Skip to main content

PET in the Diagnosis of Head and Neck Cancer

  • Chapter
  • First Online:
Diagnostic Imaging in Head and Neck Cancer
  • 719 Accesses

Abstract

In current clinical practice, the standard approach for initial assessment of head and neck cancer (HNC) is clinical examination followed by neck ultrasound, computed tomography (CT), and magnetic resonance imaging (MRI). Compared with these modalities, fluorodeoxyglucose (FDG)-positron emission tomography (PET) may provide unique information about metabolic characteristics. The abnormal elevation of FDG uptake has been shown to be specifically induced in tumor cells because of its low rate of dephosphorylation. Based on this theory, FDG-PET can be used to detect malignant lesions, differentiate benign from malignant lymph nodes (LNs), detect the primary site of unknown primary tumors, plan radiation therapy, and detect tumor recurrence after treatment. In addition, whole-body PET acquisition can be utilized to provide information about the existence of concurrent or distant carcinoma. Another advantage of PET is the capability of robust semi-quantification of metabolic changes by calculating standardized uptake values (SUV). This information can be used to predict prognosis or assess response to therapy. This chapter aims to highlight the use, benefits, and limitations of PET in HNC.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Surasi DS, Bhambhvani P, Baldwin JA, Almodovar SE, O'Malley JP. (1)(8)F-FDG PET and PET/CT patient preparation: a review of the literature. J Nucl Med Technol. 2014;42:5–13.

    Article  PubMed  Google Scholar 

  2. Wahl RL, Henry CA, Ethier SP. Serum glucose: effects on tumor and normal tissue accumulation of 2-[F-18]-fluoro-2-deoxy-D-glucose in rodents with mammary carcinoma. Radiology. 1992;183:643–7.

    Article  CAS  PubMed  Google Scholar 

  3. Boellaard R, Delgado-Bolton R, Oyen WJ, et al. FDG PET/CT: EANM procedure guidelines for tumour imaging: version 2.0. Eur J Nucl Med Mol Imaging. 2015;42:328–54.

    Article  CAS  PubMed  Google Scholar 

  4. Delbeke D, Coleman RE, Guiberteau MJ, et al. Procedure guideline for tumor imaging with 18F-FDG PET/CT 1.0. J Nucl Med. 2006;47:885–95.

    PubMed  Google Scholar 

  5. Kathula SK, Mantil J. Chewing gum causing a very high FDG uptake of the tongue on PET scan. Clin Nucl Med. 2007;32:122–3.

    Article  PubMed  Google Scholar 

  6. Cohade C, Osman M, Pannu HK, Wahl RL. Uptake in supraclavicular area fat (“USA-Fat”): description on 18F-FDG PET/CT. J Nucl Med. 2003;44:170–6.

    CAS  PubMed  Google Scholar 

  7. Yamamoto Y, Wong TZ, Turkington TG, Hawk TC, Coleman RE. Head and neck cancer: dedicated FDG PET/CT protocol for detection—phantom and initial clinical studies. Radiology. 2007;244:263–72.

    Article  PubMed  Google Scholar 

  8. Wong TZ, Paulson EK, Nelson RC, Patz EF Jr, Coleman RE. Practical approach to diagnostic CT combined with PET. Am J Roentgenol. 2007;188:622–9.

    Article  Google Scholar 

  9. Rodrigues RS, Bozza FA, Christian PE, et al. Comparison of whole-body PET/CT, dedicated high-resolution head and neck PET/CT, and contrast-enhanced CT in preoperative staging of clinically M0 squamous cell carcinoma of the head and neck. J Nucl Med. 2009;50:1205–13.

    Article  PubMed  Google Scholar 

  10. Ciappuccini R, Aide N, Blanchard D, et al. Incremental value of a dedicated head and neck acquisition during 18F-FDG PET/CT in patients with differentiated thyroid cancer. PLoS One. 2016;11:e0162482.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Subramaniam RM, Agarwal A, Colucci A, Ferraro R, Paidpally V, Mercier G. Impact of concurrent diagnostic level CT with PET/CT on the utilization of stand-alone CT and MRI in the management of head and neck cancer patients. Clin Nucl Med. 2013;38:790–4.

    Article  PubMed  Google Scholar 

  12. Aiken AH, Farley A, Baugnon KL, et al. Implementation of a Novel Surveillance Template for Head and Neck Cancer: Neck Imaging Reporting and Data System (NI-RADS). J Am Coll Radiol. 2016;13:743–746 e741.

    Article  PubMed  Google Scholar 

  13. Haerle SK, Strobel K, Ahmad N, Soltermann A, Schmid DT, Stoeckli SJ. Contrast-enhanced (1)(8)F-FDG-PET/CT for the assessment of necrotic lymph node metastases. Head Neck. 2011;33:324–9.

    PubMed  Google Scholar 

  14. Suenaga Y, Kitajima K, Ishihara T, et al. FDG-PET/contrast-enhanced CT as a post-treatment tool in head and neck squamous cell carcinoma: comparison with FDG-PET/non-contrast-enhanced CT and contrast-enhanced CT. Eur Radiol. 2016;26:1018–30.

    Article  PubMed  Google Scholar 

  15. Network NCC. NCCN clinical practice guidelines in oncology: head and neck cancers. Version 2.2019. 2019.

    Google Scholar 

  16. Mawlawi O, Erasmus JJ, Munden RF, et al. Quantifying the effect of IV contrast media on integrated PET/CT: clinical evaluation. Am J Roentgenol. 2006;186:308–19.

    Article  Google Scholar 

  17. Nakamoto Y, Chin BB, Kraitchman DL, Lawler LP, Marshall LT, Wahl RL. Effects of nonionic intravenous contrast agents at PET/CT imaging: phantom and canine studies. Radiology. 2003;227:817–24.

    Article  PubMed  Google Scholar 

  18. Kumar R, Mukherjee A, Mittal BR. Special techniques in PET/computed tomography imaging for evaluation of head and neck cancer. PET Clin. 2016;11:13–20.

    Article  PubMed  Google Scholar 

  19. Weissman JL, Carrau RL. “Puffed-cheek” CT improves evaluation of the oral cavity. Am J Neuroradiol. 2001;22:741–4.

    CAS  PubMed  PubMed Central  Google Scholar 

  20. Chang CY, Yang BH, Lin KH, Liu RS, Wang SJ, Shih WJ. Feasibility and incremental benefit of puffed-cheek 18F-FDG PET/CT on oral cancer patients. Clin Nucl Med. 2013;38:e374–8.

