Skip to main content

Terahertz Emission Mechanisms in III–V Semiconductors: The Influence of Isoelectronic Dopants

  • Chapter
  • First Online:
Emerging Trends in Terahertz Solid-State Physics and Devices

Abstract

The generation of terahertz (THz) radiation by ultrafast optical excitation of III–V semiconductors has been studied extensively in the last three decades. One of the widely used THz sources/detectors is photoconductive antennas (PCAs) based on low-temperature grown GaAs (LT-GaAs). These PCAs have acted as reliable table-top sources of THz radiation required for different applications ranging from spectroscopy to imaging. THz radiation is generated from these semiconductors by transient photocurrents or by the nonlinear optical phenomenon. In the case of low-bandgap semiconductors, like InAs or GaSb, THz emission is mainly due to transient photocurrents. The transient photocurrent arises due to the built-in surface field or due to the difference in the mobility of electrons and holes generated by the intense laser pulse. III–V semiconductors doped with isoelectronic elements like bismuth have shown interesting properties like giant bandgap bowing, (e.g., 80–90 meV/% of Bi in GaAsBi), increase in hole concentration, and giant spin-orbit bowing. In this chapter, we discuss the effect of Bi incorporation on the THz emission and the mechanisms responsible for THz phenomena in two typical III–V semiconductors, viz. GaAs and GaSb. Even though the THz emission mechanism in these two alloys is different, an enhancement in the THz emission efficiency in both the alloys with increased Bi concentration has been reported. We discuss potential applications of these III–V: Bi alloys.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. R.W. Boyd, Nonlinear Optics. Nonlinear Optics. Elsevier Inc. (2008)

    Google Scholar 

  2. R.B. Darling, Defect-state occupation, fermi-level pinning, and illumination effects on free semiconductor surfaces. Phys. Rev. B. 43(5), 4071–4083 (1991)

    Article  ADS  Google Scholar 

  3. W.H. Brattain, J. Bardeen, Surface properties of germanium. Am. Teleph. Telegr. Co. 32, 1 (1952)

    Google Scholar 

  4. J.N. Heyman, N. Coates, A. Reinhardt, G. Strasser, Diffusion and drift in terahertz emission at GaAs surfaces. Appl. Phys. Lett. 83(26), 5476–5548 (2003)

    Article  ADS  Google Scholar 

  5. X.C. Zhang, J. Xu, Introduction to THz Wave Photonics, Introduction to THz Wave Photonics (Springer, US, 2010), pp. 1–246

    Book  Google Scholar 

  6. A. Arlauskas, A. Krotkus, THz excitation spectra of AIIIBV semiconductors. Semicond. Sci. Technol. 27, 115015 (2012)

    Article  ADS  Google Scholar 

  7. P. Gu, M. Tani, S. Kono, K. Sakai, X.C. Zhang, Study of terahertz radiation from InAs and InSb. J. Appl. Phys. 91(9), 5533–5537 (2002)

    Article  ADS  Google Scholar 

  8. I. Wilke, R. Ascazubi, H. Lu, W.J. Schaff, Terahertz emission from silicon and magnesium doped indium nitride. Appl. Phys. Lett. 93(22), 22113 (2008)

    Article  Google Scholar 

  9. R. Ascazubi, I. Wilke, K.J. Kim, P. Dutta, Terahertz emission from Ga1−xInxSb. Phys. Rev. B. 74, 075323 (2006)

    Article  ADS  Google Scholar 

  10. R. Ascázubi, C. Shneider, I. Wilke, R. Pino, P.S. Dutta, Enhanced terahertz emission from impurity compensated GaSb. Phys. Rev. B—Condens. Matter. Mater. Phys. 72(4), 045328 (2005)

    Article  ADS  Google Scholar 

  11. S. Kono, P. Gu, M. Tani, K. Sakai, Temperature dependence of terahertz radiation from n-type InSb and n-type InAs surfaces. Appl. Phys. B Lasers Opt. 71(6), 901–904 (2000)

    Article  ADS  Google Scholar 

  12. R. Adomavičius, A. Urbanowicz, G. Molis, A. Krotkus, E. Šatkovskis, Terahertz emission from p-InAs due to the instantaneous polarization. Appl. Phys. Lett. 85(13), 2463–2465 (2004)

