Skip to main content

Green-Nanotechnology for Precision and Sustainable Agriculture

  • Chapter
  • First Online:
Biogenic Nano-Particles and their Use in Agro-ecosystems

Abstract

Nanotechnology has aroused as a field that has resulted in paradigm shift in agronomic practices and given a true essence to sustainable agriculture. Nanomaterials belonging in the agriculture domain are of vast variety and had find applications in crop production, soil and water management, diagnostic measurements, controlled use of chemicals, and plant protection owing to their tailored properties, small size, and surface to volume ratio. The contribution of nanotechnology in precision farming through the development of nano-based fertilizers, pesticides, herbicides, and early pathogen diagnostic can be considered as a breakthrough. The chapter will focus on the aspects of nanotechnology that have revolutionized the agriculture field, leading to better environmental management and sustainable practices.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abdel-Aziz HM, Hasaneen MN, Omer AM (2016) Nano chitosan-NPK fertilizer enhances the growth and productivity of wheat plants grown in sandy soil. Span J Agric Res 14(1):0902

    Google Scholar 

  • Abdel-Gawad SA, Baraka AM, El-Shafei MM, Mahmoud AS (2016) Effects of nano zero valent iron and entrapped nano zero valent iron in alginate polymer on poly aromatic hydrocarbons removal. J Environ Biotechnol Res 5:18–28

    Google Scholar 

  • Abd-Elsalam KA (2012) Nanoplatforms for plant pathogenic fungi management. Fungal Genom Biol 2:e107

    Google Scholar 

  • Abd-Elsalam KA, Prasad R (2018) Nanobiotechnology applications in plant protection. Springer, Cham

    Google Scholar 

  • Abdennouri M, Baâlala M, Galadi A, El Makhfouk M, Bensitel M, Nohair K et al (2016) Photocatalytic degradation of pesticides by titanium dioxide and titanium pillared purified clays. Arab J Chem 9:S313–S318

    CAS  Google Scholar 

  • Ahmadi M, Ramezani Motlagh H, Jaafarzadeh N, Mostoufi A, Saeedi R, Barzegar G, Jorfi S (2017) Enhanced photocatalytic degradation of tetracycline and real pharmaceutical wastewater using MWCNT/TiO2 nano-composite. J Environ Manag 186:55–63. https://doi.org/10.1016/j.jenvman.2016.09.088

    Article  CAS  Google Scholar 

  • Alamer S, Chinnappan R, Zourob M (2017) Development of rapid immuno-based nanosensors for the detection of pathogenic bacteria in poultry processing plants. Procedia Technol 27:23–26

    Google Scholar 

  • Ali MA, Rehman I, Iqbal A, Din S, Rao AQ, Latif A et al (2014) Nanotechnology, a new frontier in agriculture. Adv Life Sci 1(3):129–138

    Google Scholar 

  • Ali I, Alharbi OM, ALOthman ZA, Al-Mohaimeed AM, Alwarthan A (2019) Modeling of fenuron pesticide adsorption on CNTs for mechanistic insight and removal in water. Environ Res 170:389–397

    CAS  PubMed  Google Scholar 

  • Alighardashi A, Esfahani ZK, Najafi F, Afkhami A, Hassani N (2018) Development and application of graphene oxide/poly-amidoamines dendrimers (GO/PAMAMs) nano-composite for nitrate removal from aqueous solutions. Environ Process 5(1):41–64

    CAS  Google Scholar 

  • Al-Qahtani KM (2017) Cadmium removal from aqueous solution by green synthesis zero valent silver nanoparticles with Benjamina leaves extract. Egypt J Aquat Res 43(4):269–274

    Google Scholar 

  • Ambika N, Meharoofa F, Menezes FE, Deepika M, Sandesha Karanth PK (2019) Agro-amigo: agro based web marketing and automated irrigation. Perspect Commun Embed Syst Signal Process PiCES 2(11):286–290

    Google Scholar 

  • Arancibia-Miranda N, Baltazar SE, García A, Romero AH, Rubio MA, Altbir D (2014) Lead removal by nano-scale zero valent iron: surface analysis and pH effect. Mater Res Bull 59:341–348

    CAS  Google Scholar 

  • Baker S, Rakshith D, Kavitha KS, Santosh P, Kavitha HU, Rao Y, Satish S (2013) Plants: emerging as nanofactories towards facile route in synthesis of nanoparticles. Bioimpacts 3(3):111

    CAS  PubMed  PubMed Central  Google Scholar 

  • Bakhori N, Yusof N, Abdullah A, Hussein M (2013) Development of a fluorescence resonance energy transfer (fret)-based DNA biosensor for detection of synthetic oligonucleotide of ganoderma boninense. Biosensors 3(4):419–428

    CAS  PubMed  Google Scholar 

  • Bakhtiari M, Moaveni P, Sani B (2015) The effect of iron nanoparticles spraying time and concentration on wheat. In: Paper presented at the biological forum

    Google Scholar 

  • Bao S, Li K, Ning P, Peng J, Jin X, Tang L (2017) Highly effective removal of mercury and lead ions from wastewater by mercaptoamine-functionalised silica-coated magnetic nano-adsorbents: behaviours and mechanisms. Appl Surf Sci 393:457–466

    CAS  Google Scholar 

  • Bhattacharyya R, Ray SK (2015) Removal of congo red and methyl violet from water using nano clay filled composite hydrogels of poly acrylic acid and polyethylene glycol. Chem Eng J 260:269–283. https://doi.org/10.1016/j.cej.2014.08.030

    Article  CAS  Google Scholar 

  • Bokare V, Murugesan K, Kim J-H, Kim E-J, Chang Y-S (2012) Integrated hybrid treatment for the remediation of 2,3,7,8-tetrachlorodibenzo-p-dioxin. Sci Total Environ 435–436:563–566. https://doi.org/10.1016/j.scitotenv.2012.07.079

    Article  CAS  PubMed  Google Scholar 

  • Boparai HK, Joseph M, O’Carroll DM (2011) Kinetics and thermodynamics of cadmium ion removal by adsorption onto nano zerovalent iron particles. J Hazard Mater 186(1):458–465

    CAS  PubMed  Google Scholar 

  • Bowles M, Lu J (2014) Removing the blinders: a literature review on the potential of nanoscale technologies for the management of supply chains. Technol Forecast Soc Chang 82:190–198

    Google Scholar 

  • Bozorgpour F, Ramandi HF, Jafari P, Samadi S, Yazd SS, Aliabadi M (2016) Removal of nitrate and phosphate using chitosan/Al2O3/Fe3O4 composite nanofibrous adsorbent: comparison with chitosan/Al2O3/Fe3O4 beads. Int J Biol Macromol 93:557–565. https://doi.org/10.1016/j.ijbiomac.2016.09.015

    Article  CAS  PubMed  Google Scholar 

  • Cai Y, Li C, Wu D, Wang W, Tan F, Wang X et al (2017) Highly active MgO nanoparticles for simultaneous bacterial inactivation and heavy metal removal from aqueous solution. Chem Eng J 312:158–166. https://doi.org/10.1016/j.cej.2016.11.134

    Article  CAS  Google Scholar 

  • Cao Y, Zhang S, Zhong Q, Wang G, Xu X, Li T et al (2018) Feasibility of nanoscale zero-valent iron to enhance the removal efficiencies of heavy metals from polluted soils by organic acids. Ecotoxicol Environ Saf 162:464–473. https://doi.org/10.1016/j.ecoenv.2018.07.036

    Article  CAS  PubMed  Google Scholar 

  • Cesarino I, Moraes FC, Lanza MR, Machado SA (2012) Electrochemical detection of carbamate pesticides in fruit and vegetables with a biosensor based on acetylcholinesterase immobilised on a composite of polyaniline–carbon nanotubes. Food Chem 135(3):873–879

    CAS  PubMed  Google Scholar 

  • Chang M-C, Shu H-Y, Hsieh W-P, Wang M-C (2007) Remediation of soil contaminated with pyrene using ground nanoscale zero-valent iron. J Air Waste Manage Assoc 57(2):221–227

    Google Scholar 

  • Chartuprayoon N, Rheem Y, Ng JC, Nam J, Chen W, Myung NV (2013) Polypyrrole nanoribbon based chemiresistive immunosensors for viral plant pathogen detection. Anal Methods 5(14):3497–3502