    Article  PubMed  Google Scholar 

  21. Sonni I, Baratto L, Park S, et al. Initial experience with a SiPM-based PET/CT scanner: influence of acquisition time on image quality. EJNMMI Phys. 2018;5:9.

    Article  PubMed  PubMed Central  Google Scholar 

  22. Sekine T, Delso G, Zeimpekis KG, et al. Reduction of (18)F-FDG dose in clinical PET/MR imaging by using silicon photomultiplier detectors. Radiology. 2018;286:249–59.

    Article  PubMed  Google Scholar 

  23. Wright CL, Washington IR, Bhatt AD, Knopp MV. Emerging opportunities for digital PET/CT to advance locoregional therapy in head and neck cancer. Semin Radiat Oncol. 2019;29:93–101.

    Article  PubMed  Google Scholar 

  24. Delso G, Furst S, Jakoby B, et al. Performance measurements of the Siemens mMR integrated whole-body PET/MR scanner. J Nucl Med. 2011;52:1914–22.

    Article  PubMed  Google Scholar 

  25. Spick C, Herrmann K, Czernin J. 18F-FDG PET/CT and PET/MRI perform equally well in cancer: evidence from studies on more than 2,300 patients. J Nucl Med. 2016;57:420–30.

    Article  CAS  PubMed  Google Scholar 

  26. Raad RA, Friedman KP, Heacock L, Ponzo F, Melsaether A, Chandarana H. Outcome of small lung nodules missed on hybrid PET/MRI in patients with primary malignancy. J Magn Reson Imaging. 2016;43(2):504–11.

    Article  PubMed  Google Scholar 

  27. Becker M, Varoquaux AD, Combescure C, et al. Local recurrence of squamous cell carcinoma of the head and neck after radio(chemo)therapy: diagnostic performance of FDG-PET/MRI with diffusion-weighted sequences. Eur Radiol. 2018;28(2):651–63.

    Article  PubMed  Google Scholar 

  28. Queiroz MA, Hullner M, Kuhn F, et al. Use of diffusion-weighted imaging (DWI) in PET/MRI for head and neck cancer evaluation. Eur J Nucl Med Mol Imaging. 2014;41:2212–21.

    Article  PubMed  Google Scholar 

  29. Kim YI, Cheon GJ, Kang SY, et al. Prognostic value of simultaneous (18)F-FDG PET/MRI using a combination of metabolo-volumetric parameters and apparent diffusion coefficient in treated head and neck cancer. EJNMMI Res. 2018;8:2.

    Article  PubMed  PubMed Central  Google Scholar 

  30. Rasmussen JH, Nørgaard M, Hansen AE, et al. Feasibility of multiparametric imaging with PET/MR in head and neck squamous cell carcinoma. J Nucl Med. 2017;58:69–74.

    Article  CAS  PubMed  Google Scholar 

  31. Kuwert T, Ritt P. PET/MRI and PET/CT: is there room for both at the top of the food chain? Eur J Nucl Med Mol Imaging. 2016;43:209–11.

    Article  PubMed  Google Scholar 

  32. Queiroz MA, Huellner MW. PET/MR in cancers of the head and neck. Semin Nucl Med. 2015;45:248–65.

    Article  PubMed  Google Scholar 

  33. Kuhn FP, Hullner M, Mader CE, et al. Contrast-enhanced PET/MR imaging versus contrast-enhanced PET/CT in head and neck cancer: how much MR information is needed? J Nucl Med. 2014;55:551–8.

    Article  CAS  PubMed  Google Scholar 

  34. Haberkorn U, Strauss LG, Reisser C, et al. Glucose uptake, perfusion, and cell proliferation in head and neck tumors: relation of positron emission tomography to flow cytometry. J Nucl Med. 1991;32:1548–55.

    CAS  PubMed  Google Scholar 

  35. Na KJ, Choi H. Tumor metabolic features identified by (18)F-FDG PET correlate with gene networks of immune cell microenvironment in head and neck cancer. J Nucl Med. 2018;59:31–7.

    Article  CAS  PubMed  Google Scholar 

  36. Gronroos TJ, Lehtio K, Soderstrom KO, et al. Hypoxia, blood flow and metabolism in squamous-cell carcinoma of the head and neck: correlations between multiple immunohistochemical parameters and PET. BMC Cancer. 2014;14:876.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Adams MC, Turkington TG, Wilson JM, Wong TZ. A systematic review of the factors affecting accuracy of SUV measurements. Am J Roentgenol. 2010;195:310–20.

    Article  Google Scholar 

  38. Hoang JK, Das SK, Choudhury KR, Yoo DS, Brizel DM. Using FDG-PET to measure early treatment response in head and neck squamous cell carcinoma: quantifying intrinsic variability in order to understand treatment-induced change. Am J Neuroradiol. 2013;34:1428–33.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Wahl RL, Jacene H, Kasamon Y, Lodge MA. From RECIST to PERCIST: evolving considerations for PET response criteria in solid tumors. J Nucl Med. 2009;50(Suppl 1):122S–50S.

    Article  CAS  PubMed  Google Scholar 

  40. JH O, Lodge MA, Wahl RL. Practical PERCIST: a simplified guide to PET response criteria in solid tumors 1.0. Radiology. 2016;280:576–84.

    Article  Google Scholar 

  41. Hoang JK, Choudhury KR, Chang J, Craciunescu OI, Yoo DS, Brizel DM. Diffusion-weighted imaging for head and neck squamous cell carcinoma: quantifying repeatability to understand early treatment-induced change. Am J Roentgenol. 2014;203:1104–8.

    Article  Google Scholar 

  42. Aide N, Lasnon C, Veit-Haibach P, Sera T, Sattler B, Boellaard R. EANM/EARL harmonization strategies in PET quantification: from daily practice to multicentre oncological studies. Eur J Nucl Med Mol Imaging. 2017;44:17–31.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Paidpally V, Chirindel A, Lam S, Agrawal N, Quon H, Subramaniam RM. FDG-PET/CT imaging biomarkers in head and neck squamous cell carcinoma. Imaging Med. 2012;4:633–47.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Differding S, Hanin FX, Gregoire V. PET imaging biomarkers in head and neck cancer. Eur J Nucl Med Mol Imaging. 2015;42:613–22.