    Article  ADS  Google Scholar 

  13. Wang L, Zhang L, Yue L, Liang D, Chen X, Li Y, et al. Novel dilute bismide, epitaxy, physical properties and device application. Crystals [Internet]. 7(3):63 (2017). Available from http://www.mdpi.com/2073-4352/7/3/63

  14. R.F. Davis, III–V nitrides for electronic and optoelectronic applications. Proc. IEEE 79(5), 702–712 (1991)

    Article  ADS  Google Scholar 

  15. I. Marko, S.J. Sweeney, Progress towards III–V-bismide alloys for near- and mid-infrared laser diodes. IEEE J. Sel. Top. Quantum Electron. 23(6), 150512 (2017)

    Article  Google Scholar 

  16. K. Oe, H. Okamoto, New semiconductor alloy GaAs1−xBix grown by metal organic vapor phase epitaxy. Jpn. J. Appl. Phys. 37(11), 1283–1285 (1998)

    Article  ADS  Google Scholar 

  17. Y. Takehara, M. Yoshimoto, W. Huang, J. Saraie, O.E. Kunishige, A. Chayahara et al., Lattice distortion of GaAsBi alloy grown on GaAs by molecular beam epitaxy. Japan. J. Appl. Phys. Part 1 45(1A), 67–69 (2006)

    Article  Google Scholar 

  18. S. Tixier, M. Adamcyk, T. Tiedje, S. Francoeur, A. Mascarenhas, P. Wei et al., Molecular beam epitaxy growth of GaAs1−xBix. Appl. Phys. Lett. 82(14), 2245–2247 (2003)

    Article  ADS  Google Scholar 

  19. K.M. Yu, S.V. Novikov, R. Broesler, A.X. Levander, Z. Liliental-Weber, F. Luckert et al., GaNAs alloys over the whole composition range grown on crystalline and amorphous substrates. Phys. Status Solidi. Curr. Top Solid State Phys. 8(7–8), 2503–2505 (2011)

    ADS  Google Scholar 

  20. M.P. Polak, P. Scharoch, R. Kudrawiec, First-principles calculations of bismuth induced changes in the band structure of dilute Ga–V–Bi and In–V–Bi alloys: Chemical trends versus experimental data. Semicond Sci Technol. 30(9), 094001 (2015)

    Article  ADS  Google Scholar 

  21. M.K. Rajpalke, W.M. Linhart, M. Birkett, K.M. Yu, D.O. Scanlon, J. Buckeridge et al., Growth and properties of GaSbBi alloys. Appl. Phys. Lett. 103, 142106 (2013)

    Article  ADS  Google Scholar 

  22. M.P. Polak, P. Scharoch, R. Kudrawiec, J. Kopaczek, M.J. Winiarsky, W.M. Linhart et al., Theoretical and experimental studies of electronic band structure for GaAs1−xBix. J. Phys. D Appl. Phys. 47, 355107 (2014)

    Article  Google Scholar 

  23. S. Francoeur, M.-J. Seong, A. Mascarenhas, S. Tixier, M. Adamcyk, T. Tiedje, Band gap of GaAs1−xBix, 0 < x < 3.6%. Appl. Phys. Lett. 82, 3874 (2003)

    Article  ADS  Google Scholar 

  24. Z. Batool, K. Hild, T.J.C. Hosea, X. Lu, T. Tiedje, S.J. Sweeney, The electronic band structure of GaBiAs/GaAs layers: influence of strain and band anti-crossing. J. Appl. Phys. 111, 113108 (2012)

    Article  ADS  Google Scholar 

  25. J. Yoshida, T. Kita, O. Wada, K. Oe, Temperature dependence of GaAs1−xBix band gap studied by photoreflectance spectroscopy. Japanese J Appl Physics, Part 1 42A(2), 371–374 (2003)

    Article  Google Scholar 

  26. K. Alberi, O.D.D. Walukiewicz, K.M.Y. Bertulis, A. Krotkus, Valence band anticrossing in GaBixAs1−x. Appl. Phys. Lett. 91, 051909 (2007)