    CAS  Google Scholar 

  • Chen H (2018) Metal based nanoparticles in agricultural system: behavior, transport, and interaction with plants. Chem Spec Bioavailab 30(1):123–134

    CAS  Google Scholar 

  • Chen L, Wu H-X, Wang T-J, Jin Y, Zhang Y, Dou X-M (2009) Granulation of Fe–Al–Ce nano-adsorbent for fluoride removal from drinking water by spray coating on sand in a fluidized bed. Powder Technol 193(1):59–64

    CAS  Google Scholar 

  • Chen J, Wang W, Xu Y, Zhang X (2010) Slow-release formulation of a new biological pesticide, pyoluteorin, with mesoporous silica. J Agric Food Chem 59(1):307–311

    PubMed  Google Scholar 

  • Chen L, He B-Y, He S, Wang T-J, Su C-L, Jin Y (2012) Fe—Ti oxide nano-adsorbent synthesized by co-precipitation for fluoride removal from drinking water and its adsorption mechanism. Powder Technol 227:3–8

    CAS  Google Scholar 

  • Chen D, Gao B, Wang H, Yang K (2016) Effective removal of high concentration of phosphate by starch-stabilized nanoscale zerovalent iron (SNZVI). J Taiwan Inst Chem Eng 61:181–187. https://doi.org/10.1016/j.jtice.2015.12.007

    Article  CAS  Google Scholar 

  • Chen C, Feng S, Zhou M, Ji C, Que L, Wang W (2019) Development of a structure-switching aptamer-based nanosensor for salicylic acid detection. Biosens Bioelectron 140:111342

    CAS  PubMed  Google Scholar 

  • Dahrazma B, Naghedinia A, Gorji HG, Saghravani S (2019) Morphological and physiological responses of Cucumis sativus L. to water with micro-nanobubbles. J Agric Sci Technol 21(1):181–192

    Google Scholar 

  • Davarpanah S, Tehranifar A, Davarynejad G, Abadía J, Khorasani R (2016) Effects of foliar applications of zinc and boron nano-fertilizers on pomegranate (Punica granatum cv. Ardestani) fruit yield and quality. Sci Hortic 210:57–64

    CAS  Google Scholar 

  • Dehghani MH, Kamalian S, Shayeghi M, Yousefi M, Heidarinejad Z, Agarwal S, Gupta VK (2019) High-performance removal of diazinon pesticide from water using multi-walled carbon nanotubes. Microchem J 145:486–491

    CAS  Google Scholar 

  • Delfani M, Baradarn Firouzabadi M, Farrokhi N, Makarian H (2014) Some physiological responses of black-eyed pea to iron and magnesium nanofertilizers. Commun Soil Sci Plant Anal 45(4):530–540

    CAS  Google Scholar 

  • Derbalah A, Elsharkawy MM, Hamza A, El-Shaer A (2019) Resistance induction in cucumber and direct antifungal activity of zirconium oxide nanoparticles against Rhizoctonia solani. Pestic Biochem Physiol 157:230–236

    CAS  PubMed  Google Scholar 

  • Díaz-Blancas V, Medina D, Padilla-Ortega E, Bortolini-Zavala R, Olvera-Romero M, Luna-Bárcenas G (2016) Nanoemulsion formulations of fungicide tebuconazole for agricultural applications. Molecules 21(10):1271

    PubMed Central  Google Scholar 

  • Dien NT, De Windt W, Buekens A, Chang MB (2013) Application of bimetallic iron (BioCAT slurry) for pentachlorophenol removal from sandy soil. J Hazard Mater 252:83–90

    PubMed  Google Scholar 

  • Ditta A (2012) How helpful is nanotechnology in agriculture? Adv Nat Sci Nanosci Nanotechnol 3(3):033002

    Google Scholar 

  • Dubas ST, Pimpan V (2008) Humic acid assisted synthesis of silver nanoparticles and its application to herbicide detection. Mater Lett 62(17):2661–2663. https://doi.org/10.1016/j.matlet.2008.01.033

    Article  CAS  Google Scholar 

  • Duhan JS, Kumar R, Kumar N, Kaur P, Nehra K, Duhan S (2017) Nanotechnology: the new perspective in precision agriculture. Biotechnol Rep 15:11–23

    Google Scholar 

  • Durán N, Marcato PD, Durán M, Yadav A, Gade A, Rai M (2011) Mechanistic aspects in the biogenic synthesis of extracellular metal nanoparticles by peptides, bacteria, fungi, and plants. Appl Microbiol Biotechnol 90(5):1609–1624. https://doi.org/10.1007/s00253-011-3249-8

    Article  CAS  PubMed  Google Scholar 

  • El-Temsah YS, Joner EJ (2013) Effects of nano-sized zero-valent iron (nZVI) on DDT degradation in soil and its toxicity to collembola and ostracods. Chemosphere 92(1):131–137

    CAS  PubMed  Google Scholar 

  • Fang Y, Umasankar Y, Ramasamy RP (2014) Electrochemical detection of p-ethylguaiacol, a fungi infected fruit volatile using metal oxide nanoparticles. Analyst 139(15):3804–3810

    CAS  PubMed  Google Scholar 

  • FAO (2017) World fertilizer trends and outlook to 2020. Retrieved from Rome

    Google Scholar 

  • Fayazi M, Ghanei-Motlagh M, Taher MA (2015) The adsorption of basic dye (Alizarin red S) from aqueous solution onto activated carbon/γ-Fe2O3 nano-composite: kinetic and equilibrium studies. Mater Sci Semicond Process 40:35–43. https://doi.org/10.1016/j.mssp.2015.06.044

    Article  CAS  Google Scholar 

  • Figovsky O, Beilin D (2017) Green nanotechnology. Pan Stanford

    Google Scholar 

  • Ge L, Wang W, Peng Z, Tan F, Wang X, Chen J, Qiao X (2018) Facile fabrication of Fe@MgO magnetic nanocomposites for efficient removal of heavy metal ion and dye from water. Powder Technol 326:393–401. https://doi.org/10.1016/j.powtec.2017.12.003

    Article  CAS  Google Scholar 

  • Ghahremani D, Mobasherpour I, Salahi E, Ebrahimi M, Manafi S, Keramatpour L (2017) Potential of nano crystalline calcium hydroxyapatite for Tin(II) removal from aqueous solutions: equilibria and kinetic processes. Arab J Chem 10:S461–S471. https://doi.org/10.1016/j.arabjc.2012.10.006

    Article  CAS  Google Scholar 

  • Ghasemi E, Heydari A, Sillanpää M (2017) Superparamagnetic Fe3O4@ EDTA nanoparticles as an efficient adsorbent for simultaneous removal of Ag (I), Hg (II), Mn (II), Zn (II), Pb (II) and Cd (II) from water and soil environmental samples. Microchem J 131:51–56

    CAS  Google Scholar 

  • Goswami A, Roy I, Sengupta S, Debnath N (2010) Novel applications of solid and liquid formulations of nanoparticles against insect pests and pathogens. Thin Solid Films 519(3):1252–1257

    CAS  Google Scholar 

  • Grillo R, Pereira AE, Nishisaka CS, de Lima R, Oehlke K, Greiner R, Fraceto LF (2014) Chitosan/tripolyphosphate nanoparticles loaded with paraquat herbicide: an environmentally safer alternative for weed control. J Hazard Mater 278:163–171

    CAS  PubMed  Google Scholar 

  • Gueye MT, Petrucci E, Di Palma L (2015) Chemical reduction of hexavalent chromium (VI) in soil slurry by nano zero valent iron. Chem Eng Trans 43:655–660

    Google Scholar 

  • Gueye MT, Di Palma L, Allahverdiyeva G, Bavasso I, Petrucci E, Stoller M, Vilardi G (2016) The influence of heavy metals and organic matter on hexavalent chromium reduction by nano zero valent iron in soil. Chem Eng Trans 47:289–294

    Google Scholar 

  • Guo M, Liu M, Hu Z, Zhan F, Wu L (2005) Preparation and properties of a slow release NP compound fertilizer with superabsorbent and moisture preservation. J Appl Polym Sci 96(6):2132–2138

    CAS  Google Scholar 

  • Guo H, White JC, Wang Z, Xing B (2018) Nano-enabled fertilizers to control the release and use efficiency of nutrients. Curr Opin Environ Sci Health 6:77–83