    Article  CAS  PubMed  Google Scholar 

  45. Ziai P, Hayeri MR, Salei A, et al. Role of optimal quantification of FDG PET imaging in the clinical practice of radiology. Radiographics. 2016;36:481–96.

    Article  PubMed  Google Scholar 

  46. Im HJ, Bradshaw T, Solaiyappan M, Cho SY. Current methods to define metabolic tumor volume in positron emission tomography: which one is better? Nucl Med Mol Imaging. 2018;52:5–15.

    Article  PubMed  Google Scholar 

  47. Liu HY, Milne R, Lock G, et al. Utility of a repeat PET/CT scan in HPV-associated oropharyngeal cancer following incomplete nodal response from (chemo)radiotherapy. Oral Oncol. 2019;88:153–9.

    Article  PubMed  Google Scholar 

  48. Gupta T, Master Z, Kannan S, et al. Diagnostic performance of post-treatment FDG PET or FDG PET/CT imaging in head and neck cancer: a systematic review and meta-analysis. Eur J Nucl Med Mol Imaging. 2011;38:2083–95.

    Article  PubMed  Google Scholar 

  49. Goel R, Moore W, Sumer B, Khan S, Sher D, Subramaniam RM. Clinical practice in PET/CT for the management of head and neck squamous cell cancer. Am J Roentgenol. 2017;209:289–303.

    Article  Google Scholar 

  50. Marcus C, Ciarallo A, Tahari AK, et al. Head and neck PET/CT: therapy response interpretation criteria (Hopkins Criteria)-interreader reliability, accuracy, and survival outcomes. J Nucl Med. 2014;55:1411–6.

    Article  CAS  PubMed  Google Scholar 

  51. Kendi AT, Brandon D, Switchenko J, et al. Head and neck PET/CT therapy response interpretation criteria (Hopkins criteria)—external validation study. Am J Nucl Med Mol Imaging. 2017;7:174–80.

    CAS  PubMed  PubMed Central  Google Scholar 

  52. Sjovall J, Bitzen U, Kjellen E, Nilsson P, Wahlberg P, Brun E. Qualitative interpretation of PET scans using a Likert scale to assess neck node response to radiotherapy in head and neck cancer. Eur J Nucl Med Mol Imaging. 2016;43:609–16.

    Article  CAS  PubMed  Google Scholar 

  53. Krieger DA, Hudgins PA, Nayak GK, et al. Initial performance of NI-RADS to predict residual or recurrent head and neck squamous cell carcinoma. Am J Neuroradiol. 2017;38:1193–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Wangaryattawanich P, Branstetter BF, Hughes M, Clump DA 2nd, Heron DE, Rath TJ. Negative predictive value of NI-RADS Category 2 in the first posttreatment FDG-PET/CT in head and neck squamous cell carcinoma. Am J Neuroradiol. 2018;39:1884–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Weinreb JC, Barentsz JO, Choyke PL, et al. PI-RADS prostate imaging—Reporting and Data System: 2015, Version 2. Eur Urol. 2016;69:16–40.

    Article  PubMed  Google Scholar 

  56. Radiology ACo. Breast imaging reporting and data system. BI-RADS. 2003.

    Google Scholar 

  57. Mitchell DG, Bruix J, Sherman M, Sirlin CB. LI-RADS (Liver Imaging Reporting and Data System): summary, discussion, and consensus of the LI-RADS Management Working Group and future directions. Hepatology. 2015;61:1056–65.

    Article  PubMed  Google Scholar 

  58. Burrell RA, McGranahan N, Bartek J, Swanton C. The causes and consequences of genetic heterogeneity in cancer evolution. Nature. 2013;501:338–45.

    Article  CAS  PubMed  Google Scholar 

  59. Mroz EA, Tward AD, Hammon RJ, Ren Y, Rocco JW. Intra-tumor genetic heterogeneity and mortality in head and neck cancer: analysis of data from the Cancer Genome Atlas. PLoS Med. 2015;12:e1001786.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Mroz EA, Tward AD, Pickering CR, Myers JN, Ferris RL, Rocco JW. High intratumor genetic heterogeneity is related to worse outcome in patients with head and neck squamous cell carcinoma. Cancer. 2013;119:3034–42.

    Article  PubMed  Google Scholar 

  61. Gerlinger M, Rowan AJ, Horswell S, et al. Intratumor heterogeneity and branched evolution revealed by multiregion sequencing. N Engl J Med. 2012;366:883–92.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Karlo CA, Di Paolo PL, Chaim J, et al. Radiogenomics of clear cell renal cell carcinoma: associations between CT imaging features and mutations. Radiology. 2014;270:464–71.

    Article  PubMed  Google Scholar 

  63. Zhao S, Kuge Y, Mochizuki T, et al. Biologic correlates of intratumoral heterogeneity in 18F-FDG distribution with regional expression of glucose transporters and hexokinase-II in experimental tumor. J Nucl Med. 2005;46:675–82.

    CAS  PubMed  Google Scholar 

  64. Koyasu S, Nakamoto Y, Kikuchi M, et al. Prognostic value of pretreatment 18F-FDG PET/CT parameters including visual evaluation in patients with head and neck squamous cell carcinoma. Am J Roentgenol. 2014;202:851–8.

    Article  Google Scholar 

  65. Apostolova I, Steffen IG, Wedel F, et al. Asphericity of pretherapeutic tumour FDG uptake provides independent prognostic value in head-and-neck cancer. Eur Radiol. 2014;24:2077–87.

    Article  PubMed  Google Scholar 

  66. Tixier F, Hatt M, Valla C, et al. Visual versus quantitative assessment of intratumor 18F-FDG PET uptake heterogeneity: prognostic value in non-small cell lung cancer. J Nucl Med. 2014;55:1235–41.

    Article  CAS  PubMed  Google Scholar 

  67. Brooks FJ, Grigsby PW. The effect of small tumor volumes on studies of intratumoral heterogeneity of tracer uptake. J Nucl Med. 2014;55:37–42.

    Article  CAS  PubMed  Google Scholar 

  68. Tixier F, Hatt M, Le Rest CC, Le Pogam A, Corcos L, Visvikis D. Reproducibility of tumor uptake heterogeneity characterization through textural feature analysis in 18F-FDG PET. J Nucl Med. 2012;53:693–700.

    Article  PubMed  Google Scholar 

  69. Hatt M, Majdoub M, Vallieres M, et al. 18F-FDG PET uptake characterization through texture analysis: investigating the complementary nature of heterogeneity and functional tumor volume in a multi-cancer site patient cohort. J Nucl Med. 2015;56:38–44.