    Article  ADS  Google Scholar 

  27. D.P. Samajdar, S. Dhar, Estimation of Bi induced changes in the direct E0 band gap of III–V-Bi alloys and comparison with experimental data. Phys. B 484, 27–30 (2016)

    Article  ADS  Google Scholar 

  28. M. Usman, C.A. Broderick, A. Lindsay, E.P. O’Reilly, Tight-binding analysis of the electronic structure of dilute bismide alloys of GaP and GaAs. Phys. Rev. B. 84, 245202 (2011)

    Article  ADS  Google Scholar 

  29. K. Alberi, J. Wu, W. Walukiewicz, K.M. Yu, O.D. Dubon, S.P. Watkins et al., Valence-band anticrossing in mismatched III–V semiconductor alloys. Phys. Rev. B. 75, 045203 (2007)

    Article  ADS  Google Scholar 

  30. W. Huang, K. Oe, G. Feng, M. Yoshimoto, Molecular-beam epitaxy and characteristics of Ga NyAs1−xyBix. J Appl Phys. 98(5), 053505 (2005)

    Article  ADS  Google Scholar 

  31. X. Lu, D.A. Beaton, R.B. Lewis, T. Tiedje, Y. Zhang, Composition dependence of photoluminescence of GaAs1−xBix alloys. Appl. Phys. Lett. 95(4), 2007–2010 (2009)

    Article  Google Scholar 

  32. A.R. Mohmad, F. Bastiman, C.J. Hunter, R.D. Richards, S.J. Sweeney, J.S. Ng et al., Localization effects and band gap of GaAsBi alloys. Phys. Status Solidi. Basic Res. 251(6), 1276–1281 (2014)

    Article  ADS  Google Scholar 

  33. B. Fluegel, S. Francoeur, A. Mascarenhas, S. Tixier, E.C. Young, T. Tiedje, Giant spin-orbit bowing in GaAs1−xBix. Phys. Rev. Lett. 97(6), 11–14 (2006)

    Article  Google Scholar 

  34. H.X. Deng, J. Li, S.S. Li, H. Peng, J.B. Xia, L.W. Wang et al., Band crossing in isovalent semiconductor alloys with large size mismatch: First-principles calculations of the electronic structure of Bi and N incorporated GaAs. Phys. Rev. B—Condens. Matter. Mater. Phys. 82(19), 4–7 (2010)

    Article  Google Scholar 

  35. S. Nargelas, K. Jarašiunas, K. Bertulis, V. Pačebutas, Hole diffusivity in GaAsBi alloys measured by a picosecond transient grating technique. Appl. Phys. Lett. 98(8), 082115 (2011)

    Article  ADS  Google Scholar 

  36. G. Pettinari, A. Patanè, A. Polimeni, M. Capizzi, X. Lu, T. Tiedje, Bi-induced p-type conductivity in nominally undoped Ga(AsBi). Appl. Phys. Lett. 100(9), 092109 (2012)

    Article  ADS  Google Scholar 

  37. G. Pettinari, H. Engelkamp, P.C.M. Christianen, J.C. Maan, A. Polimeni, M. Capizzi et al., Compositional evolution of Bi-induced acceptor states in GaAs1−xBix alloy. Phys. Rev. B. 83, 201201(R) (2011)

    Article  ADS  Google Scholar 

  38. N. Segercrantz, J. Slotte, I. Makkonen, F. Tuomisto, I.C. Sandall, M.J. Ashwin et al., Hole density and acceptor-type defects in MBE-grown GaSb1−xBix. J. Phys. D Appl. Phys. 50, 295102 (2017)

    Article  ADS  Google Scholar 

  39. J. Kopaczek, R. Kudrawiec, W. Linhart, M. Rajpalke, T. Jones, M. Ashwin et al., Low- and high-energy photoluminescence from GaSb1−xBix with 0 < x < 0.042. Appl. Phys. Expr. 7, 111202 (2014)

    Article  ADS  Google Scholar 

  40. D.A. Beaton, R.B. Lewis, M. Masnadi-Shirazi, T. Tiedje, Temperature dependence of hole mobility in GaAs1−xBix alloys. J. Appl. Phys. 108, 083708 (2010)