    Google Scholar 

  • Hafiane A, Lemordant D, Dhahbi M (2000) Removal of hexavalent chromium by nanofiltration. Desalination 130(3):305–312. https://doi.org/10.1016/S0011-9164(00)00094-1

    Article  CAS  Google Scholar 

  • Hasaneen M, Abdel-aziz HMM, Omer AM (2016) Effect of foliar application of engineered nanomaterials: carbon nanotubes NPK and chitosan nanoparticles NPK fertilizer on the growth of French bean plant. Biochem Biotechnol Res 4:68–76

    Google Scholar 

  • Hayles J, Johnson L, Worthley C, Losic D (2017) Nanopesticides: a review of current research and perspectives. In: New pesticides and soil sensors. Elsevier, London, pp 193–225

    Google Scholar 

  • He Y, Huang G, An C, Huang J, Zhang P, Chen X, Xin X (2018) Reduction of Escherichia coli using ceramic disk filter decorated by nano-TiO2: a low-cost solution for household water purification. Sci Total Environ 616–617:1628–1637. https://doi.org/10.1016/j.scitotenv.2017.10.149

    Article  CAS  PubMed  Google Scholar 

  • Hidayat R, Fadillah G, Chasanah U, Wahyuningsih S, Ramelan AH (2015) Effectiveness of urea nanofertilizer based aminopropyltrimethoxysilane (APTMS)-zeolite as slow release fertilizer system. Afr J Agric Res 10(14):1785–1788

    CAS  Google Scholar 

  • Ho VA, Le PT, Nguyen TP, Nguyen CK, Nguyen VT, Tran NQ (2015) Silver core-shell nanoclusters exhibiting strong growth inhibition of plant-pathogenic fungi. J Nanomater 16(1):13

    Google Scholar 

  • Huang S-H, Chen D-H (2009) Rapid removal of heavy metal cations and anions from aqueous solutions by an amino-functionalized magnetic nano-adsorbent. J Hazard Mater 163(1):174–179. https://doi.org/10.1016/j.jhazmat.2008.06.075

    Article  CAS  PubMed  Google Scholar 

  • Huang J, Huang G, An C, He Y, Yao Y, Zhang P, Shen J (2018) Performance of ceramic disk filter coated with nano ZnO for removing Escherichia coli from water in small rural and remote communities of developing regions. Environ Pollut 238:52–62. https://doi.org/10.1016/j.envpol.2018.03.008

    Article  CAS  PubMed  Google Scholar 

  • Huong P-T, Lee B-K, Kim J (2016) Improved removal of 2-chlorophenol by a synthesized Cu-nano zeolite. Process Saf Environ Prot 100:272–280. https://doi.org/10.1016/j.psep.2016.02.002

    Article  CAS  Google Scholar 

  • Iravani S (2011) Green synthesis of metal nanoparticles using plants. Green Chem 13(10):2638–2650

    CAS  Google Scholar 

  • Jabeen H, Kemp KC, Chandra V (2013) Synthesis of nano zerovalent iron nanoparticles–graphene composite for the treatment of lead contaminated water. J Environ Manag 130:429–435

    CAS  Google Scholar 

  • Janmohammadi M, Pornour N, Javanmard A, Sabaghnia N (2016) Effects of bio-organic, conventional and nanofertilizers on growth, yield and quality of potato in cold steppe/Bioorganinių, tradicinių ir nanotrąšų poveikis bulvių augimui, derliui ir kokybei šaltojoje stepėje. Botanica Lithuanica 22(2):133–144

    Google Scholar 

  • Jha AK, Prasad K, Prasad K, Kulkarni A (2009) Plant system: nature’s nanofactory. Colloids Surf B Biointerfaces 73(2):219–223

    CAS  PubMed  Google Scholar 

  • Jiang LC, Basri M, Omar D, Rahman MBA, Salleh AB, Rahman RNZRA, Selamat A (2012) Green nano-emulsion intervention for water-soluble glyphosate isopropylamine (IPA) formulations in controlling Eleusine indica (E. indica). Pestic Biochem Physiol 102(1):19–29

    CAS  Google Scholar 

  • Jiang H, Chen P, Luo S, Tu X, Cao Q, Shu M (2013) Synthesis of novel nanocomposite Fe3O4/ZrO2/chitosan and its application for removal of nitrate and phosphate. Appl Surf Sci 284:942–949. https://doi.org/10.1016/j.apsusc.2013.04.013

    Article  CAS  Google Scholar 

  • Jin Y, Liu W, Li X-l, Shen S-g, Liang S-x, Liu C, Shan L (2016) Nano-hydroxyapatite immobilized lead and enhanced plant growth of ryegrass in a contaminated soil. Ecol Eng 95:25–29

    Google Scholar 

  • Jokar M, Safaralizadeh MH, Hadizadeh F, Rahmani F, Kalani MR (2016) Design and evaluation of an apta-nano-sensor to detect Acetamiprid in vitro and in silico. J Biomol Struct Dyn 34(11):2505–2517

    CAS  PubMed  Google Scholar 

  • Jordan CF (2013) An ecosystem approach to sustainable agriculture: energy use efficiency in the American South. Springer, Dordrecht

    Google Scholar 

  • Jorfi S, Rezaee A, Moheb-ali G-a, alah Jaafarzadeh N (2013) Pyrene removal from contaminated soils by modified Fenton oxidation using iron nano particles. J Environ Health Sci Eng 11(1):17

    PubMed  PubMed Central  Google Scholar 

  • Joshi P, Manocha S (2017) Kinetic and thermodynamic studies of the adsorption of copper ions on hydroxyapatite nanoparticles. Mater Today Proc 4(9):10455–10459. https://doi.org/10.1016/j.matpr.2017.06.399

    Article  Google Scholar 

  • Kah M, Hofmann T (2014) Nanopesticide research: current trends and future priorities. Environ Int 63:224–235

    CAS  PubMed  Google Scholar 

  • Karimi B, Khanaki S, Ma’mani L, Khezri SM, Karami A (2018) Efficient removal of organophosphate pesticide imidacloprid from water samples by modified magnetic-silica core-shell nanoparticles as a recoverable nano-adsorbent. J Sch Public Health Inst Public Health Res 15(4):389–400

    Google Scholar 

  • Kashyap PL, Kumar S, Srivastava AK (2017) Nanodiagnostics for plant pathogens. Environ Chem Lett 15(1):7–13

    CAS  Google Scholar 

  • Kataria N, Garg VK (2017) Removal of congo red and brilliant green dyes from aqueous solution using flower shaped ZnO nanoparticles. J Environ Chem Eng 5(6):5420–5428. https://doi.org/10.1016/j.jece.2017.10.035

    Article  CAS  Google Scholar 

  • Kaushal M, Wani SP (2017) Nanosensors: frontiers in precision agriculture. In: Nanotechnology. Springer, Singapore, pp 279–291

    Google Scholar 

  • Khalifa NS, Hasaneen MN (2018) The effect of chitosan–PMAA–NPK nanofertilizer on Pisum sativum plants. 3 Biotech 8(4):193

    PubMed  PubMed Central  Google Scholar 

  • Khalil AM, Eljamal O, Amen TW, Sugihara Y, Matsunaga N (2017) Optimized nano-scale zero-valent iron supported on treated activated carbon for enhanced nitrate and phosphate removal from water. Chem Eng J 309:349–365

    CAS  Google Scholar 

  • Khandelwal N, Barbole RS, Banerjee SS, Chate GP, Biradar AV, Khandare JJ, Giri AP (2016) Budding trends in integrated pest management using advanced micro-and nano-materials: challenges and perspectives. J Environ Manag 184:157–169

    CAS  Google Scholar 

  • Khani R, Sobhani S, Beyki MH (2016) Highly selective and efficient removal of lead with magnetic nano-adsorbent: multivariate optimization, isotherm and thermodynamic studies. J Colloid Interface Sci 466:198–205. https://doi.org/10.1016/j.jcis.2015.12.027

    Article  CAS  PubMed  Google Scholar 

  • Khiyami MA, Almoammar H, Awad YM, Alghuthaymi MA, Abd-Elsalam KA (2014) Plant pathogen nanodiagnostic techniques: forthcoming changes? Biotechnol Biotechnol Equip 28(5):775–785