    Article  CAS  PubMed  Google Scholar 

  70. Chicklore S, Goh V, Siddique M, Roy A, Marsden PK, Cook GJ. Quantifying tumour heterogeneity in 18F-FDG PET/CT imaging by texture analysis. Eur J Nucl Med Mol Imaging. 2013;40:133–40.

    Article  PubMed  Google Scholar 

  71. Hatt M, Tixier F, Pierce L, Kinahan PE, Le Rest CC, Visvikis D. Characterization of PET/CT images using texture analysis: the past, the present... any future? Eur J Nucl Med Mol Imaging. 2017;44:151–65.

    Article  PubMed  Google Scholar 

  72. Cheng NM, Fang YH, Lee LY, et al. Zone-size nonuniformity of 18F-FDG PET regional textural features predicts survival in patients with oropharyngeal cancer. Eur J Nucl Med Mol Imaging. 2015;42:419–28.

    Article  CAS  PubMed  Google Scholar 

  73. Mena E, Taghipour M, Sheikhbahaei S, et al. Value of intratumoral metabolic heterogeneity and quantitative 18F-FDG PET/CT parameters to predict prognosis in patients with HPV-positive primary oropharyngeal squamous cell carcinoma. Clin Nucl Med. 2017;42:e227–34.

    Article  PubMed  PubMed Central  Google Scholar 

  74. Cheng NM, Fang YH, Chang JT, et al. Textural features of pretreatment 18F-FDG PET/CT images: prognostic significance in patients with advanced T-stage oropharyngeal squamous cell carcinoma. J Nucl Med. 2013;54:1703–9.

    Article  CAS  PubMed  Google Scholar 

  75. Scott AM, Gunawardana DH, Bartholomeusz D, Ramshaw JE, Lin P. PET changes management and improves prognostic stratification in patients with head and neck cancer: results of a multicenter prospective study. J Nucl Med. 2008;49:1593–600.

    Article  PubMed  Google Scholar 

  76. Lonneux M, Hamoir M, Reychler H, et al. Positron emission tomography with [18F]fluorodeoxyglucose improves staging and patient management in patients with head and neck squamous cell carcinoma: a multicenter prospective study. J Clin Oncol. 2010;28:1190–5.

    Article  CAS  PubMed  Google Scholar 

  77. Lowe VJ, Duan F, Subramaniam RM, et al. Multicenter trial of [(18)F]fluorodeoxyglucose positron emission tomography/computed tomography staging of head and neck cancer and negative predictive value and surgical impact in the N0 neck: results from ACRIN 6685. J Clin Oncol. 2019;37:1704–12.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Dammann F, Horger M, Mueller-Berg M, et al. Rational diagnosis of squamous cell carcinoma of the head and neck region: comparative evaluation of CT, MRI, and 18FDG PET. Am J Roentgenol. 2005;184:1326–31.

    Article  Google Scholar 

  79. Baek CH, Chung MK, Son YI, et al. Tumor volume assessment by 18F-FDG PET/CT in patients with oral cavity cancer with dental artifacts on CT or MR images. J Nucl Med. 2008;49:1422–8.

    Article  PubMed  Google Scholar 

  80. Hong HR, Jin S, Koo HJ, et al. Clinical values of (18) F-FDG PET/CT in oral cavity cancer with dental artifacts on CT or MRI. J Surg Oncol. 2014;110:696–701.

    Article  CAS  PubMed  Google Scholar 

  81. Abd El-Hafez YG, Chen CC, Ng SH, et al. Comparison of PET/CT and MRI for the detection of bone marrow invasion in patients with squamous cell carcinoma of the oral cavity. Oral Oncol. 2011;47:288–95.

    Article  PubMed  Google Scholar 

  82. Babin E, Desmonts C, Hamon M, Benateau H, Hitier M. PET/CT for assessing mandibular invasion by intraoral squamous cell carcinomas. Clin Otolaryngol. 2008;33:47–51.

    Article  CAS  PubMed  Google Scholar 

  83. Ng SH, Chan SC, Yen TC, et al. Staging of untreated nasopharyngeal carcinoma with PET/CT: comparison with conventional imaging work-up. Eur J Nucl Med Mol Imaging. 2009;36:12–22.

    Article  PubMed  Google Scholar 

  84. Leclerc M, Lartigau E, Lacornerie T, Daisne JF, Kramar A, Gregoire V. Primary tumor delineation based on (18)FDG PET for locally advanced head and neck cancer treated by chemo-radiotherapy. Radiother Oncol. 2015;116:87–93.

    Article  PubMed  Google Scholar 

  85. Anderson CM, Sun W, Buatti JM, et al. Interobserver and intermodality variability in GTV delineation on simulation CT, FDG-PET, and MR images of head and neck cancer. Jacobs J Radiat Oncol. 2014;1:006.

    PubMed  PubMed Central  Google Scholar 

  86. Huang SH, Chien CY, Lin WC, et al. A comparative study of fused FDG PET/MRI, PET/CT, MRI, and CT imaging for assessing surrounding tissue invasion of advanced buccal squamous cell carcinoma. Clin Nucl Med. 2011;36:518–25.

    Article  PubMed  Google Scholar 

  87. Sekine T, Barbosa FG, Delso G, et al. Local resectability assessment of head and neck cancer: positron emission tomography/MRI versus positron emission tomography/CT. Head Neck. 2017;39:1550–8.

    Article  PubMed  Google Scholar 

  88. Sekine T, Barbosa F, Kuhn FP, et al. PET+ MR versus PET/CT in the initial staging of head and neck cancer, using a trimodality PET/CT+ MR system. Clin Imaging. 2017;42:232–9.

    Article  PubMed  Google Scholar 

  89. Queiroz MA, Hullner M, Kuhn F, et al. PET/MRI and PET/CT in follow-up of head and neck cancer patients. Eur J Nucl Med Mol Imaging. 2014;41:1066–75.

    Article  PubMed  Google Scholar 

  90. Blodgett TM, Fukui MB, Snyderman CH, et al. Combined PET-CT in the head and neck. Radiographics. 2005;25:897–912.

    Article  PubMed  Google Scholar 

  91. Cho YS, Moon SH, Choi JY, Choe YS, Kim BT, Lee KH. Clinical significance of incidental 18F-FDG uptake in the pyriform sinus detected by PET/CT. Clin Nucl Med. 2016;41:e82–6.