    Article  ADS  Google Scholar 

  41. R.N. Kini, A.J. Ptak, B. Fluegel, R. France, R.C. Reedy, A. Mascarenhas, Effect of Bi alloying on the hole transport in the dilute bismide alloy GaAs1−xBix. Phys. Rev. B. 83, 075307 (2011)

    Article  ADS  Google Scholar 

  42. S.L. Dexheimer, Terahertz spectroscopy: principles and applications, principles and applications (CRC Press, Terahertz Spectroscopy, 2017), pp. 1–331

    Book  Google Scholar 

  43. M. Reid, I.V. Cravetchi, R. Fedosejevs, Terahertz radiation and second-harmonic generation from InAs: bulk versus surface electric-field-induced contributions. Phys. Rev. B. 72, 035201 (2005)

    Article  ADS  Google Scholar 

  44. K. Radhanpura, S. Hargreaves, R.A. Lewis, M. Henini, The role of optical rectification in the generation of terahertz radiation from GaBiAs. Appl. Phys. Lett. 94, 251115 (2009)

    Article  ADS  Google Scholar 

  45. C.P. Vaisakh, A. Mascarenhas, R.N. Kini, THz generation mechanisms in the semiconductor alloy, GaAs1−xBix. J. Appl. Phys. 118, 165702 (2015)

    Article  ADS  Google Scholar 

  46. D.L. Cortie, R.A. Lewis, The importance of scattering, surface potential, and vanguard counter-potential in terahertz emission from gallium arsenide. Appl. Phys. Lett. 100, 261601 (2012)

    Article  ADS  Google Scholar 

  47. V. Pačebutas, S. Stanionytė, A. Arlauskas, R. Norkus, R. Butkutė, A. Geižutis et al., Terahertz excitation spectra of GaAsBi alloys. J. Phys. D Appl. Phys. 51, 474001 (2018)

    Article  ADS  Google Scholar 

  48. N.M. Burford, M.O. El-Shenawee, Review of terahertz photoconductive antenna technology. Opt. Eng. 56, 010901 (2017)

    Article  ADS  Google Scholar 

  49. M. Tani, S. Matsuura, K. Sakai, S. Nakashima, Emission characteristics of photoconductive antennas based on low-temperature-grown GaAs and semi-insulating GaAs. Appl. Opt. 36(30), 7853 (1997)

    Article  ADS  Google Scholar 

  50. B. Heshmat, M. Masnadi-Shirazi, R.B. Lewis, J. Zhang, T. Tiedje, R. Gordon et al., Enhanced terahertz bandwidth and power from GaAsBi-based sources. Adv. Opt. Mater. 1(10), 714–719 (2013)

    Article  Google Scholar 

  51. K. Bertulis, A. Krotkus, G. Aleksejenko, V. Pačebutas, R. Adomavičius, G. Molis et al., GaBiAs: a material for optoelectronic terahertz devices. Appl. Phys. Lett. 88(20), 201112 (2006)

    Article  ADS  Google Scholar 

  52. V. Pačebutas, A. Bičiũnas, S. Balakauskas, A. Krotkus, G. Andriukaitis, D. Lorenc et al., Terahertz time-domain-spectroscopy system based on femtosecond Yb: fiber laser and GaBiAs photoconducting components. Appl. Phys. Lett. 97, 031111 (2010)

    Article  ADS  Google Scholar 

  53. A. Arlauskas, P. Svidovsky, K. Bertulis, R. Adomavičius, A. Krotkus, GaAsBi photoconductive terahertz detector sensitivity at long excitation wavelengths. Appl. Phys. Expr. 5, 022601 (2012)

    Article  ADS  Google Scholar 

  54. C.P. Vaisakh, M.K. Bhowal, S. Dhar, R.N. Kini, Enhanced terahertz emission from Bi incorporated GaSb. J. Phys. D Appl. Phys. 51, 065112 (2018)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rajeev N. Kini .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Kini, R.N., Vaisakh, C.P. (2020). Terahertz Emission Mechanisms in III–V Semiconductors: The Influence of Isoelectronic Dopants. In: Biswas, A., Banerjee, A., Acharyya, A., Inokawa, H., Roy, J. (eds) Emerging Trends in Terahertz Solid-State Physics and Devices. Springer, Singapore. https://doi.org/10.1007/978-981-15-3235-1_11

Download citation

Publish with us

Policies and ethics