforced switching between emission and quenching of circularly polarized fluorescence. Adv Funct Mater 20:1243–1250

    Article  CAS  Google Scholar 

  49. Maeda H, Bando Y (2013) Recent progress in research on stimuli-responsive circularly polarized luminescence based on pi-conjugated molecules. Pure Appl Chem 85:1967–1978

    Article  CAS  Google Scholar 

  50. Ikeda T et al (2018) A circularly polarized luminescent organogel based on a Pt(II) complex possessing phenylisoxazoles. Mater Chem Front 2:468–474

    Article  CAS  Google Scholar 

  51. Haketa Y, Maeda H (2017) Dimension-controlled ion-pairing assemblies based on π-electronic charged species. Chem Commun 53:2894–2909

    Article  CAS  Google Scholar 

  52. Maeda H et al (2011) Chemical-stimuli-controllable circularly polarized luminescence from anion-responsive pi-conjugated molecules. J Am Chem Soc 133:9266–9269

    Article  CAS  PubMed  Google Scholar 

  53. Haketa Y et al (2012) Asymmetric induction in the preparation of helical receptor-anion complexes: ion-pair formation with chiral cations. Angew Chem Int Ed 51:7967–7971

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Takeharu Haino .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Ikeda, T., Haino, T. (2020). Circularly Polarized Luminescence of Chirally Arranged Achiral Organic Luminophores by Covalent and Supramolecular Methods. In: Mori, T. (eds) Circularly Polarized Luminescence of Isolated Small Organic Molecules. Springer, Singapore. https://doi.org/10.1007/978-981-15-2309-0_9

Download citation

Publish with us

Policies and ethics