    Article  PubMed  Google Scholar 

  92. Kyzas PA, Evangelou E, Denaxa-Kyza D, Ioannidis JP. 18F-fluorodeoxyglucose positron emission tomography to evaluate cervical node metastases in patients with head and neck squamous cell carcinoma: a meta-analysis. J Natl Cancer Inst. 2008;100:712–20.

    Article  PubMed  Google Scholar 

  93. Liao LJ, Lo WC, Hsu WL, Wang CT, Lai MS. Detection of cervical lymph node metastasis in head and neck cancer patients with clinically N0 neck-a meta-analysis comparing different imaging modalities. BMC Cancer. 2012;12:236.

    Article  PubMed  PubMed Central  Google Scholar 

  94. Hollenbeak CS, Lowe VJ, Stack BC Jr. The cost-effectiveness of fluorodeoxyglucose 18-F positron emission tomography in the N0 neck. Cancer. 2001;92:2341–8.

    Article  CAS  PubMed  Google Scholar 

  95. Sahovaler A, Krishnan RJ, Yeh DH, et al. Outcomes of cutaneous squamous cell carcinoma in the head and neck region with regional lymph node metastasis: a systematic review and meta-analysis. JAMA Otolaryngol Head Neck Surg. 2019;145:352–60.

    Article  PubMed  PubMed Central  Google Scholar 

  96. Mermod M, Tolstonog G, Simon C, Monnier Y. Extracapsular spread in head and neck squamous cell carcinoma: a systematic review and meta-analysis. Oral Oncol. 2016;62:60–71.

    Article  PubMed  Google Scholar 

  97. Su Z, Duan Z, Pan W, et al. Predicting extracapsular spread of head and neck cancers using different imaging techniques: a systematic review and meta-analysis. Int J Oral Maxillofac Surg. 2016;45:413–21.

    Article  CAS  PubMed  Google Scholar 

  98. Chun BJ, Yoo Ie R, Joo YH, et al. Efficacy of 18F-fluorodeoxyglucose positron emission tomography/CT imaging for extracapsular spread of laryngeal squamous cell carcinoma. Head Neck. 2016;38:290–3.

    Article  PubMed  Google Scholar 

  99. Kubicek GJ, Champ C, Fogh S, et al. FDG-PET staging and importance of lymph node SUV in head and neck cancer. Head Neck Oncol. 2010;2:19.

    Article  PubMed  PubMed Central  Google Scholar 

  100. Platzek I, Beuthien-Baumann B, Schneider M, et al. FDG PET/MR for lymph node staging in head and neck cancer. Eur J Radiol. 2014;83:1163–8.

    Article  PubMed  Google Scholar 

  101. Hoang JK, Vanka J, Ludwig BJ, Glastonbury CM. Evaluation of cervical lymph nodes in head and neck cancer with CT and MRI: tips, traps, and a systematic approach. Am J Roentgenol. 2013;200:W17–25.

    Article  Google Scholar 

  102. Kowalski LP, Carvalho AL, Martins Priante AV, Magrin J. Predictive factors for distant metastasis from oral and oropharyngeal squamous cell carcinoma. Oral Oncol. 2005;41:534–41.

    Article  PubMed  Google Scholar 

  103. Jackel MC, Rausch H. Distant metastasis of squamous epithelial carcinomas of the upper aerodigestive tract. The effect of clinical tumor parameters and course of illness. HNO. 1999;47:38–44.

    Article  CAS  PubMed  Google Scholar 

  104. Merino OR, Lindberg RD, Fletcher GH. An analysis of distant metastases from squamous cell carcinoma of the upper respiratory and digestive tracts. Cancer. 1977;40:145–51.

    Article  CAS  PubMed  Google Scholar 

  105. Takes RP, Rinaldo A, Silver CE, et al. Distant metastases from head and neck squamous cell carcinoma. Part I. Basic aspects. Oral Oncol. 2012;48:775–9.

    Article  PubMed  Google Scholar 

  106. de Bree R, Deurloo EE, Snow GB, Leemans CR. Screening for distant metastases in patients with head and neck cancer. Laryngoscope. 2000;110:397–401.

    Article  PubMed  Google Scholar 

  107. Krabbe CA, Pruim J, van der Laan BF, Rodiger LA, Roodenburg JL. FDG-PET and detection of distant metastases and simultaneous tumors in head and neck squamous cell carcinoma: a comparison with chest radiography and chest CT. Oral Oncol. 2009;45:234–40.

    Article  PubMed  Google Scholar 

  108. Rohde M, Nielsen AL, Johansen J, et al. Head-to-head comparison of chest X-ray/head and neck MRI, chest CT/head and neck MRI, and (18)F-FDG PET/CT for detection of distant metastases and synchronous cancer in oral, pharyngeal, and laryngeal cancer. J Nucl Med. 2017;58:1919–24.

    Article  CAS  PubMed  Google Scholar 

  109. Kim Y, Roh JL, Kim JS, et al. Chest radiography or chest CT plus head and neck CT versus (18)F-FDG PET/CT for detection of distant metastasis and synchronous cancer in patients with head and neck cancer. Oral Oncol. 2019;88:109–14.

    Article  PubMed  Google Scholar 

  110. Network NCC. NCCN Clinical practice guidelines in oncology: head and neck cancers. Version 2.2017. 2017.

    Google Scholar 

  111. Xu GZ, Guan DJ, He ZY. (18)FDG-PET/CT for detecting distant metastases and second primary cancers in patients with head and neck cancer. A meta-analysis. Oral Oncol. 2011;47:560–5.

    Article  PubMed  Google Scholar 

  112. Gao S, Li S, Yang X, Tang Q. 18FDG PET-CT for distant metastases in patients with recurrent head and neck cancer after definitive treatment. A meta-analysis. Oral Oncol. 2014;50:163–7.

    Article  CAS  PubMed  Google Scholar 

  113. Pavlidis N. Forty years experience of treating cancer of unknown primary. Acta Oncol. 2007;46:592–601.

    Article  PubMed  Google Scholar 

  114. Kwee TC, Basu S, Cheng G, Alavi A. FDG PET/CT in carcinoma of unknown primary. Eur J Nucl Med Mol Imaging. 2010;37:635–44.

    Article  PubMed  Google Scholar 

  115. Riihimaki M, Thomsen H, Hemminki A, Sundquist K, Hemminki K. Comparison of survival of patients with metastases from known versus unknown primaries: survival in metastatic cancer. BMC Cancer. 2013;13:36.