    PubMed  PubMed Central  Google Scholar 

  • Khoshnam F, Zargar B, Moghadam MR (2019) Adsorption and removal of ametryn using graphene oxide nano-sheets from farm waste water and optimization using response surface methodology. J Iran Chem Soc 16(7):1383–1390

    CAS  Google Scholar 

  • Khot LR, Sankaran S, Maja JM, Ehsani R, Schuster EW (2012) Applications of nanomaterials in agricultural production and crop protection: a review. Crop Prot 35:64–70

    CAS  Google Scholar 

  • Kong L, Zhu Y, Wang M, Li Z, Tan Z, Xu R et al (2016) Simultaneous reduction and adsorption for immobilization of uranium from aqueous solution by nano-flake Fe-SC. J Hazard Mater 320:435–441

    CAS  PubMed  Google Scholar 

  • Kottegoda N, Munaweera I, Madusanka N, Karunaratne V (2011) A green slow-release fertilizer composition based on urea-modified hydroxyapatite nanoparticles encapsulated wood. Curr Sci 101(1):73–78

    CAS  Google Scholar 

  • Kottegoda N, Sandaruwan C, Priyadarshana G, Siriwardhana A, Rathnayake UA, Berugoda Arachchige DM et al (2017) Urea-hydroxyapatite nanohybrids for slow release of nitrogen. ACS Nano 11(2):1214–1221. https://doi.org/10.1021/acsnano.6b07781

    Article  CAS  PubMed  Google Scholar 

  • Kuang L, Liu Y, Fu D, Zhao Y (2017) FeOOH-graphene oxide nanocomposites for fluoride removal from water: acetate mediated nano FeOOH growth and adsorption mechanism. J Colloid Interface Sci 490:259–269

    CAS  PubMed  Google Scholar 

  • Kumar V, Talreja N, Deva D, Sankararamakrishnan N, Sharma A, Verma N (2011) Development of bi-metal doped micro-and nano multi-functional polymeric adsorbents for the removal of fluoride and arsenic (V) from wastewater. Desalination 282:27–38

    CAS  Google Scholar 

  • Kumar RS, Shiny P, Anjali C, Jerobin J, Goshen KM, Magdassi S et al (2013) Distinctive effects of nano-sized permethrin in the environment. Environ Sci Pollut Res 20(4):2593–2602

    Google Scholar 

  • Kumar A, Naushad M, Rana A, Inamuddin, Preeti, Sharma G et al (2017a) ZnSe-WO3 nano-hetero-assembly stacked on Gum ghatti for photo-degradative removal of Bisphenol A: symbiose of adsorption and photocatalysis. Int J Biol Macromol 104:1172–1184. https://doi.org/10.1016/j.ijbiomac.2017.06.116

    Article  CAS  PubMed  Google Scholar 

  • Kumar S, Bhanjana G, Sharma A, Dilbaghi N, Sidhu M, Kim K-H (2017b) Development of nanoformulation approaches for the control of weeds. Sci Total Environ 586:1272–1278

    CAS  PubMed  Google Scholar 

  • Kumar R, Ashfaq M, Verma N (2018) Synthesis of novel PVA–starch formulation-supported Cu–Zn nanoparticle carrying carbon nanofibers as a nanofertilizer: controlled release of micronutrients. J Mater Sci 53(10):7150–7164. https://doi.org/10.1007/s10853-018-2107-9

    Article  CAS  Google Scholar 

  • Lateef A, Nazir R, Jamil N, Alam S, Shah R, Khan MN, Saleem M (2016) Synthesis and characterization of zeolite based nano–composite: an environment friendly slow release fertilizer. Microporous Mesoporous Mater 232:174–183

    CAS  Google Scholar 

  • Lateef A, Nazir R, Jamil N, Alam S, Shah R, Khan MN, Saleem M (2019) Synthesis and characterization of environmental friendly corncob biochar based nano-composite–A potential slow release nano-fertilizer for sustainable agriculture. Environ Nanotechnol Monit Manag 11:100212

    Google Scholar 

  • Li ZZ, Chen JF, Liu F, Liu AQ, Wang Q, Sun HY, Wen LX (2007) Study of UV-shielding properties of novel porous hollow silica nanoparticle carriers for avermectin. Pest Manag Sci Former Pestic Sci 63(3):241–246

    CAS  Google Scholar 

  • Li X, Xu H, Chen Z-S, Chen G (2011) Biosynthesis of nanoparticles by microorganisms and their applications. J Nanomater 2011:1–16

    Google Scholar 

  • Li Q, Chen X, Zhuang J, Chen X (2016) Decontaminating soil organic pollutants with manufactured nanoparticles. Environ Sci Pollut Res 23(12):11533–11548

    CAS  Google Scholar 

  • Liang Z, Zhao Z, Sun T, Shi W, Cui F (2017) Enhanced adsorption of the cationic dyes in the spherical CuO/meso-silica nano composite and impact of solution chemistry. J Colloid Interface Sci 485:192–200. https://doi.org/10.1016/j.jcis.2016.09.028

    Article  CAS  PubMed  Google Scholar 

  • Liu G, Lin Y (2005) Electrochemical sensor for organophosphate pesticides and nerve agents using zirconia nanoparticles as selective sorbents. Anal Chem 77(18):5894–5901. https://doi.org/10.1021/ac050791t

    Article  CAS  PubMed  Google Scholar 

  • Liu R, Zhao D (2007) In situ immobilization of Cu(II) in soils using a new class of iron phosphate nanoparticles. Chemosphere 68(10):1867–1876. https://doi.org/10.1016/j.chemosphere.2007.03.010

    Article  CAS  PubMed  Google Scholar 

  • Liu S, Yuan L, Yue X, Zheng Z, Tang Z (2008) Recent advances in nanosensors for organophosphate pesticide detection. Adv Powder Technol 19(5):419–441. https://doi.org/10.1016/S0921-8831(08)60910-3

    Article  CAS  Google Scholar 

  • Liu Y, Wei F, Wang Y, Zhu G (2011) Studies on the formation of bifenthrin oil-in-water nano-emulsions prepared with mixed surfactants. Colloids Surf A Physicochem Eng Asp 389(1–3):90–96

    CAS  Google Scholar 

  • Liu Y, Zhou Y, Wang T, Pan J, Zhou B, Muhammad T et al (2019) Micro-nano bubble water oxygation: synergistically improving irrigation water use efficiency, crop yield and quality. J Clean Prod 222:835–843

    CAS  Google Scholar 

  • Lu J, Liu D, Hao J, Zhang G, Lu B (2015) Phosphate removal from aqueous solutions by a nano-structured Fe–Ti bimetal oxide sorbent. Chem Eng Res Des 93:652–661

    CAS  Google Scholar 

  • Madbouly AK, Abdel-Aziz MS, Abdel-Wahhab MA (2017) Biosynthesis of nanosilver using chaetomium globosum and its application to control fusarium wilt of tomato in the greenhouse. IET Nanobiotechnol 11(6):702–708

    Google Scholar 

  • Mahmoud ME, Abou Kana MTH, Hendy AA (2015a) Synthesis and implementation of nano-chitosan and its acetophenone derivative for enhanced removal of metals. Int J Biol Macromol 81:672–680. https://doi.org/10.1016/j.ijbiomac.2015.08.063

    Article  CAS  PubMed  Google Scholar 

  • Mahmoud ME, Nabil GM, Mahmoud SME (2015b) High performance nano-zirconium silicate adsorbent for efficient removal of copper (II), cadmium (II) and lead (II). J Environ Chem Eng 3(2):1320–1328. https://doi.org/10.1016/j.jece.2014.11.027

    Article  CAS  Google Scholar 

  • Mahmoud ME, Fekry NA, El-Latif MMA (2016) Nanocomposites of nanosilica-immobilized-nanopolyaniline and crosslinked nanopolyaniline for removal of heavy metals. Chem Eng J 304:679–691. https://doi.org/10.1016/j.cej.2016.06.110

    Article  CAS  Google Scholar 

  • Mahmoud ME, Khalifa MA, El Wakeel YM, Header MS, Abdel-Fattah TM (2017) Engineered nano-magnetic iron oxide-urea-activated carbon nanolayer sorbent for potential removal of uranium (VI) from aqueous solution. J Nucl Mater 487:13–22. https://doi.org/10.1016/j.jnucmat.2017.01.046

