Skip to main content

Part of the book series: Springer Theses ((Springer Theses))

Abstract

Cell signaling networks that are involved in regulation of almost all cellular functions are regulated by protein posttranslational modifications (PTMs) [1].

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Choudhary C, Weinert BT, Nishida Y, Verdin E, Mann M (2014) The growing landscape of lysine acetylation links metabolism and cell signalling. Nat Rev Mol Cell Biol 15:536–550. https://doi.org/10.1038/nrm3841

    Article  CAS  PubMed  Google Scholar 

  2. Walsh C (2006) Posttranslational modification of proteins: expanding nature’s inventory. Roberts and Company Publishers, Englewood, CO

    Google Scholar 

  3. Walsh CT, Garneau-Tsodikova S, Gatto GJ Jr (2005) Protein posttranslational modifications: the chemistry of proteome diversifications. Angew Chem 44:7342–7372. https://doi.org/10.1002/anie.200501023

    Article  CAS  Google Scholar 

  4. Tan M et al (2011) Identification of 67 histone marks and histone lysine crotonylation as a new type of histone modification. Cell 146:1016–1028. https://doi.org/10.1016/j.cell.2011.08.008

  5. Zhang Z, Tan M, Xie Z, Dai L, Chen Y, Zhao Y (2011) Identification of lysine succinylation as a new post-translational modification. Nat Chem Biol 7:58–63. https://doi.org/10.1038/nchembio.495

    Article  CAS  PubMed  Google Scholar 

  6. Colak G et al (2013) Identification of lysine succinylation substrates and the succinylation regulatory enzyme CobB in Escherichia coli. Mol Cell Proteomics MCP 12:3509–3520. https://doi.org/10.1074/mcp.M113.031567

    Article  CAS  PubMed  Google Scholar 

  7. Du J et al (2011) Sirt5 is a NAD-dependent protein lysine demalonylase and desuccinylase. Science 334:806–809. https://doi.org/10.1126/science.1207861

  8. Peng C et al (2011) The first identification of lysine malonylation substrates and its regulatory enzyme. Mol Cell Proteomics MCP 10(M111):012658. https://doi.org/10.1074/mcp.M111.012658

    Article  CAS  PubMed  Google Scholar 

  9. Verdin E, Ott M (2015) 50 years of protein acetylation: from gene regulation to epigenetics, metabolism and beyond. Nat Rev Mol Cell Biol 16:258–264. https://doi.org/10.1038/nrm3931

  10. Tan M et al (2014) Lysine glutarylation is a protein posttranslational modification regulated by SIRT5. Cell Metab 19:605–617. https://doi.org/10.1016/j.cmet.2014.03.014

  11. Brownell JE, Allis CD (1995) An activity gel assay detects a single, catalytically active histone acetyltransferase subunit in Tetrahymena macronuclei. Proc Natl Acad Sci U S A 92:6364–6368

    Google Scholar 

  12. Yang YY, Ascano JM, Hang HC (2010) Bioorthogonal chemical reporters for monitoring protein acetylation. J Am Chem Soc 132:3640–3641. https://doi.org/10.1021/ja908871t

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Thinon E, Hang HC (2015) Chemical reporters for exploring protein acylation. Biochem Soc Trans 43:253–261. https://doi.org/10.1042/BST20150004

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Bao X, Zhao Q, Yang T, Fung YM, Li XD (2013) A chemical probe for lysine malonylation. Angew Chem 52:4883–4886. https://doi.org/10.1002/anie.201300252

    Article  CAS  Google Scholar 

  15. Wilson JP, Raghavan AS, Yang YY, Charron G, Hang HC (2011) Proteomic analysis of fatty-acylated proteins in mammalian cells with chemical reporters reveals S-acylation of histone H3 variants. Mol Cell Proteomics MCP 10:M110 001198. https://doi.org/10.1074/mcp.m110.001198

  16. Xie Z et al (2012) Lysine succinylation and lysine malonylation in histones. Mol Cell Proteomics MCP 11:100–107. https://doi.org/10.1074/mcp.M111.015875

    Article  CAS  PubMed  Google Scholar 

  17. Fidlerova H, Kalinova J, Blechova M, Velek J, Raska I (2009) A new epigenetic marker: the replication-coupled, cell cycle-dependent, dual modification of the histone H4 tail. J Struct Biol 167:76–82. https://doi.org/10.1016/j.jsb.2009.03.015

  18. Ye J et al (2005) Histone H4 lysine 91 acetylation a core domain modification associated with chromatin assembly. Mol Cell 18:123–130

    Google Scholar 

  19. Masumoto H, Hawke D, Kobayashi R, Verreault A (2005) A role for cell-cycle-regulated histone H3 lysine 56 acetylation in the DNA damage response. Nature 436:294–298. https://doi.org/10.1038/nature03714

  20. Ozdemir A, Spicuglia S, Lasonder E, Vermeulen M, Campsteijn C, Stunnenberg HG, Logie C (2005) Characterization of lysine 56 of histone H3 as an acetylation site in Saccharomyces cerevisiae. J Biol Chem 280:25949–25952. https://doi.org/10.1074/jbc.c500181200

  21. Zhang L, Eugeni EE, Parthun MR, Freitas MA (2003) Identification of novel histone post-translational modifications by peptide mass fingerprinting. Chromosoma 112:77–86. https://doi.org/10.1007/s00412-003-0244-6

    Article  CAS  PubMed  Google Scholar 

  22. Manohar M et al (2009) Acetylation of histone H3 at the nucleosome dyad alters DNA-histone binding. J Biol Chem 284:23312–23321. https://doi.org/10.1074/jbc.m109.003202

  23. Recht J et al (2006) Histone chaperone Asf1 is required for histone H3 lysine 56 acetylation, a modification associated with S phase in mitosis and meiosis. Proc Natl Acad Sci U S A 103:6988–6993. https://doi.org/10.1073/pnas.0601676103

  24. Han J, Zhou H, Li Z, Xu RM, Zhang Z (2007) Acetylation of lysine 56 of histone H3 catalyzed by RTT109 and regulated by ASF1 is required for replisome integrity. J Biol Chem 282:28587–28596. https://doi.org/10.1074/jbc.m702496200

  25. Hiraga S, Botsios S, Donaldson AD (2008) Histone H3 lysine 56 acetylation by Rtt109 is crucial for chromosome positioning. J Cell Biol 183:641–651. https://doi.org/10.1083/jcb.200806065

  26. Shechter D, Dormann HL, Allis CD, Hake SB (2007) Extraction, purification and analysis of histones. Nat Protoc 2:1445–1457. https://doi.org/10.1038/nprot.2007.202

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiucong Bao .

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Bao, X. (2020). Identification of Histone Lysine Glutarylation. In: Study on the Cellular Regulation and Function of Lysine Malonylation, Glutarylation and Crotonylation. Springer Theses. Springer, Singapore. https://doi.org/10.1007/978-981-15-2509-4_3

Download citation

Publish with us

Policies and ethics