    Article  PubMed  PubMed Central  Google Scholar 

  116. van de Wouw AJ, Jansen RL, Speel EJ, Hillen HF. The unknown biology of the unknown primary tumour: a literature review. Ann Oncol. 2003;14:191–6.

    Article  PubMed  Google Scholar 

  117. Patel S, Lydiatt W, Ridge J. Cervical lymph nodes and unknown primary tumors of the head and neck. In: AJCC cancer staging manual. 8th ed. Cham: Springer Nature; 2017. p. 67–78.

    Chapter  Google Scholar 

  118. O’Sullivan B. Head and neck tumours. UICC TNM classification of malignant tumours. 8th ed. Chichester: Wiley; 2017. p. 17–54.

    Google Scholar 

  119. Kwee TC, Kwee RM. Combined FDG-PET/CT for the detection of unknown primary tumors: systematic review and meta-analysis. Eur Radiol. 2009;19:731–44.

    Article  PubMed  Google Scholar 

  120. Lee JR, Kim JS, Roh J-L, et al. Detection of occult primary tumors in patients with cervical metastases of unknown primary tumors: comparison of 18F FDG PET/CT with contrast-enhanced CT or CT/MR imaging—prospective study. Radiology. 2015;274:764–71.

    Article  PubMed  Google Scholar 

  121. Pawaskar AS, Basu S. Role of 2-fluoro-2-deoxyglucose PET/computed tomography in carcinoma of unknown primary. PET Clin. 2015;10:297–310.

    Article  PubMed  Google Scholar 

  122. Varadhachary GR. Carcinoma of unknown primary: focused evaluation. J Natl Compr Canc Netw. 2011;9:1406–12.

    Article  PubMed  Google Scholar 

  123. Zhu L, Wang N. 18F-fluorodeoxyglucose positron emission tomography-computed tomography as a diagnostic tool in patients with cervical nodal metastases of unknown primary site: a meta-analysis. Surg Oncol. 2013;22:190–4.

    Article  PubMed  Google Scholar 

  124. Sekine T, Barbosa FG, Sah BR, et al. PET/MR outperforms PET/CT in suspected occult tumors. Clin Nucl Med. 2017;42:e88–95.

    Article  PubMed  Google Scholar 

  125. Ruhlmann V, Ruhlmann M, Bellendorf A, et al. Hybrid imaging for detection of carcinoma of unknown primary: a preliminary comparison trial of whole-body PET/MRI versus PET/CT. Eur J Radiol. 2016;85:1941–7.

    Article  PubMed  Google Scholar 

  126. Network NCC. NCCN Clinical practice guidelines in oncology: Occult Primary (cancer of Unknown Primary [CUP]). Version 2.2019. 2019.

    Google Scholar 

  127. Mirghani H, Amen F, Tao Y, Deutsch E, Levy A. Increased radiosensitivity of HPV-positive head and neck cancers: molecular basis and therapeutic perspectives. Cancer Treat Rev. 2015;41:844–52.

    Article  CAS  PubMed  Google Scholar 

  128. Fakhry C, Westra WH, Li S, et al. Improved survival of patients with human papillomavirus-positive head and neck squamous cell carcinoma in a prospective clinical trial. J Natl Cancer Inst. 2008;100:261–9.

    Article  CAS  PubMed  Google Scholar 

  129. Gillison ML, D'Souza G, Westra W, et al. Distinct risk factor profiles for human papillomavirus type 16-positive and human papillomavirus type 16-negative head and neck cancers. J Natl Cancer Inst. 2008;100:407–20.

    Article  PubMed  Google Scholar 

  130. Goldenberg D, Begum S, Westra WH, et al. Cystic lymph node metastasis in patients with head and neck cancer: an HPV-associated phenomenon. Head Neck. 2008;30:898–903.

    Article  PubMed  Google Scholar 

  131. Abadi P, Johansen A, Godballe C, Gerke O, Hoilund-Carlsen PF, Thomassen A. (18)F-FDG PET/CT to differentiate malignant necrotic lymph node from benign cystic lesions in the neck. Ann Nucl Med. 2017;31:101–8.

    Article  CAS  PubMed  Google Scholar 

  132. Subramaniam RM, Alluri KC, Tahari AK, Aygun N, Quon H. PET/CT imaging and human papilloma virus-positive oropharyngeal squamous cell cancer: evolving clinical imaging paradigm. J Nucl Med. 2014;55:431–8.

    Article  PubMed  Google Scholar 

  133. Xu CC, Biron VL, Puttagunta L, Seikaly H. HPV status and second primary tumours in oropharyngeal squamous cell carcinoma. J Otolaryngol Head Neck Surg. 2013;42:36.

    Article  PubMed  PubMed Central  Google Scholar 

  134. Martel M, Alemany L, Taberna M, et al. The role of HPV on the risk of second primary neoplasia in patients with oropharyngeal carcinoma. Oral Oncol. 2017;64:37–43.

    Article  PubMed  Google Scholar 

  135. Huang SH, Perez-Ordonez B, Liu FF, et al. Atypical clinical behavior of p16-confirmed HPV-related oropharyngeal squamous cell carcinoma treated with radical radiotherapy. Int J Radiat Oncol Biol Phys. 2012;82:276–83.

    Article  PubMed  Google Scholar 

  136. Huang SH, Perez-Ordonez B, Weinreb I, et al. Natural course of distant metastases following radiotherapy or chemoradiotherapy in HPV-related oropharyngeal cancer. Oral Oncol. 2013;49:79–85.

    Article  PubMed  Google Scholar 

  137. O’Sullivan B, Huang SH, Perez-Ordonez B, et al. Outcomes of HPV-related oropharyngeal cancer patients treated by radiotherapy alone using altered fractionation. Radiother Oncol. 2012;103:49–56.

    Article  PubMed  Google Scholar 

  138. Tahari AK, Alluri KC, Quon H, Koch W, Wahl RL, Subramaniam RM. FDG PET/CT imaging of oropharyngeal squamous cell carcinoma: characteristics of human papillomavirus-positive and -negative tumors. Clin Nucl Med. 2014;39:225–31.

    Article  PubMed  PubMed Central  Google Scholar 

  139. Joo YH, Yoo Ie R, Cho KJ, Park JO, Nam IC, Kim MS. Preoperative 18F-FDG PET/CT and high-risk HPV in patients with oropharyngeal squamous cell carcinoma. Head Neck. 2014;36:323–7.