    Article  CAS  Google Scholar 

  • Mala R, Celsia Arul Selvaraj R, Barathi Sundaram V, Blessina Siva Shanmuga Rajan R, Maheswari Gurusamy U (2017) Evaluation of nano structured slow release fertilizer on the soil fertility, yield and nutritional profile of vigna radiata. Recent Pat Nanotechnol 11(1):50–62

    CAS  PubMed  Google Scholar 

  • Mallampati SR, Mitoma Y, Okuda T, Sakita S, Simion C (2014) Simultaneous decontamination of cross-polluted soils with heavy metals and PCBs using a nano-metallic Ca/CaO dispersion mixture. Environ Sci Pollut Res 21(15):9270–9277

    CAS  Google Scholar 

  • Mallampati SR, Mitoma Y, Okuda T, Simion C, Lee BK (2015) Solvent-free synthesis and application of nano-Fe/Ca/CaO/[PO4] composite for dual separation and immobilization of stable and radioactive cesium in contaminated soils. J Hazard Mater 297:74–82. https://doi.org/10.1016/j.jhazmat.2015.04.071

    Article  CAS  PubMed  Google Scholar 

  • Mar Gil-Díaz M, Pérez-Sanz A, Angeles Vicente M, Carmen Lobo M (2014) Immobilisation of Pb and Zn in soils using stabilised zero-valent iron nanoparticles: effects on soil properties. Clean–Soil Air Water 42(12):1776–1784

    Google Scholar 

  • Martinez O, Arguello C, León J, Carguacundo PDC, Daga GEC (2019) Prototype of automated irrigation system improves the yield of potatoes (Solanum tuberosum L.) in Riobamba-Ecuador using wireless network sensors-WSN and 6LoWPAN. MASKAY 9(2):25–30

    Google Scholar 

  • Maruyama CR, Guilger M, Pascoli M, Bileshy-José N, Abhilash P, Fraceto LF, De Lima R (2016) Nanoparticles based on chitosan as carriers for the combined herbicides imazapic and imazapyr. Sci Rep 6:19768

    CAS  PubMed  PubMed Central  Google Scholar 

  • Millán S, Campillo C, Casadesús J, Moñino M, Vivas A, Prieto M (2019) Automated irrigation scheduling for drip-irrigated plum trees. In: Precision agriculture’19. Wageningen Academic Publishers, Wageningen, pp 59–66

    Google Scholar 

  • Mishra S, Singh BR, Singh A, Keswani C, Naqvi AH, Singh H (2014) Biofabricated silver nanoparticles act as a strong fungicide against Bipolaris sorokiniana causing spot blotch disease in wheat. PLoS One 9(5):e97881

    PubMed  PubMed Central  Google Scholar 

  • Mobasherpour I, Salahi E, Pazouki M (2012) Comparative of the removal of Pb2+, Cd2+ and Ni2+ by nano crystallite hydroxyapatite from aqueous solutions: adsorption isotherm study. Arabian J Chem 5(4):439–446. https://doi.org/10.1016/j.arabjc.2010.12.022

    Article  CAS  Google Scholar 

  • Mohamed EA, Gaber MH, Elsharabasy SF (2018) Evaluating the in vivo efficacy of copper-chitosan nanocomposition for treating vascular wilt disease in date palm. Int J Environ Agric Biotechnol 3(2):447–454

    Google Scholar 

  • Mondal P, Kumar R, Gogoi R (2017) Azomethine based nano-chemicals: development, in vitro and in vivo fungicidal evaluation against Sclerotium rolfsii, Rhizoctonia bataticola and Rhizoctonia solani. Bioorg Chem 70:153–162

    CAS  PubMed  Google Scholar 

  • Mousa S, Ammar N, Ibrahim H (2016) Removal of lead ions using hydroxyapatite nano-material prepared from phosphogypsum waste. J Saudi Chem Soc 20(3):357–365

    CAS  Google Scholar 

  • Munawar A, Ong Y, Schirhagl R, Tahir MA, Khan WS, Bajwa SZ (2019) Nanosensors for diagnosis with optical, electric and mechanical transducers. RSC Adv 9(12):6793–6803. https://doi.org/10.1039/C8RA10144B

    Article  CAS  Google Scholar 

  • Naderi M, Danesh-Shahraki A (2013) Nanofertilizers and their roles in sustainable agriculture. Int J Agric Crop Sci 5(19):2229

    Google Scholar 

  • Nassar MY, Khatab M (2016) Cobalt ferrite nanoparticles via a template-free hydrothermal route as an efficient nano-adsorbent for potential textile dye removal. RSC Adv 6(83):79688–79705

    CAS  Google Scholar 

  • Nekouei F, Noorizadeh H, Nekouei S, Asif M, Tyagi I, Agarwal S, Gupta VK (2016) Removal of malachite green from aqueous solutions by cuprous iodide–cupric oxide nano-composite loaded on activated carbon as a new sorbent for solid phase extraction: isotherm, kinetics and thermodynamic studies. J Mol Liq 213:360–368. https://doi.org/10.1016/j.molliq.2015.07.058

    Article  CAS  Google Scholar 

  • Niemeyer CM, Mirkin CA (2004) Nanobiotechnology: concepts, applications and perspectives, vol 1. Wiley, New York

    Google Scholar 

  • Nozhat, S., Fazilati, M., & Hassani, A. H. (2018). Butachlor and Diazinon elimination from aqueous solution using TiO2/ZnO nano-photocatalysts

    Google Scholar 

  • Omanović-Mikličanin E, Maksimović M (2016) Nanosensors applications in agriculture and food industry. Bull Chem Technol Bosnia Herzegovina 47:59–70

    Google Scholar 

  • Ortiz D, Litvin AG, Fernandez MGS (2018) A cost-effective and customizable automated irrigation system for precise high-throughput phenotyping in drought stress studies. PLoS One 13(6):e0198546

    PubMed  PubMed Central  Google Scholar 

  • Pacioni NL, Veglia AV (2007) Determination of poorly fluorescent carbamate pesticides in water, bendiocarb and promecarb, using cyclodextrin nanocavities and related media. Anal Chim Acta 583(1):63–71. https://doi.org/10.1016/j.aca.2006.10.010

    Article  CAS  PubMed  Google Scholar 

  • Pandey SK, Jain A, Sharda R, Sharma P, Joshi A (2018) Economic analysis of automated drip irrigation system for production of tomato crop. Indian J Econ Dev 14(3):513–520

    Google Scholar 

  • Parisi C, Vigani M, Rodríguez-Cerezo E (2015) Agricultural nanotechnologies: what are the current possibilities? Nano Today 10(2):124–127. https://doi.org/10.1016/j.nantod.2014.09.009

    Article  CAS  Google Scholar 

  • Pham T-H, Lee B-K, Kim J (2016) Improved adsorption properties of a nano zeolite adsorbent toward toxic nitrophenols. Process Saf Environ Prot:104, 314–322. https://doi.org/10.1016/j.psep.2016.08.018

  • Prasad R, Bhattacharyya A, Nguyen QD (2017a) Nanotechnology in sustainable agriculture: recent developments, challenges, and perspectives. Front Microbiol 8:1014

    PubMed  PubMed Central  Google Scholar 

  • Prasad R, Kumar M, Kumar V (2017b) Nanotechnology: an agricultural paradigm. Springer, Singapore

    Google Scholar 

  • Qi Y, Xiu F-R, Zheng M, Li B (2016) A simple and rapid chemiluminescence aptasensor for acetamiprid in contaminated samples: sensitivity, selectivity and mechanism. Biosens Bioelectron 83:243–249. https://doi.org/10.1016/j.bios.2016.04.074

    Article  CAS  PubMed  Google Scholar 

  • Rai M, Posten C (2013) Green biosynthesis of nanoparticles: mechanisms and applications. CABI, Wallingford

    Google Scholar 

  • Raliya R, Nair R, Chavalmane S, Wang W-N, Biswas P (2015) Mechanistic evaluation of translocation and physiological impact of titanium dioxide and zinc oxide nanoparticles on the tomato (Solanum lycopersicum L.) plant. Metallomics 7(12):1584–1594

    CAS  PubMed  Google Scholar 

  • Raliya R, Franke C, Chavalmane S, Nair R, Reed N, Biswas P (2016) Quantitative understanding of nanoparticle uptake in watermelon plants. Front Plant Sci 7:1288

    PubMed  PubMed Central  Google Scholar 

  • Rashidzadeh A, Olad A, Salari D, Reyhanitabar A (2014) On the preparation and swelling properties of hydrogel nanocomposite based on Sodium alginate-g-Poly (acrylic acid-co-acrylamide)/Clinoptilolite and its application as slow release fertilizer. J Polym Res 21(2):344. https://doi.org/10.1007/s10965-013-0344-9

    Article  CAS  Google Scholar 

  • Rastogi A, Tripathi DK, Yadav S, Chauhan DK, Živčák M, Ghorbanpour M et al (2019) Application of silicon nanoparticles in agriculture. 3 Biotech 9(3):90

    PubMed  PubMed Central  Google Scholar 

  • Reddy KR, Khodadoust AP, Darko-Kagya K (2011) Transport and reactivity of lactate-modified nanoscale iron particles in PCP-contaminated soils. J Hazard Toxic Radioact Waste 16(1):68–74

    Google Scholar 

  • Reddy A, Madhavi V, Reddy KG, Madhavi G (2012) Remediation of chlorpyrifos-contaminated soils by laboratory-synthesized zero-valent nano iron particles: effect of pH and aluminium salts. J Chem 2013:1–7

    Google Scholar 

  • Rhim J-W (2011) Effect of clay contents on mechanical and water vapor barrier properties of agar-based nanocomposite films. Carbohydr Polym 86(2):691–699. https://doi.org/10.1016/j.carbpol.2011.05.010

    Article  CAS  Google Scholar 

  • Sabir A, Yazar K, Sabir F, Kara Z, Yazici MA, Goksu N (2014) Vine growth, yield, berry quality attributes and leaf nutrient content of grapevines as influenced by seaweed extract (Ascophyllum nodosum) and nanosize fertilizer pulverizations. Sci Hortic 175:1–8

    CAS  Google Scholar 

  • Sadiq MT, Hossain MM, Rahman KF, Sayem AS (2019) Automated irrigation system: controlling irrigation through wireless sensor network. Int J Electr Electron Eng 7(2):33–37

    Google Scholar 

  • Safaei Z, Azizi M, Davarynejad G, Aroiee H (2014) The effect of foliar application of humic acid and nanofertilizer (Pharmks®) on yield and yield components of black cumin (Nigella sativa L.). J Med Plants By-prod 3(2):133–140

    Google Scholar 

  • Safarpour H, Safarnejad MR, Tabatabaei M, Mohsenifar A, Rad F, Basirat M et al (2012) Development of a quantum dots FRET-based biosensor for efficient detection of Polymyxa betae. Can J Plant Pathol 34(4):507–515

    Google Scholar 

  • Saharan V, Mehrotra A, Khatik R, Rawal P, Sharma S, Pal A (2013) Synthesis of chitosan based nanoparticles and their in vitro evaluation against phytopathogenic fungi. Int J Biol Macromol 62:677–683

    CAS  PubMed  Google Scholar 

  • Saini RK, Bagri LP, Bajpai AK (2017) Smart nanosensors for pesticide detection. In: New pesticides and soil sensors. Elsevier, pp 519–559

    Google Scholar 

  • Sakulthaew C, Comfort SD, Chokejaroenrat C, Li X, Harris CE (2015) Removing PAHs from urban runoff water by combining ozonation and carbon nano-onions. Chemosphere 141:265–273. https://doi.org/10.1016/j.chemosphere.2015.08.002

    Article  CAS  PubMed  Google Scholar 

  • Sang H, Jiao X, Wang S, Guo W, Salahou MK, Liu K (2018) Effects of micro-nano bubble aerated irrigation and nitrogen fertilizer level on tillering, nitrogen uptake and utilization of early rice. Plant Soil Environ 64(7):297–302

    CAS  Google Scholar 

  • Satapanajaru T, Anurakpongsatorn P, Pengthamkeerati P, Boparai H (2008) Remediation of atrazine-contaminated soil and water by nano zerovalent iron. Water Air Soil Pollut 192(1–4):349–359

    CAS  Google Scholar 

  • Sempeho SI, Kim HT, Mubofu E, Pogrebnoi A, Shao G, Hilonga A (2015) Encapsulated urea-Kaolinite Nanocomposite for controlled release fertilizer formulations. J Chem 2015:17. https://doi.org/10.1155/2015/237397

    Article  CAS  Google Scholar 

  • Shahat A, Awual MR, Khaleque MA, Alam MZ, Naushad M, Chowdhury AS (2015) Large-pore diameter nano-adsorbent and its application for rapid lead (II) detection and removal from aqueous media. Chem Eng J 273:286–295

    CAS  Google Scholar 

  • Shahat A, Hassan HMA, Azzazy HME, Hosni M, Awual MR (2018) Novel nano-conjugate materials for effective arsenic(V) and phosphate capturing in aqueous media. Chem Eng J 331:54–63. https://doi.org/10.1016/j.cej.2017.08.037

    Article  CAS  Google Scholar 

  • Shahid SA, Qidwai AA, Anwar F, Ullah I, Rashid U (2012) Improvement in the water retention characteristics of sandy loam soil using a newly synthesized poly (acrylamide-co-acrylic acid)/AlZnFe2O4 superabsorbent hydrogel nanocomposite material. Molecules 17(8):9397–9412

    CAS  PubMed  PubMed Central  Google Scholar 

  • Shan Y, Cao L, Xu C, Zhao P, Cao C, Li F et al (2019) Sulfonate-functionalized mesoporous silica nanoparticles as carriers for controlled herbicide diquat dibromide release through electrostatic interaction. Int J Mol Sci 20(6):1330

    CAS  PubMed Central  Google Scholar 

  • Sharma P, Sharma A, Sharma M, Bhalla N, Estrela P, Jain A et al (2017) Nanomaterial fungicides: in vitro and in vivo antimycotic activity of cobalt and nickel nanoferrites on phytopathogenic fungi. Global Chall 1(9):1700041

    Google Scholar 

  • Sheet I, Kabbani A, Holail H (2014) Removal of heavy metals using nanostructured graphite oxide, silica nanoparticles and silica/graphite oxide composite. Energy Procedia 50:130–138

    CAS  Google Scholar 

  • Shikha S, Salafi T, Cheng J, Zhang Y (2017) Versatile design and synthesis of nano-barcodes. Chem Soc Rev 46(22):7054–7093

    CAS  PubMed  Google Scholar 

  • Shojaei TR, Salleh MAM, Sijam K, Rahim RA, Mohsenifar A, Safarnejad R, Tabatabaei M (2016a) Detection of Citrus tristeza virus by using fluorescence resonance energy transfer-based biosensor. Spectrochim Acta A Mol Biomol Spectrosc 169:216–222. https://doi.org/10.1016/j.saa.2016.06.052

    Article  CAS  PubMed  Google Scholar 

  • Shojaei TR, Salleh MAM, Sijam K, Rahim RA, Mohsenifar A, Safarnejad R, Tabatabaei M (2016b) Fluorometric immunoassay for detecting the plant virus Citrus tristeza using carbon nanoparticles acting as quenchers and antibodies labeled with CdTe quantum dots. Microchim Acta 183(7):2277–2287. https://doi.org/10.1007/s00604-016-1867-7

    Article  CAS  Google Scholar 

  • Shubair T, Eljamal O, Khalil AM, Matsunaga N (2018a) Multilayer system of nanoscale zero valent iron and Nano-Fe/Cu particles for nitrate removal in porous media. Sep Purif Technol 193:242–254

    CAS  Google Scholar 

  • Shubair T, Eljamal O, Khalil AME, Tahara A, Matsunaga N (2018b) Novel application of nanoscale zero valent iron and bimetallic nano-Fe/cu particles for the treatment of cesium contaminated water. J Environ Chem Eng 6(4):4253–4264. https://doi.org/10.1016/j.jece.2018.06.015

    Article  CAS  Google Scholar 

  • Siddiqui MH, Al-Whaibi MH, Mohammad F (2015) Nanotechnology and plant sciences: nanoparticles and their impact on plants. Springer, Cham

    Google Scholar 

  • Simonian A, Good T, Wang S-S, Wild J (2005) Nanoparticle-based optical biosensors for the direct detection of organophosphate chemical warfare agents and pesticides. Anal Chim Acta 534(1):69–77

    CAS  Google Scholar 

  • Singh R, Misra V, Singh RP (2011) Synthesis, characterization and role of zero-valent iron nanoparticle in removal of hexavalent chromium from chromium-spiked soil. J Nanopart Res 13(9):4063–4073

    CAS  Google Scholar 

  • Singh R, Manickam N, Mudiam MKR, Murthy RC, Misra V (2013) An integrated (nano-bio) technique for degradation of γ-HCH contaminated soil. J Hazard Mater 258–259:35–41. https://doi.org/10.1016/j.jhazmat.2013.04.016

    Article  CAS  PubMed  Google Scholar 

  • Singh P, Kim Y-J, Zhang D, Yang D-C (2016) Biological synthesis of nanoparticles from plants and microorganisms. Trends Biotechnol 34(7):588–599

    CAS  PubMed  Google Scholar 

  • Song J, Zhang F, Huang Y, Keller AA, Tang X, Zhang W et al (2018) Highly efficient bacterial removal and disinfection by magnetic barium phosphate nanoflakes with embedded iron oxide nanoparticles. Environ Sci Nano 5(6):1341–1349

    CAS  Google Scholar 

  • Sousa GFM, Gomes DG, Campos EVR, Oliveira JL, Fraceto LF, Stolf-Moreira R, Oliveira HC (2018) Post-emergence herbicidal activity of nanoatrazine against susceptible weeds. Front Environ Sci 6(12). https://doi.org/10.3389/fenvs.2018.00012

  • Stadler T, Buteler M, Weaver DK (2010) Novel use of nanostructured alumina as an insecticide. Pest Manag Sci Former Pestic Sci 66(6):577–579

    CAS  Google Scholar 

  • Sun J, Guo L, Bao Y, Xie J (2011) A simple, label-free AuNPs-based colorimetric ultrasensitive detection of nerve agents and highly toxic organophosphate pesticide. Biosens Bioelectron 28(1):152–157. https://doi.org/10.1016/j.bios.2011.07.012

    Article  CAS  PubMed  Google Scholar 

  • Sun Q, Aguila B, Perman J, Ivanov AS, Bryantsev VS, Earl LD et al (2018) Bio-inspired nano-traps for uranium extraction from seawater and recovery from nuclear waste. Nat Commun 9(1):1644

    PubMed  PubMed Central  Google Scholar 

  • Sundaram CS, Viswanathan N, Meenakshi S (2008) Uptake of fluoride by nano-hydroxyapatite/chitosan, a bioinorganic composite. Bioresour Technol 99(17):8226–8230

    Google Scholar 

  • Tahir MB, Sagir M, Shahzad K (2019) Removal of acetylsalicylate and methyl-theobromine from aqueous environment using nano-photocatalyst WO3-TiO2 @g-C3N4 composite. J Hazard Mater 363:205–213. https://doi.org/10.1016/j.jhazmat.2018.09.055

    Article  CAS  PubMed  Google Scholar 

  • Tarafdar J, Raliya R, Mahawar H, Rathore I (2014) Development of zinc nanofertilizer to enhance crop production in pearl millet (Pennisetum americanum). Agric Res 3(3):257–262

    CAS  Google Scholar 

  • Teimouri A, Nasab SG, Vahdatpoor N, Habibollahi S, Salavati H, Chermahini AN (2016) Chitosan/Zeolite Y/Nano ZrO2 nanocomposite as an adsorbent for the removal of nitrate from the aqueous solution. Int J Biol Macromol 93:254–266

    CAS  PubMed  Google Scholar 

  • Teng Q, Zhang D, Niu X, Jiang C (2018) Influences of application of slow-release Nano-fertilizer on green pepper growth, soil nutrients and enzyme activity. In: Paper presented at the IOP conference series: earth and environmental science

    Google Scholar 

  • Tesh SJ, Scott TB (2014) Nano-composites for water remediation: A review. Adv Mater 26(35):6056–6068

    CAS  PubMed  Google Scholar 

  • Tuteja N, Gill SS (2012) Crop improvement under adverse conditions. Springer

    Google Scholar 

  • Varanasi P, Fullana A, Sidhu S (2007) Remediation of PCB contaminated soils using iron nano-particles. Chemosphere 66(6):1031–1038

    CAS  PubMed  Google Scholar 

  • Verdian A (2018) Apta-nanosensors for detection and quantitative determination of acetamiprid – A pesticide residue in food and environment. Talanta 176:456–464. https://doi.org/10.1016/j.talanta.2017.08.070

    Article  CAS  PubMed  Google Scholar 

  • Vundavalli R, Vundavalli S, Nakka M, Rao DS (2015) Biodegradable nano-hydrogels in agricultural farming-alternative source for water resources. Procedia Mater Sci 10:548–554

    CAS  Google Scholar 

  • Wang S-L, Nguyen AD (2018) Effects of Zn/B nanofertilizer on biophysical characteristics and growth of coffee seedlings in a greenhouse. Res Chem Intermed 44(8):4889–4901. https://doi.org/10.1007/s11164-018-3342-z

    Article  CAS  Google Scholar 

  • Wang Z, Wei F, Liu S-Y, Xu Q, Huang J-Y, Dong X-Y et al (2010) Electrocatalytic oxidation of phytohormone salicylic acid at copper nanoparticles-modified gold electrode and its detection in oilseed rape infected with fungal pathogen Sclerotinia sclerotiorum. Talanta 80(3):1277–1281

    CAS  PubMed  Google Scholar 

  • Wang Y, Zhang S, Du D, Shao Y, Li Z, Wang J et al (2011) Self assembly of acetylcholinesterase on a gold nanoparticles–graphene nanosheet hybrid for organophosphate pesticide detection using polyelectrolyte as a linker. J Mater Chem 21(14):5319–5325. https://doi.org/10.1039/C0JM03441J

    Article  CAS  Google Scholar 

  • Wang G, Zhang S, Xu X, Li T, Li Y, Deng O, Gong G (2014) Efficiency of nanoscale zero-valent iron on the enhanced low molecular weight organic acid removal Pb from contaminated soil. Chemosphere 117:617–624. https://doi.org/10.1016/j.chemosphere.2014.09.081

    Article  CAS  PubMed  Google Scholar 

  • Wang M, Duong B, Fenniri H, Su M (2015a) Nanomaterial-based barcodes. Nanoscale 7(26):11240–11247. https://doi.org/10.1039/C5NR01948F

    Article  CAS  PubMed  Google Scholar 

  • Wang Y, Sun H, Duan X, Ang HM, Tadé MO, Wang S (2015b) A new magnetic nano zero-valent iron encapsulated in carbon spheres for oxidative degradation of phenol. Appl Catal B Environ 172–173:73–81. https://doi.org/10.1016/j.apcatb.2015.02.016

    Article  CAS  Google Scholar 

  • Wang S, Gao B, Li Y, Creamer AE, He F (2017) Adsorptive removal of arsenate from aqueous solutions by biochar supported zero-valent iron nanocomposite: batch and continuous flow tests. J Hazard Mater 322:172–181. https://doi.org/10.1016/j.jhazmat.2016.01.052

    Article  CAS  PubMed  Google Scholar 

  • Wei A, Ma J, Chen J, Zhang Y, Song J, Yu X (2018) Enhanced nitrate removal and high selectivity towards dinitrogen for groundwater remediation using biochar-supported nano zero-valent iron. Chem Eng J 353:595–605

    CAS  Google Scholar 

  • Wen Z, Zhang Y, Dai C (2014) Removal of phosphate from aqueous solution using nanoscale zerovalent iron (nZVI). Colloids Surf A Physicochem Eng Asp 457:433–440. https://doi.org/10.1016/j.colsurfa.2014.06.017

    Article  CAS  Google Scholar 

  • Willner MR, Vikesland PJ (2018) Nanomaterial enabled sensors for environmental contaminants. J Nanobiotechnol 16(1):95

    CAS  Google Scholar 

  • Wu J, Yi Y, Li Y, Fang Z, Tsang EP (2016) Excellently reactive Ni/Fe bimetallic catalyst supported by biochar for the remediation of decabromodiphenyl contaminated soil: reactivity, mechanism, pathways and reducing secondary risks. J Hazard Mater 320:341–349

    CAS  PubMed  Google Scholar 

  • Xia N, Wang Q, Liu L (2015) Nanomaterials-based optical techniques for the detection of acetylcholinesterase and pesticides. Sensors 15(1):499–514

    CAS  Google Scholar 

  • Xiang Y, Camarada MB, Wen Y, Wu H, Chen J, Li M, Liao X (2018) Simple voltammetric analyses of ochratoxin A in food samples using highly-stable and anti-fouling black phosphorene nanosensor. Electrochim Acta 282:490–498

    CAS  Google Scholar 

  • Xu Y, Zhao D (2007) Reductive immobilization of chromate in water and soil using stabilized iron nanoparticles. Water Res 41(10):2101–2108. https://doi.org/10.1016/j.watres.2007.02.037

    Article  CAS  PubMed  Google Scholar 

  • Yan X, Li H, Su X (2018) Review of optical sensors for pesticides. TrAC Trends Anal Chem 103:1–20

    CAS  Google Scholar 

  • Yang GC, Yeh C-F (2011) Enhanced nano-Fe3O4/S2O82− oxidation of trichloroethylene in a clayey soil by electrokinetics. Sep Purif Technol 79(2):264–271

    CAS  Google Scholar 

  • Yang S-C, Lei M, Chen T-B, Li X-Y, Liang Q, Ma C (2010) Application of zerovalent iron (Fe0) to enhance degradation of HCHs and DDX in soil from a former organochlorine pesticides manufacturing plant. Chemosphere 79(7):727–732. https://doi.org/10.1016/j.chemosphere.2010.02.046

    Article  CAS  PubMed  Google Scholar 

  • Yang Z, Qian J, Yang X, Jiang D, Du X, Wang K et al (2015) A facile label-free colorimetric aptasensor for acetamiprid based on the peroxidase-like activity of hemin-functionalized reduced graphene oxide. Biosens Bioelectron 65:39–46. https://doi.org/10.1016/j.bios.2014.10.004

    Article  CAS  PubMed  Google Scholar 

  • Yao KS, Li S, Tzeng K, Cheng TC, Chang CY, Chiu C et al (2009) Fluorescence silica nanoprobe as a biomarker for rapid detection of plant pathogens. In: Paper presented at the advanced materials research

    Google Scholar 

  • Yılmaz F, Saylan Y, Akgönüllü S, Çimen D, Derazshamshir A, Bereli N, Denizli A (2017) 18- surface plasmon resonance based nanosensors for detection of triazinic pesticides in agricultural foods. In: Grumezescu AM (ed) New pesticides and soil sensors. Academic, pp 679–718

    Google Scholar 

  • Yousefi F (2018) Prediction of the experimental data for removal of organic pesticides by carbon nanoparticle synthesized from pomegranate peel using artificial neural networks. Iran J Health Sci 6(1):43–57

    Google Scholar 

  • Yu X, Tong S, Ge M, Zuo J (2013) Removal of fluoride from drinking water by cellulose@hydroxyapatite nanocomposites. Carbohydr Polym 92(1):269–275. https://doi.org/10.1016/j.carbpol.2012.09.045

    Article  CAS  PubMed  Google Scholar 

  • Zeng R, Wang J, Cui J, Hu L, Mu K (2010) Photocatalytic degradation of pesticide residues with RE3+ −doped nano-TiO2. J Rare Earths 28:353–356. https://doi.org/10.1016/S1002-0721(10)60329-8

    Article  Google Scholar 

  • Zhang Z, Li M, Chen W, Zhu S, Liu N, Zhu L (2010) Immobilization of lead and cadmium from aqueous solution and contaminated sediment using nano-hydroxyapatite. Environ Pollut 158(2):514–519

    CAS  PubMed  Google Scholar 

  • Zhang Z, He X, Zhang H, Ma Y, Zhang P, Ding Y, Zhao Y (2011) Uptake and distribution of ceria nanoparticles in cucumber plants. Metallomics 3(8):816–822

    PubMed  Google Scholar 

  • Zhang C, Chen L, Wang T-J, Su C-L, Jin Y (2014a) Synthesis and properties of a magnetic core–shell composite nano-adsorbent for fluoride removal from drinking water. Appl Surf Sci 317:552–559

    CAS  Google Scholar 

  • Zhang F, Zou M, Chen Y, Li J, Wang Y, Qi X, Xue Q (2014b) Lanthanide-labeled immunochromatographic strips for the rapid detection of Pantoea stewartii subsp. stewartii. Biosens Bioelectron 51:29–35

    CAS  PubMed  Google Scholar 

  • Zhang X, Gu P, Li X, Zhang G (2017) Efficient adsorption of radioactive iodide ion from simulated wastewater by nano Cu2O/Cu modified activated carbon. Chem Eng J 322:129–139. https://doi.org/10.1016/j.cej.2017.03.102

    Article  CAS  Google Scholar 

  • Zhang B, Ji J, Liu X, Li C, Yuan M, Yu J, Ma Y (2019) Rapid adsorption and enhanced removal of emodin and physcion by nano zirconium carbide. Sci Total Environ 647:57–65

    CAS  PubMed  Google Scholar 

  • Zhao Y, Ma Y, Li H, Wang L (2011) Composite QDs@ MIP nanospheres for specific recognition and direct fluorescent quantification of pesticides in aqueous media. Anal Chem 84(1):386–395

    PubMed  Google Scholar 

  • Zhao L, Peralta-Videa JR, Ren M, Varela-Ramirez A, Li C, Hernandez-Viezcas JA et al (2012) Transport of Zn in a sandy loam soil treated with ZnO NPs and uptake by corn plants: electron microprobe and confocal microscopy studies. Chem Eng J 184:1–8. https://doi.org/10.1016/j.cej.2012.01.041

    Article  CAS  Google Scholar 

  • Zhao X, Cui H, Wang Y, Sun C, Cui B, Zeng Z (2017) Development strategies and prospects of nano-based smart pesticide formulation. J Agric Food Chem 66(26):6504–6512

    PubMed  Google Scholar 

  • Zhou B, Chen X (2017) Effect of Nano-carbon on water holding capacity in a Sandy soil of the loess plateau. Earth Sci Res J 21(4):189–195

    Google Scholar 

  • Zhou K, Wu B, Su L, Xin W, Chai X (2018) Enhanced phosphate removal using nanostructured hydrated ferric-zirconium binary oxide confined in a polymeric anion exchanger. Chem Eng J 345:640–647. https://doi.org/10.1016/j.cej.2018.01.091

    Article  CAS  Google Scholar 

  • Zhou Y, Zhou B, Xu F, Muhammad T, Li Y (2019) Appropriate dissolved oxygen concentration and application stage of micro-nano bubble water oxygation in greenhouse crop plantation. Agric Water Manag 223:105713. https://doi.org/10.1016/j.agwat.2019.105713

    Article  Google Scholar 

  • Zhu H, Jia Y, Wu X, Wang H (2009) Removal of arsenic from water by supported nano zero-valent iron on activated carbon. J Hazard Mater 172(2–3):1591–1596

    CAS  PubMed  Google Scholar 

  • Zhu Z-J, Wang H, Yan B, Zheng H, Jiang Y, Miranda OR et al (2012) Effect of surface charge on the uptake and distribution of gold nanoparticles in four plant species. Environ Sci Technol 46(22):12391–12398. https://doi.org/10.1021/es301977w

    Article  CAS  PubMed  Google Scholar 

  • Zolgharnein J, Bagtash M, Shariatmanesh T (2015) Simultaneous removal of binary mixture of brilliant green and crystal violet using derivative spectrophotometric determination, multivariate optimization and adsorption characterization of dyes on surfactant modified nano-γ-alumina. Spectrochim Acta A Mol Biomol Spectrosc 137:1016–1028. https://doi.org/10.1016/j.saa.2014.08.115

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Nazir, R., Ayub, Y., Tahir, L. (2020). Green-Nanotechnology for Precision and Sustainable Agriculture. In: Ghorbanpour, M., Bhargava, P., Varma, A., Choudhary, D. (eds) Biogenic Nano-Particles and their Use in Agro-ecosystems. Springer, Singapore. https://doi.org/10.1007/978-981-15-2985-6_18

Download citation

Publish with us

Policies and ethics