    Article  PubMed  Google Scholar 

  140. Kendi AT, Magliocca K, Corey A, et al. Do 18F-FDG PET/CT parameters in oropharyngeal and oral cavity squamous cell carcinomas indicate HPV status? Clin Nucl Med. 2015;40:e196–200.

    Article  PubMed  PubMed Central  Google Scholar 

  141. Awan MJ, Lavertu P, Zender C, et al. Post-treatment PET/CT and p16 status for predicting treatment outcomes in locally advanced head and neck cancer after definitive radiation. Eur J Nucl Med Mol Imaging. 2017;44:988–97.

    Article  CAS  PubMed  Google Scholar 

  142. Yom SS, Gillison ML, Trotti AM. Dose de-escalation in human papillomavirus-associated oropharyngeal cancer: first tracks on powder. Int J Radiat Oncol Biol Phys. 2015;93:986–8.

    Article  PubMed  Google Scholar 

  143. Oncology N. NRG-HN002: a randomized phase II trial for patients with p16 positive, non-smoking associated, locoregionally advanced oropharyngeal cancer, NCT02254278. 2015. https://clinicaltrials.gov/ct2/show/NCT02254278.

  144. Ong SC, Schoder H, Lee NY, et al. Clinical utility of 18F-FDG PET/CT in assessing the neck after concurrent chemoradiotherapy for locoregional advanced head and neck cancer. J Nucl Med. 2008;49:532–40.

    Article  PubMed  Google Scholar 

  145. Isles MG, McConkey C, Mehanna HM. A systematic review and meta-analysis of the role of positron emission tomography in the follow up of head and neck squamous cell carcinoma following radiotherapy or chemoradiotherapy. Clin Otolaryngol. 2008;33:210–22.

    Article  CAS  PubMed  Google Scholar 

  146. Sheikhbahaei S, Taghipour M, Ahmad R, et al. Diagnostic accuracy of follow-up FDG PET or PET/CT in patients with head and neck cancer after definitive treatment: a systematic review and meta-analysis. Am J Roentgenol. 2015;205:629–39.

    Article  Google Scholar 

  147. Kao J, Vu HL, Genden EM, et al. The diagnostic and prognostic utility of positron emission tomography/computed tomography-based follow-up after radiotherapy for head and neck cancer. Cancer. 2009;115:4586–94.

    Article  PubMed  Google Scholar 

  148. Wong ET, Dmytriw AA, Yu E, et al. (18) F-FDG PET/CT for locoregional surveillance following definitive treatment of head and neck cancer: a meta-analysis of reported studies. Head Neck. 2019;41:551–61.

    Article  PubMed  Google Scholar 

  149. Helsen N, Roothans D, Van Den Heuvel B, et al. 18F-FDG-PET/CT for the detection of disease in patients with head and neck cancer treated with radiotherapy. PLoS One. 2017;12:e0182350.

    Article  PubMed  PubMed Central  Google Scholar 

  150. Kim S, Loevner L, Quon H, et al. Diffusion-weighted magnetic resonance imaging for predicting and detecting early response to chemoradiation therapy of squamous cell carcinomas of the head and neck. Clin Cancer Res. 2009;15:986–94.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  151. Wong KH, Panek R, Welsh L, et al. The predictive value of early assessment after 1 cycle of induction chemotherapy with 18F-FDG PET/CT and diffusion-weighted MRI for response to radical chemoradiotherapy in head and neck squamous cell carcinoma. J Nucl Med. 2016;57:1843–50.

    Article  CAS  PubMed  Google Scholar 

  152. Martens RM, Noij DP, Ali M, et al. Functional imaging early during (chemo)radiotherapy for response prediction in head and neck squamous cell carcinoma; a systematic review. Oral Oncol. 2019;88:75–83.

    Article  PubMed  Google Scholar 

  153. Garibaldi C, Ronchi S, Cremonesi M, et al. Interim (18)F-FDG PET/CT during chemoradiation therapy in the management of head and neck cancer patients: a systematic review. Int J Radiat Oncol Biol Phys. 2017;98:555–73.

    Article  PubMed  Google Scholar 

  154. Min M, Lin P, Lee MT, et al. Prognostic role of metabolic parameters of (18)F-FDG PET-CT scan performed during radiation therapy in locally advanced head and neck squamous cell carcinoma. Eur J Nucl Med Mol Imaging. 2015;42:1984–94.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  155. Abgral R, Querellou S, Potard G, et al. Does 18F-FDG PET/CT improve the detection of posttreatment recurrence of head and neck squamous cell carcinoma in patients negative for disease on clinical follow-up? J Nucl Med. 2009;50:24–9.

    Article  PubMed  Google Scholar 

  156. Leemans CR, Tiwari R, Nauta JJ, van der Waal I, Snow GB. Recurrence at the primary site in head and neck cancer and the significance of neck lymph node metastases as a prognostic factor. Cancer. 1994;73:187–90.

    Article  CAS  PubMed  Google Scholar 

  157. Beswick DM, Gooding WE, Johnson JT, Branstetter BF. Temporal patterns of head and neck squamous cell carcinoma recurrence with positron-emission tomography/computed tomography monitoring. Laryngoscope. 2012;122:1512–7.

    Article  PubMed  PubMed Central  Google Scholar 

  158. Ho AS, Tsao GJ, Chen FW, et al. Impact of positron emission tomography/computed tomography surveillance at 12 and 24 months for detecting head and neck cancer recurrence. Cancer. 2013;119:1349–56.

    Article  PubMed  Google Scholar 

  159. Spector ME, Chinn SB, Rosko AJ, et al. Diagnostic modalities for distant metastasis in head and neck squamous cell carcinoma: are we changing life expectancy? Laryngoscope. 2012;122:1507–11.

    Article  PubMed  PubMed Central  Google Scholar 

  160. McDermott M, Hughes M, Rath T, et al. Negative predictive value of surveillance PET/CT in head and neck squamous cell cancer. Am J Neuroradiol. 2013;34:1632–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  161. Roman BR, Patel SG, Wang MB, et al. Guideline familiarity predicts variation in self-reported use of routine surveillance PET/CT by physicians who treat head and neck cancer. J Natl Compr Canc Netw. 2015;13:69–77.

    Article  PubMed  Google Scholar 

  162. Cabana MD, Rand CS, Powe NR, et al. Why don’t physicians follow clinical practice guidelines? A framework for improvement. JAMA. 1999;282:1458–65.

    Article  CAS  PubMed  Google Scholar 

  163. Zhang B, Li X, Lu X. Standardized uptake value is of prognostic value for outcome in head and neck squamous cell carcinoma. Acta Otolaryngol. 2010;130:756–62.

    Article  PubMed  Google Scholar 

  164. Xie P, Li M, Zhao H, Sun X, Fu Z, Yu J. 18F-FDG PET or PET-CT to evaluate prognosis for head and neck cancer: a meta-analysis. J Cancer Res Clin Oncol. 2011;137:1085–93.

    Article  PubMed  Google Scholar 

  165. Pak K, Cheon GJ, Nam HY, et al. Prognostic value of metabolic tumor volume and total lesion glycolysis in head and neck cancer: a systematic review and meta-analysis. J Nucl Med. 2014;55:884–90.

    Article  CAS  PubMed  Google Scholar 

  166. Castelli J, De Bari B, Depeursinge A, et al. Overview of the predictive value of quantitative 18 FDG PET in head and neck cancer treated with chemoradiotherapy. Crit Rev Oncol Hematol. 2016;108:40–51.

    Article  CAS  PubMed  Google Scholar 

  167. Wang L, Bai J, Duan P. Prognostic value of 18F-FDG PET/CT functional parameters in patients with head and neck cancer: a meta-analysis. Nucl Med Commun. 2019;40:361–9.

    Article  CAS  PubMed  Google Scholar 

  168. Gouw ZAR, La Fontaine MD, van Kranen S, et al. The prognostic value of baseline 18F-FDG PET/CT in human papillomavirus-positive versus human papillomavirus-negative patients with oropharyngeal cancer. Clin Nucl Med. 2019;44:e323–8.

    Article  PubMed  Google Scholar 

  169. Moan JM, Amdal CD, Malinen E, Svestad JG, Bogsrud TV, Dale E. The prognostic role of 18F-fluorodeoxyglucose PET in head and neck cancer depends on HPV status. Radiother Oncol. 2019;140:54–61.

    Article  PubMed  Google Scholar 

  170. Floberg JM, DeWees TA, Chin RI, et al. Pretreatment metabolic tumor volume as a prognostic factor in HPV-associated oropharyngeal cancer in the context of AJCC 8th edition staging. Head Neck. 2018;40:2280–7.

    Article  PubMed  Google Scholar 

  171. Chotchutipan T, Rosen BS, Hawkins PG, et al. Volumetric (18) F-FDG-PET parameters as predictors of locoregional failure in low-risk HPV-related oropharyngeal cancer after definitive chemoradiation therapy. Head Neck. 2019;41:366–73.

    PubMed  Google Scholar 

  172. Castelli J, Depeursinge A, Devillers A, et al. PET-based prognostic survival model after radiotherapy for head and neck cancer. Eur J Nucl Med Mol Imaging. 2019;46:638–49.

    Article  CAS  PubMed  Google Scholar 

  173. Sheikhbahaei S, Ahn SJ, Moriarty E, Kang H, Fakhry C, Subramaniam RM. Intratherapy or posttherapy FDG PET or FDG PET/CT for patients with head and neck cancer: a systematic review and meta-analysis of prognostic studies. Am J Roentgenol. 2015;205:1102–13.

    Article  Google Scholar 

  174. Mehanna H, Wong WL, McConkey CC, et al. PET-CT surveillance versus neck dissection in advanced head and neck cancer. N Engl J Med. 2016;374:1444–54.

    Article  CAS  PubMed  Google Scholar 

  175. Mehanna H, McConkey CC, Rahman JK, et al. PET-NECK: a multicentre randomised Phase III non-inferiority trial comparing a positron emission tomography-computerised tomography-guided watch-and-wait policy with planned neck dissection in the management of locally advanced (N2/N3) nodal metastases in patients with squamous cell head and neck cancer. Health Technol Assess. 2017;21:1–122.

    Article  PubMed  PubMed Central  Google Scholar 

  176. Helsen N, Van den Wyngaert T, Carp L, Stroobants S. FDG-PET/CT for treatment response assessment in head and neck squamous cell carcinoma: a systematic review and meta-analysis of diagnostic performance. Eur J Nucl Med Mol Imaging. 2018;45:1063–71.

    Article  PubMed  Google Scholar 

  177. Ang KK, Harris J, Wheeler R, et al. Human papillomavirus and survival of patients with oropharyngeal cancer. N Engl J Med. 2010;363:24–35.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  178. Huang SH, O’Sullivan B, Xu W, et al. Temporal nodal regression and regional control after primary radiation therapy for N2-N3 head-and-neck cancer stratified by HPV status. Int J Radiat Oncol Biol Phys. 2013;87:1078–85.

    Article  PubMed  Google Scholar 

  179. Arunsingh M, Vaidyanathan S, Dyker KE, Sen M, Scarsbrook AF, Prestwich RJD. Accuracy of response assessment positron emission tomography-computed tomography following definitive radiotherapy without chemotherapy for head and neck squamous cell carcinoma. Clin Oncol (R Coll Radiol). 2019;31:212–8.

    Article  CAS  Google Scholar 

  180. Wong LY, Wei WI, Lam LK, Yuen AP. Salvage of recurrent head and neck squamous cell carcinoma after primary curative surgery. Head Neck. 2003;25:953–9.

    Article  PubMed  Google Scholar 

  181. Lell M, Baum U, Greess H, et al. Head and neck tumors: imaging recurrent tumor and post-therapeutic changes with CT and MRI. Eur J Radiol. 2000;33:239–47.

    Article  CAS  PubMed  Google Scholar 

  182. Srinivasan A, Mohan S, Mukherji SK. Biologic imaging of head and neck cancer: the present and the future. Am J Neuroradiol. 2012;33:586–94.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  183. Alhilali L, Reynolds AR, Fakhran S. Osteoradionecrosis after radiation therapy for head and neck cancer: differentiation from recurrent disease with CT and PET/CT imaging. Am J Neuroradiol. 2014;35:1405–11.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Sekine, T. (2020). PET in the Diagnosis of Head and Neck Cancer. In: Ojiri, H. (eds) Diagnostic Imaging in Head and Neck Cancer. Springer, Singapore. https://doi.org/10.1007/978-981-15-3188-0_10

Download citation

  • DOI: https://doi.org/10.1007/978-981-15-3188-0_10

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-15-3187-3

  • Online ISBN: 978-981-15-3188-0

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics